
Efficient Large-scale Mapping of Acacia Tortilis Trees Using UAV-based Images and 

Transformer-based Semantic Segmentation Architectures 

 
Mohamed Barakat A. Gibril1, Abdallah Shanableh1, 2, 3, Rami Al-Ruzouq1, 2, Nezar Hammouri1, Fouad Lamghari 4, Safa M. Ahmed1, 

Ahmed Mansour1, Ratiranjan Jena1, Hani Shanableh1, Mohammed Abdulraheem Almarzouqi5, Nedal Salem Alafayfeh5, Simon 

Zerisenay Ghebremeskel4 

 

1 GIS and Remote Sensing Center, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United 

Arab Emirates; 
2 Civil and Environmental Engineering Department, University of Sharjah, Sharjah, Sharjah 27272, United Arab Emirates; 

3 Scientific Research Center, Australian University, Kuwait; 
 4 Fujairah Research Centre, Al-Hilal Tower, 3003, P.O. Box 666 Fujairah, United Arab Emirates; 

 5 UAE Ministry of Climate Change and Environment, United Arab Emirates. 

 
 

 

Keywords: Acacia trees, UAV, individual tree crown delineation, semantic segmentation, vision transformers. 

 

 

Abstract 

 

The Acacia tortilis tree, locally known as Al Samr, is one of the native trees in arid and semi-arid ecosystems. This type of tree thrives 

in challenging climate conditions and considerably contributes to desert ecosystems. However, Acacia trees are increasingly vulnerable 

to land degradation, degradation, grazing, urbanization, and the demand for wood as a fuel source. Given the ecological significance 

of Acacia trees and their vulnerability to various environmental threats, current information on their distribution and population is 

essential for effectively conserving and managing this native species. This study aims to map Acacia trees from unmanned aerial 

vehicle (UAV)-based images using deep learning techniques. First, a comprehensive field campaign was conducted to record the 

locations of Acacia trees within the study area. Thereafter, the Segment Anything model was fine-tuned to delineate tree boundaries 

from the UAV data, facilitating the preparation of ground-truth labels. Subsequently, Mask2Former, a semantic segmentation 

architecture utilizing a dual-attention vision transformer backbone, was implemented to segment the Acacia trees. The performance of 

the proposed architecture was compared against those of Mask2Former models based on alternative architectures, including Swin 

Transformer, Grounded Language-Image Pre-training, and EVA02, a transformer-based visual representation pre-trained model. 

Results demonstrated that the proposed approach outperformed the evaluated models, efficiently delineating Acacia trees and achieving 

a mean intersection-over-union of 83.43% and a mean F-score of 90.27.%. The proposed approach offers valuable means for building 

tree inventories, updating geospatial databases, and promoting sustainable management of native Acacia trees. 

 

 

1. Introduction 

 

Acacia tortilis, known as Umbrella thorn and Al Samr (local 

name), features a small to medium-sized slow growing tree 

predominantly found in arid and semi-arid ecosystems of eastern 

and northern Africa and the Middle East (Doran et al., 1983). 

Given the longevity of Acacia trees, an estimated average 

lifespan of about 200 years, and the ability to tolerate harsh 

environmental conditions, they play a significant role in desert 

ecosystems (Isaacson et al., 2017; Ross and Burt, 2015). These 

trees are highly drought-resistant and can tolerate extreme 

conditions, including high salinity, temperature, and seasonal 

waterlogging (AbdElRahman and Krzywinski, 2008). 

 

In the United Arab Emirates (UAE), Acacia trees are primarily 

concentrated in the northeastern regions, where they are among 

the most visually prominent tree species (Brown and Feulner, 

2023). In Abu Dhabi, located in the southwestern portion of the 

UAE, Acacia trees are primarily found on the gravel plains of the 

eastern regions, such as Al Ain and Jabal Hafit, with a smaller 

population in Sila in the west. The Acacia tree is an essential 

resource, providing essential livestock feed, protecting soil from 

erosion, and supporting beekeeping and honey production. 

 

Acacia trees are under continuous threat due to land degradation, 

overgrazing, urban expansion, and the collection of wood for fuel 

(Environment Agency - Abu Dhabi, 2020). Numerous 

government initiatives aim to boost the population of Acacia 

trees. For example, in 2018, the UAE Ministry of Climate 

Change and Environment launched a program to distribute 54 

million Acacia seeds free of charge to the public, encouraging the 

growth and expansion of these trees. 

