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Abstract

Extracting farmland from very-high-resolution optical remote sensing images is a challenging task. Although deep learning 
algorithms have been extensively applied to farmland extraction, their performance remains limited due to the scarcity of labeled 
farmland samples and restricted generalization capabilities. The recent introduction of the Segment Anything Model (SAM), based 
on the Vision Transformer (ViT) architecture, has brought transformative advancements to remote sensing image analysis for 
farmland extraction. This paper introduces FL-DBENet, a farmland extraction network that builds on SAM’s strengths. FL-DBENet 
features a general-specialized double-branch encoder network: the general branch leverages SAM’s robust edge detection to capture 
precise farmland boundaries, while the specialized branch incorporates the lightweight SegFormer encoder to provide SAM with 
targeted prompts on farmland features. To further streamline the model, we integrate a Low-Rank Adaptation (LoRA) module into 
SAM’s image encoder, reducing training parameters and computational demands. Additionally, a prompt mixer module is developed 
to integrate diverse features effectively. Extensive evaluations on the GID dataset and the ultra-high resolution, ultra-rich context 
(URUR) dataset demonstrate that FL-DBENet achieves superior performance in both qualitative and quantitative assessments for 
farmland extraction tasks. 

1. Introduction

Farmland is a vital monitoring target in remote sensing,
closely linked to societal and economic development through its 
quantity, quality, and spatial distribution. As urbanization and 
industrialization accelerate in China, farmland resources face 
increasing encroachment. Rapid and accurate extraction of 
farmland information is therefore essential to support 
sustainable agricultural development and ensure national food 
security (Hong et al., 2024; Sun et al., 2022).

Farmland extraction from multi-source remote sensing data 
is a fundamental topic in remote sensing image interpretation. 
As image resolution has advanced, extraction methods have 
evolved significantly and can be broadly classified into four 
types: multi-feature-based methods, traditional machine 
learning methods, object-based methods, and deep learning 
methods. Multi-feature-based methods rely on manually crafted 
rules and low-level features like spectral, texture, and shape 
information for farmland extraction. While these methods offer 
a foundational approach, they struggle in complex backgrounds 
and under varying lighting conditions. Traditional machine 
learning methods (Jia et al., 2019), including Support Vector 
Machines (SVM), Extreme Learning Machines (ELM), 
Decision Trees (DT), and Random Forests (RF), automate 
feature selection to a degree by incorporating multi-dimensional 
remote sensing features (Sun et al., 2022; Zhang et al., 2023). 
However, they still depend on manual feature design and face 
limitations with high-dimensional and complex data. Object-
based methods segment images into distinct semantic object 
regions, allowing feature classification at the object level. This 
approach reduces the “salt-and-pepper effect” common in pixel-
level extraction and performs well on medium- to high-

resolution imagery. Yet, challenges remain for object-based 
classification in very-high-resolution (VHR) imagery due to 
sensor diversity, imaging environment variability, complex 
scene targets, and dispersed farmland changes. In recent years, 
deep learning methods have revolutionized farmland extraction, 
progressing from Convolutional Neural Networks (CNNs) to 
advanced architectures like Transformer and Mamba, 
significantly enhancing accuracy (Yan et al., 2024). Public 
datasets such as GID (Tong et al., 2020), URUR (Ji et al., 2023), 
BLU (Ding et al., 2021), and LoveDA (Wang et al., 2021) have 
further accelerated deep learning advancements. However, 
current deep semantic segmentation networks often lose edge 
details in large-scale farmland extraction tasks, impacting 
overall accuracy. Farmland boundaries tend to be irregular, and 
narrow ridges particularly in southern regions appear blurred in 
imagery, making them difficult to detect. High-level semantic 
feature learning in deep networks can lead to spatial detail loss, 
hindering the recovery of geometric features during upsampling 
and reducing edge extraction accuracy. Few deep models are 
explicitly designed for farmland extraction, and most still rely 
on general open-source computer vision models, underscoring 
the need for further improvements in extraction accuracy 
tailored to this domain. 

With significant breakthroughs in visual foundational 
models, particularly the Segment Anything Model (SAM), in 
semantic segmentation tasks for remote sensing imagery, the 
field is undergoing a revolutionary transformation. These 
changes are primarily reflected in aspects such as zero-shot 
generalization capability, efficient extraction of object 
boundaries and detail capture, as well as advancements in 
unsupervised and weakly supervised learning. SAM, trained on 
the SA-1B natural image dataset with over a billion images, 
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typically requires manually selected prompts (such as points, 
rectangular boxes, or segmentation masks) to guide the 
segmentation of target objects (Kirillov et al., 2023; Lin et al., 
2023; Zhang et al., 2024). Given the challenges of recognizing 
fuzzy field boundaries in existing farmland extraction research 
and SAM's advantages in generalization and boundary 
sensitivity, an interesting question arises: Can SAM help 
accurately identify farmland areas in remote sensing images? 
However, the challenges in applying SAM include its limited 
consideration of the characteristics of farmland in remote 
sensing imagery, such as varying shapes and sizes of farmland, 
and changes in seasons and terrain, making it difficult to 
accurately identify and segment farmland areas. Additionally, 
SAM may underperform when handling remote sensing images 
with different resolutions and scales, affecting the accuracy and 
robustness of farmland extraction results. Moreover, due to the 
lack of VHR remote sensing images in SAM's training dataset, 
its generalization capability in actual farmland extraction tasks 
is insufficient. A common method to improve SAM's 
performance in farmland extraction is full-parameter fine-tuning, 
but this requires significant training time and computational 
resources, especially for large-scale visual models. To address 
these challenges, some research has proposed lightweight 
alternatives, usually by freezing SAM's original parameters and 
only training a small number of additional network parameters. 
Based on this, we propose a farmland extraction network named 
FL-DBENet, which features a general-specialized dual-branch 
architecture designed to better adapt SAM for farmland 
extraction tasks. Our contributions are as follows: 

First, FL-DBENet adopts a dual-branch encoder network 
architecture. In the general branch, it utilizes SAM's powerful 
edge detection capabilities to learn finer farmland boundaries, 
while in the specialized branch, it employs the lightweight 
semantic segmentation model SegFormer’s image encoder (Xie 
et al., 2021) to provide SAM with more farmland-specific 
prompts. 

Secondly, to reduce the number of trainable parameters, we 
introduce a Low-Rank Adaptation (LoRA) module (Hu et al., 
2021) into SAM's image encoder, effectively lowering the 
computational cost. Additionally, we design a prompt mixer 
module to integrate different features. Thanks to the limited 
number of trainable parameters, the FL-DBENet algorithm 
significantly reduces computational resource requirements and 
improves training efficiency. 

Finally, comprehensive ablation experiments demonstrate 
that FL-DBENet outperforms existing farmland extraction 
models without significantly increasing computational costs. 
 

The structure of this paper is as follows: Section 2 provides 
a detailed introduction to the FL-DBENet farmland extraction 
algorithm and its experimental details; Section 3 presents the 
experimental results; Section 4 discusses the findings; and 
Section 5 concludes with the main conclusions of this paper. 

 

    2. Methodology

2.1 FL-DBENet framework

Farmland extraction falls under the category of semantic 
segmentation, which refers to separating objects from the 
background in an image to help computers better understand its 
content. Suppose we have a satellite image X ∈H ×W ×B , with 
dimensions H×W, containing C bands. The task of farmland 
extraction from the satellite image is to design a method f to 
identify the farmland areas U (if they exist) in the image and

represent it as U : ( ) Uf →X . Figure 1 presents the proposed 
FL-DBENet framework, designed for farmland extraction from 
remote sensing images. This framework follows a general-
specialized dual-branch architecture. In the general branch, for a 
given satellite image X as input, the image is fed into the image 
encoder SAMΦ  of SAM (with large pre-trained parameters), and 

the output is SAMF . Leveraging SAM's powerful edge detection 
capabilities, it effectively captures subtle features of farmland 
boundaries, allowing for learning finer farmland contours and 
shapes, thereby improving overall segmentation accuracy. 
Meanwhile, in the specialized branch, a lightweight semantic 
segmentation model, SegFormer, is used as the image encoder. 
The image X is fed into SegFormer’s image encoder SegΦ  