 

Given that Acacia trees are spread across vast, hard-to-reach 

areas (such as isolated or rugged terrain), field-based estimations 

of their extent and population are not only time-consuming but 

also costly and challenging. Remote sensing has been an 

indispensable means for mapping and monitoring vegetation and 

tree species. In recent years, unmanned aerial vehicle (UAV)-

based remote sensing platforms and sensors have witnessed 

significant advancements, resulting in a notable growth in the 

availability and use of very-high spatial resolution remotely 

sensed data for mapping and monitoring vegetation and tree 

species. 

 

Deep learning (DL) techniques, particularly convolutional neural 

networks (CNN) and vision transformers, have been extensively 

used in identifying, detecting, and mapping individual tree 

crowns from UAV-based images using different vision tasks. 

Some of the widely used DL tasks include object detection 

(Dakov and Petrova-Antonova, 2024), semantic (Luo et al., 

2024), and instance segmentation (Gibril et al., 2024, 2022; Xie 

et al., 2024). 

 

Over the past few years, various semantic segmentation 

architectures, such as U-Net (Ronneberger et al., 2015: Gazzea et 

al., 2022), leveraging various backbones (CNN and transformer-

based architectures), have been widely adopted for delineating 
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tree crowns from remotely sensed data. Given the strong ability 

of deep vision transformers in capturing global and contextual 

information from remotely sensed data, different transformer-

based semantic segmentation architectures have shown superior 

performance in mapping tree crowns and improved accuracy and 

efficiency (Gibril et al., 2023). Lin et al. (2024) assessed various 

CNN and transformer-based models for mapping olive trees 

using high-resolution satellite data at a sub-national scale. Their 

findings revealed that transformer-based models surpassed CNN-

based models in accurately identifying olive trees at the pixel 

level. Al-Ruzouq et al. (2024) underscored the effectiveness and 

feasibility of deep vision transformers for large-scale 

segmentation of individual date palm trees using multi-city 

WorldView-3 satellite datasets.  

 

To the best of the authors’ knowledge, accurate information 

regarding the distribution and population of Acacia trees in the 

UAE is either scarce or unavailable. Large-scale mapping of 

Acacia trees in diverse urban and agricultural landscapes presents 

challenges due to the coarse spatial resolution of satellite images. 

Likewise, the limited spectral resolution of UAV-based RGB 

images complicates precise tree identification. This study 

leverages transformer-based models to integrate global and 

contextual information, enabling the accurate mapping of Acacia 

trees across the Fujairah Emirate using extensive UAV-based 

datasets.  

 

 

2. Materials and Methods 

 

2.1 Study Area and Dataset 

 

The study area covers multiple urban and farmlands across the 

Fujairah and Sharjah emirates, including Fujairah City and 

Kalba, with a total area of 25 km². The experimental site 

encompasses a wide range of tree species, such as Phoenix 

dactylifera L. (date palm), Prosopis cineraria (Ghaf), Christ’s 

thorn jujube (Sidr), Prosopis juliflora (Mesquite), Azadirachta 

indica (Neem), and A. tortilis. 

 

The dataset for this study was collected using the senseFly eBee 

X, a fixed-wing, survey-grade UAV system. The UAV was 

equipped with a 20 MP S.O.D.A. (Sensor Optimized for Drone 

Applications) ultra-compact digital camera. The flight altitude 

was set at 122 m following permissions granted by civil aviation 

authorities. The data acquisition was conducted with 70% 

horizontal and 40% vertical overlaps. The images were captured 

on clear, cloud-free days between 9:00 a.m. and 1:00 p.m., with 

a ground sampling distance of 2.5 cm per pixel. 

 

2.2 Field Campaign 

 

In the initial phase of the analysis, an extensive field campaign 

was undertaken to collect the coordinates of representative 

ground-truth data for Acacia trees. These data serve as a critical 

reference for developing and evaluating DL models (Piragnolo et 

al., 2021). The coordinates and photos of the various Acacia trees 

were recorded using the ArcGIS Field Map mobile application. 