(with small learnable parameters), and the output is SegF . 
SegFormer not only provides efficient feature extraction but 
also offers SAM more targeted farmland feature prompts, 
making it more precise and efficient in handling farmland-
related tasks. The design of this general-specialized dual-branch 
architecture further optimizes the detail and accuracy of 
farmland detection. Additionally, to further reduce the number 
of trainable parameters, a LoRA module is introduced into 
SAM’s image encoder. LoRA approximates the original weight 
matrix by introducing low-rank matrices in specific layers, 
effectively reducing computational complexity and memory 
overhead while maintaining the model’s representational ability 
and accuracy. Finally, we designed a prompt mixer module 

MixΦ  to integrate feature prompts from different levels, 
ensuring that multi-scale information is captured while 
enhancing the complementarity and robustness of feature 
representations. Thanks to these innovative designs, the FL-
DBENet algorithm significantly reduces the number of trainable 
parameters and lowers the demand for computational resources 
while maintaining model performance. 

 

 
Figure 1. Pipeline of the proposed FL-DBENet framework. 

 

2.1.1 SegFormer feature extraction 

In this paper, the lightweight MiT-B0 backbone (Xie et al., 
2021) is selected as the encoder for SegFormer. It employs a 
hierarchical vision transformer with a pyramid structure, 
designed to extract multi-level features at various scales. 
Specifically, at each stage l, the feature extraction through the 
Transformer module can be represented as: 

1TransformerStage ( )l l lF F −=                   (1) 
where the features extracted at each stage lF  have different 
resolutions, and 1lF −  is the output of the previous stage, with 

0F = X  representing the initial input image. SegFormer 
gradually extracts a multi-scale feature set 1 2{ , , , }lF F F  
through its multi-layer Transformer encoder, where each feature 
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captures image information at different scales. Since 
SegF contains multi-scale features, FL-DBENet applies a AggΦ  

fusion layer to aggregate these features, represented as: 
Seg Agg Seg( ( ))F = Φ Φ X                          (2) 

2.1.2 SAM feature extraction 

SAM, with its exceptional object segmentation capabilities, 
has demonstrated outstanding performance in land feature 
extraction from remote sensing images, significantly improving 
the accuracy and robustness of interpretation, especially in 
scenarios with complex feature structures and blurred 
boundaries. FL-DBENet inherits SAM's powerful segmentation 
performance and further optimizes the segmentation boundaries 
of farmland areas. In the FL-DBENet framework, all parameters 
of SAM's image encoder are frozen, and a trainable bypass 
channel is designed for each Transformer module. As shown in 
the LoRA module in Figure 2, these bypasses first compress the 
Transformer features into a low-rank space and then reproject 
them to align with the feature channels output by the frozen 
Transformer modules. Compared to fine-tuning all parameters 
in SAM, LoRA allows updating only a small number of 
parameters for the task of farmland extraction, which not only 
reduces computational costs but also minimizes the complexity 
of model deployment and storage during fine-tuning, while 
maintaining excellent segmentation performance. 

 

 
Figure 2. The LoRA design adopted in FL-DBENet. Adding 
LoRA to the Q layer and V layer of the transformer. 
 

Assuming we are processing a given encoded token 
sequence inB N CE × ×∈  and the output token sequence 
 outB N CE × ×∈  from the projection layer out inC CW ×∈ , LoRA 

posits that the updates to the projection layer W should be 
gradually stable, thus employing low-rank approximation to 
describe this progressive update process. Following this strategy, 
in the FL-DBENet framework, we first freeze the Transformer 
layers to keep W unchanged and then add a bypass to achieve 
the low-rank approximation. This bypass consists of two linear 
layers inr C

AL ×∈  and outC r
BL ×∈ , where { }in outmin ,r C C . 

Therefore, the handling of the updated layer W can be 
described as follows: 
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W W W W L L
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Similarly, the processing strategy for multi-head self-
attention will transform into the following steps: 





out

Attention( , , ) Softmax

q q

v v

T

q q B A

k

v v B A

QKQ K V B V
C

Q W E W E L L E

K W E

V W E W E L L E

 
= +  

 

= = +

=

= = +

                 (4) 

where qW , kW , and vW  are frozen projection layer parameters 

from SAM, while 
qBL ,

qAL ,
vBL and 

vAL are trainable LoRA 

parameters (Wang et al., 2024). Finally, the satellite image X is 
input into the improved SAM image encoder, and the output 
features are SAMF . The entire process can be represented as: 

SAM SAM ( )F = Φ X                                   (5) 

2.1.3 Prompt generation and mask decoder 

Prompt Generation. Since SegF and SAMF both aggregate 
abstract semantic information specific to farmland areas in 
remote sensing images, FL-DBENet models both as semantic 
prompts. Specifically, we designed a hybrid module MixΦ  to 
generate prompts by fusing these two types of prompts, which 
can be represented as: 

Mix Mix Seg SAM Seg SAM( , ) MLP([ ; ])P F F F F= Φ =            (6) 
In the above expression, MixΦ  does not simply add 

features SegF and SAMF together but concatenates them, placing 
them in a higher-dimensional space. Subsequently, the 
concatenated features pass through a projection layer, which 
reduces the dimensionality of the features, transforming the 
high-dimensional representation into a lower-dimensional form, 
thus achieving a more refined feature synthesis effect. 

Mask Decoder. Finally, based on the generated hybrid 
prompt MixP  and the pre-trained mask decoder from SAM, FL-
DBENet identifies farmland areas in the remote sensing image, 
a process that can be represented as: 

SAM-Mask SAM MixU ( , )F P= Φ                      (7) 
where elements in U indicate whether specific pixels belong to 
the farmland area. 

2.2 Training loss 

Similar to SAM, in the FL-DBENet model proposed in this 
paper, we employ a mask prediction strategy that combines 
three loss functions: focal loss focalL , dice loss diceL , and mean 

squared error loss mseL , which are linearly combined with a 

weight ratio of 1:1:1. Focal loss focalL  addresses the imbalance 
between farmland samples and background regions, dice loss 

diceL optimizes the segmentation boundaries of farmland areas, 

while mean squared error loss mseL  minimizes prediction errors. 
These three loss functions enhance the model's performance 
from different dimensions. Additionally, SegFormer uses cross-
entropy loss SegL  to strengthen the model's classification 
accuracy. The overall loss function is defined as: 

SAM focal dice mse

SAM Seg

L L L L
L L L
= + +
= λ +

                        (8) 

where λ  is a hyperparameter used to adjust the weights of the 
general and specialized modules during the training process. 
This design ensures the model's segmentation performance 
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while reducing computational costs and improving deployment 
efficiency.

     3. Experimental analyses

3.1 Experimental datasets

To assess the FL-DBENet algorithm, we utilized two 
publicly available datasets, GID (Tong et al., 2020) and the 
ultra-high resolution with ultra-rich (URUR) context dataset (Ji 
et al., 2023). GID is a large-scale VHR remote sensing land 
cover dataset based on China's Gaofen-2 satellite data. The GID 
dataset is divided into two parts: a large-scale classification set 
(GID-5) and a fine land cover set (GID-15). GID-5 includes 5 
land cover categories: built-up, farmland, forest, meadow, and 
water, consisting of 150 pixel-level labeled Gaofen-2 satellite 
remote sensing images. Among them, 105 images are used for 
training, 15 for validation, and 30 for testing. In this paper, we 
only used the RGB bands of the Gaofen-2 satellite remote 
sensing images. The original Gaofen-2 images have a size of 
6800×7200 and were pixel-level annotated by experts in the 
field of remote sensing interpretation. We did not use the labels 
from the fine land cover set (GID-15), but instead used the 
labeled images from the GID-5 classification system, with 
farmland set as the foreground region and the other four 
categories set as background regions. The original images were 
divided into non-overlapping regions of size 1024×1024. As a 
result, the training set consisted of 4,410 images, the validation 
set of 630 images, and the test set of 1,260 images. Examples of 
the GID dataset are shown in Figure 3, where white represents 
farmland areas and black represents background areas.

The URUR dataset contains 3,008 VHR images, each sized 
5120×5120, with 3 bands, covering a wide range of complex 
scenes (from 63 cities), and includes rich background diversity 
(1 million instances across 8 categories) with fine-grained 
annotations (around 80 billion manually annotated pixels). The 
training, validation, and test sets consist of 2,157, 280, and 571 
VHR images, respectively, with an approximate ratio of 7:1:2. 
All images were manually annotated in detail, including pixel-
level fine classification into 8 types: building, farmland, 
greenhouse, woodland, bareland, water, road, and others. We set 
farmland as the foreground region, and the other 7 categories as 
background regions. The original training and validation set 
images were resampled to 1024×1024 for model training. For 
model testing, the test set images were first resampled to 
1024×1024 for inference, but the accuracy evaluation was still 
calculated based on the original 5120×5120 resolution. 
Examples of the URUR dataset are shown in Figure 4, where 
white represents farmland areas and black represents 
background areas.

 

 
Figure 3. Examples of the GID dataset. (a) Remote sensing 
images. (b) Ground truth. 
 

 
Figure 4. Examples of the URUR dataset. (a) Remote sensing 
images. (b) Ground truth. 

3.2 Implementation details and evaluation metrics 

We implemented FL-DBENet using the PyTorch 
framework and conducted experiments on a workstation 
equipped with a 12th Generation Intel Core i9-12900K @ 3.19 
GHz processor, 64.00 GB RAM, and an NVIDIA GeForce RTX 
A6000 graphics card. In our experiments, we used the ViT-B 
backbone from SAM and the lightweight MiT-B0 encoder from 
SegFormer. The hyperparameter λ  in the experiment was fixed 
at 0.1, and the AdamW optimizer and cosine annealing learning 
rate strategy were applied, with an initial learning rate of 0.0005. 
The batch size was set to 4, and the full training process 
spanned 200 epochs. During the experiments, we utilized LoRA 
to fine-tune the frozen Q and V projection layers of the 
Transformer blocks. The rank of LoRA was set to 4 to improve 
both efficiency and performance. 

We compared the performance of our algorithm to state-of-
the-art (SOTA) methods using four metrics: precision, recall, F1 
score, and intersection over union (IoU). These metrics are 
defined as follows: 

precision TP
TP FP

=
+

                              (9) 

recall TP
TP FN

=
+

                                (10) 

2 precision recallF1
precision recall
× ×

=
+

                      (11) 

IoU TP
TP FP FN

=
+ +

                          (12) 

where TP denotes true-positive values, TN denotes true-
negative values, FP denotes false-positive values, and FN 
denotes false-negative values. 

3.3 Comparison to SOTA approaches 

In this paper, we conducted a comparative evaluation of 
our proposed method against several standard semantic 
segmentation algorithms. The comparison includes models with 
diverse backbone networks and architectures, such as advanced 
UNet variants like UNet++ (Peng et al., 2019), ResUNet (Zhang 
et al., 2018), and MMUU-Net (Gao et al., 2020), as well as 
widely recognized segmentation models, including PSPNet 
(Zhao et al., 2017), HRNetV2-W48 (Sun et al., 2019), and 
DeepLabv3+ (Chen et al., 2018). We also evaluated the SAM-
Adapter method (Chen et al., 2023), which fine-tunes the SAM 
image encoder, and the SAMUS method (Lin et al., 2023), 
which incorporates a CNN-branch image encoder alongside a 
cross-branch attention module. This comparative evaluation 
aims to demonstrate the performance and robustness of our 
approach across a range of model architectures and 
segmentation frameworks. 

3.4 Experimental results 

3.4.1. Performance comparison for the GID dataset 

To validate the effectiveness of the proposed FL-DBENet 
model for farmland extraction tasks on the GID dataset, we 
conducted a comparative analysis of its extraction results 
against recent SOTA farmland extraction models. Table 1 
presents the performance of various models on the GID dataset 
for farmland extraction. As shown in Table 1, the FL-DBENet 
model achieved a Precision of 83.55%, Recall of 79.88%, F1 
score of 81.67%, and IoU of 69.02%. Compared to other 
models, FL-DBENet improved the F1 score by 1.26%–7.37% 
and the IoU by 1.79%–9.91%. UNet++ had the highest 
Precision at 87.65%, followed by FL-DBENet, but UNet++ had 
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the lowest F1 score and IoU, which were 7.37% and 9.91% 
lower than FL-DBENet, respectively. ResUNet had the highest 
Recall at 82.55%, followed by FL-DBENet at 79.88%, but 
ResUNet’s F1 score and IoU were 4.74% and 6.51% lower than 
FL-DBENet, respectively. Both SAM-Adapter and SAMUS 
models are based on efficient parameter fine-tuning of SAM and 
performed better than traditional CNN-based SOTA methods on 
farmland extraction in the GID dataset. In contrast, FL-DBENet 
combines the strengths of SAM and SegFormer, demonstrating 
improvements across all metrics. Compared to SAM-Adapter 
and SAMUS, FL-DBENet improved Precision by 1.36% and 
2.3%, Recall by 1.74% and 0.3%, F1 score by 1.56% and 
1.26%, and IoU by 2.19% and 1.79%, respectively. To visually 
illustrate the results, Figure 5 shows the partial extraction 
results of farmland from the GID dataset using these nine 

methods. Overall, the FL-DBENet model produced clear 
farmland boundaries that closely matched the actual edges. As 
shown in Figure 5, the FL-DBENet model exhibited fewer holes 
and noise in the farmland regions, with no missing large plots 
and sharp edges. Small plots had clear contours with minimal 
deformation. In complex edges and gap regions, FL-DBENet 
showed significant improvement over other methods, 
particularly in edge extraction, effectively reducing jagged 
edges and holes in the farmland areas. Based on the quantitative 
and qualitative analysis results, the proposed FL-DBENet 
model demonstrates significant advantages in addressing 
boundary blurring issues in farmland extraction, providing an 
effective technical reference for further optimization of 
farmland extraction techniques. 

 

Methods Backbone GID 
Precision Recall F1 IoU 

UNet++ Res-50 87.65 64.48 74.30 59.11 
ResUNet Res-50 72.03 82.55 76.93 62.51 

MMUU-Net Res-50 80.39 75.46 77.85 63.73 
PSPNet Res-50 81.42 75.43 78.31 64.35 

DeepLabv3+ Res-50 83.38 75.18 79.07 65.38 
HRNetV2-W48 HRNet 82.54 76.28 79.28 65.68 
SAM-Adapter ViT-B 82.19 78.14 80.11 66.83 

SAMUS ViT-B 81.25 79.58 80.41 67.23 
FL-DBENet ViT-B and MiT-B0 83.55 79.88 81.67 69.02 

Table 1. Performance comparison for the GID dataset. All values are percentages. Bold red text indicates highest, bold blue text 
indicates second-highest, and bold black text indicates third-highest performances. 
 

 
Figure 5. Visual comparisons of the different SOTA models applied to the GID dataset. (a)Input images; (b)Ground truths; 
(c)UNet++; (d)ResUNet; (e)MMUU-Net; (f)PSPNet; (g)DeepLabv3+; (h)HRNetV2-W48; (i)SAM-Adapter; (j)SAMUS; (k)FL-
DBENet. Grey: TN pixels; Green: TP pixels; Blue: FP pixels; Red: FN pixels. 

3.4.2. Performance Comparison for the URUR dataset 

To quantitatively evaluate the effectiveness of the 
proposed method, we tested models including UNet++, 
ResUNet, MMUU-Net, PSPNet, DeepLabv3+, HRNetV2-W48, 
SAM-Adapter, SAMUS, and FL-DBENet on the URUR dataset, 
and measured their Precision, Recall, F1 score, and IoU, as 
shown in Table 2. The proposed FL-DBENet model achieved 
the highest scores in Recall, F1 score, and IoU, with values of 
90.30%, 88.28%, and 79.02%, respectively. Although the 

Precision of FL-DBENet was slightly lower than that of SAM-
Adapter and SAMUS, it was still significantly better than 
traditional CNN-based models. Compared to other models, FL-
DBENet improved Recall by 5.1%–8.52%, F1 score by 2.71%–
4.62%, and IoU by 4.24%–7.11%. SAMUS achieved the 
highest Precision at 87.59%, followed by SAM-Adapter at 
86.74%, but their Recall values were 8.52% and 5.87% lower 
than FL-DBENet’s, respectively; their F1 scores were 3.7% and 
2.71% lower; and their IoU values were 5.73% and 4.24% 
lower, respectively. The quantitative analysis shows that FL-
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DBENet exhibits superior overall performance. Figure 6 
displays some visualized results of the nine methods in 
extracting farmland plots from the URUR dataset. As shown in 
Figure 6, the extraction results of FL-DBENet feature clear 
boundaries and high separation from non-farmland areas, 
effectively distinguishing farmland boundaries with fewer 
misclassifications and omissions. Although SAM-Adapter also 
performed well in farmland identification, its boundary 

handling was slightly rougher compared to FL-DBENet, with 
more fragmentation. Especially in complex backgrounds, FL-
DBENet outperformed traditional CNN-based networks in 
farmland extraction, with clearer boundary definition, 
showcasing its stronger capability in boundary recognition. The 
quantitative and qualitative experimental results further validate 
the superiority of the proposed FL-DBENet model. 

 

Methods Backbone URUR 
Precision Recall F1 IoU 

UNet++ Res-50 84.13 84.35 84.24 72.77 
ResUNet Res-50 83.03 84.89 83.95 72.34 

MMUU-Net Res-50 85.19 82.19 83.66 71.91 
PSPNet Res-50 83.54 84.39 83.96 72.36 

DeepLabv3+ Res-50 83.04 85.20 84.11 72.57 
HRNetV2-W48 HRNet 84.12 84.99 84.56 73.17 
SAM-Adapter ViT-B 86.74 84.43 85.57 74.78 

SAMUS ViT-B 87.59 81.78 84.58 73.29 
FL-DBENet ViT-B and MiT-B0 86.35 90.30 88.28 79.02 

Table 2. Performance comparison for the URUR dataset. All values are percentages. Bold red text indicates highest, bold blue text 
indicates second-highest, and bold black text indicates third-highest performances. 
 

 
Figure 6. Visual comparisons of the different SOTA models applied to the URUR dataset. (a)Input images; (b)Ground truths; 
(c)UNet++; (d)ResUNet; (e)MMUU-Net; (f)PSPNet; (g)DeepLabv3+; (h)HRNetV2-W48; (i)SAM-Adapter; (j)SAMUS; (k)FL-
DBENet. Grey: TN pixels; Green: TP pixels; Blue: FP pixels; Red: FN pixels. 
 

3.4.3. Ablation experiment 

To evaluate the effectiveness of the main components in 
the FL-DBENet network, we conducted ablation studies on the 
GID and URUR datasets. Specifically, we experimented with 
two key components of the network (i.e., the SAM image 
encoder, the SegFormer image encoder) and their combination. 
Detailed results of the ablation study are shown in Table 3. As 
seen in Table 2, each component in the FL-DBENet network 
contributes positively to the overall results. When only the 
SAM image encoder is used, fine-tuned with the LoRA 
component, the model achieves an F1 score of 77.98% and an 
IoU of 63.91% on the GID dataset; on the URUR dataset, it 
achieves an F1 score of 84.54% and an IoU of 73.12%. When 
only the SegFormer image encoder is used, the model achieves 
an F1 score of 77.71% and an IoU of 63.55% on the GID 

dataset; on the URUR dataset, it achieves an F1 score of 
83.70% and an IoU of 71.97%. When both components are 
combined, the model's F1 score on the GID dataset improves by 
3.69% to 3.96%, and IoU increases by 5.11% to 5.47%; on the 
URUR dataset, the F1 score improves by 3.74% to 4.58%, and 
IoU increases by 5.90% to 7.05%. The experimental results 
further confirm the necessity of the general-specialized dual-
branch encoder for feature extraction. 
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SAM SegFormer GID URUR 
F1 IoU F1 IoU 

  77.98 63.91 84.54 73.12 
  77.71 63.55 83.70 71.97 
  81.67 69.02 88.28 79.02 

Table 3. Ablation experiment of FL-DBENet network with and without the use of SAM image encoder and SegFormer image 
encoder. All values are percentages.  indicates excluded steps during the training process, while  denotes their inclusion. Bold 
black text indicates highest performances. 
 

  4. Discussion

In recent years, foundational models like BERT (Koroteev
et al., 2021), GPT (Achiam et al., 2023), CLIP (Radford et al., 
2021), and SAM have emerged, showcasing remarkable 
performance in natural language processing and computer 
vision, and often surpassing traditional deep learning networks. 
Pre-trained on large-scale datasets, these models learn rich 
feature representations with strong generalization capabilities 
across various downstream tasks, significantly reducing 
dependency on extensive labeled data. Building on SAM’s 
success in image segmentation, this paper explores its 
application to farmland extraction from remote sensing images. 
To this end, we propose FL-DBENet, a dual-branch architecture 
specifically designed for farmland extraction in remote sensing 
data, and evaluate its performance on the GID and URUR 
datasets, comparing it to several other SOTA methods. The 
advantages of FL-DBENet are mainly reflected in two key areas:

1) Enhanced Semantic Understanding with 
Transformer-Based Encoders: As a Transformer-based model, 
FL-DBENet demonstrates notable advantages in F1-score and 
IoU metrics compared to traditional CNN models. While 
structures like buildings or roads generally have clear 
boundaries, farmland often features blurred edges with irregular 
and narrow field ridges. Leveraging the fine-grained feature 
capturing of the Transformer’s self-attention mechanism, FL-
DBENet more accurately detects these subtle boundaries, 
whereas CNN-based models tend to capture broader semantic 
abstractions, resulting in less precise delineation.

2) Improved Spatial Feature Extraction through a 
Dual-Branch Architecture: FL-DBENet combines SAM’s 
image encoder with SegFormer’s multi-scale feature extraction 
capabilities, enabling robust handling of farmland parcels with 
varying shapes and scales. This general-specialized approach 
enhances FL-DBENet’s adaptability across diverse image 
datasets, with experiments showing superior performance over 
traditional SAM fine-tuning methods, particularly in complex 
farmland extraction scenarios.

Despite its excellent performance in farmland extraction on 
the GID and URUR datasets, FL-DBENet has some limitations. 
For other land types with features similar to farmland, its multi-
scale feature extraction may offer limited performance gains, 
suggesting a need for further optimization for specific datasets. 
Additionally, FL-DBENet’s effectiveness is influenced by 
dataset diversity, and future research could further assess its 
capabilities across a broader range of datasets.

 

5. CONCLUSIONS 

As artificial intelligence advances into VHR remote 
sensing interpretation, farmland extraction from such images is 
increasingly leveraging deep learning techniques, yielding 
substantial advancements alongside new challenges. Addressing 
these challenges, this paper introduces a specialized farmland 
extraction network, FL-DBENet, featuring a dual-branch 
encoder architecture that optimizes the foundational visual 

model SAM for farmland extraction. The universal-specialized 
architecture of FL-DBENet capitalizes on SAM’s powerful 
edge-detection capabilities in the universal branch, enhancing 
the precision of farmland boundary delineation. Simultaneously, 
the specialized branch integrates a lightweight SegFormer 
encoder to deliver farmland-specific features, refining SAM’s 
interpretation. Additionally, the integration of a LoRA module 
within SAM’s image encoder reduces computational overhead, 
while a prompt mixer module facilitates the effective synthesis 
of diverse feature representations. With its reduced trainable 
parameters, FL-DBENet not only minimizes computational 
demands but also significantly enhances training efficiency. 
Experimental evaluations on the GID and URUR datasets reveal 
that FL-DBENet achieves superior performance compared to 
existing state-of-the-art models in farmland extraction, all 
without incurring significant computational costs. This 
efficiency and precision highlight FL-DBENet’s potential as an 
effective solution for intelligent farmland extraction in VHR 
remote sensing applications. 
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