The Acacia trees exhibited significant variation in crown size, 

height, degree of greenness, and surrounding landscape. A total 

of 9100 Acacia trees were collected and widely distributed across 

the study area. 

  

 

 
 

Figure 1. Geographical location of the study area. 

 

 

2.3 Data Preparation 

 

Manual annotation of Acacia trees in large-scale UAV data is a 

time-consuming task. This study utilizes Meta’s Segment 

Anything model (Kirillov et al., 2023: Pirotti et al., 2017) along 

with a low-rank-based fine-tuning strategy to accelerate this 

process (Zhang and Liu, 2023). The approach involves fine-

tuning the SAM on a small dataset to delineate tree boundaries. 

Subsequently, the automatically generated boundaries from the 

fine-tuned model are refined and improved. The final Acacia tree 

boundaries were selected based on ground-truth data and expert 

image interpretation. The preparation of data for semantic 

segmentation involves organizing it into image-mask pairs, with 

each mask accurately representing the delineated Acacia trees in 

the corresponding image. The study area was divided into three 

zones for training, validation, and testing. Each zone was further 

subdivided into 1024×1024 image-mask pairs. A total of 11,067 

pairs were allocated for training, 1010 for validation, and 800 for 

testing the models. Figure 2 illustrates an example of image-mask 

pairs selected from the training dataset. 
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Figure 2.  Examples of image-mask pairs representing Acacia 

trees. 

 

2.4 Semantic Segmentation 

 

Semantic segmentation models are widely utilized in DL for 

pixel-level classification across a broad range of remote sensing 

applications. In this study, we utilized the Masked-attention 

Mask Transformer (Mask2Former) architecture (Cheng et al., 

2022), with Dual Attention Vision Transformers (DaViT) (Ding 

et al., 2022) as the backbone, to map Acacia trees from UAV-

based images. 

 

The Mask2Former architecture entails a backbone architecture, a 

pixel decoder, and a transformer decoder. Mask2Former 

incorporates low- and high-resolution features and limits 

computational growth by using a multiscale deformable attention 

transformer (Zhu et al., 2020) as a pixel decoder. The transformer 

decoder, which contains a masked attention operator, receives 

multiscale feature maps and focuses on features within the 

foreground of the predicted mask for each query instead of 

considering the entire feature map. 

 

This study adopted DAViT architecture as a backbone network 

of Mask2Former. DAViT captures local and global features 

using two complementing attention mechanisms: spatial window 

and channel group attention. Although the spatial attention 

mechanism focuses on local details by considering interactions 

across spatial locations within the image, the channel attention 

mechanism captures global and contextual information through 

attention across different feature channels. The performance of 

Mask2Former with a DaViT backbone was compared with that 

of Mask2Former with other backbones, including Swin 

transformer (Liu et al., 2021), Transformer-based visual 

representation pre-trained (EVA02) (Fang et al., 2024), and 

Grounded Language-Image Pre-training (GLIP) (Li et al., 2022). 

 

2.5 Accuracy Metrics 

 

The segmentation quality of Acacia trees was evaluated using 

two standard semantic segmentation metrics, namely, mean 

intersection over union (mIoU) and mean F-score (mF-score). 

The formulas for calculating mIoU and mF-score are expressed 

in Equations 1–4. Mask2Former models with different 

backbones were evaluated on the validation dataset every 5000 

iterations, with the best-performing weights chosen to assess 

their performance on the testing dataset. 

 

 

IoU =  
TP

(FP + TP+ FN)
, (1) 

mIoU =
1

2
(IoUbackgrounds + IoUAcacia tree ), (2) 

Precision = 
TP 

TP + FP
, (3) 

Recall =  
TP

TP+  FN
, (4) 

F-score = 2×
Precision × Recall

Precision +  Recall
  (5) 

mF − score

=
1

2
(F-scorebackgrounds + F-scoreAcacia tree), 

(6) 

 

 

where  TP = true positive; 

 FP = false positive; 

 FN = false negative. 

  

 

3. Results 

 

This study aimed to harness vision transformers’ capabilities of 

capturing global and contextual features, enabling accurate 

mapping of Acacia trees across diverse urban and heterogeneous 

agricultural landscapes. The Mask2Former architecture, 

integrated with the DAViT backbone network, was utilized to 

efficiently leverage spectral and spatial information. 

Additionally, the performance of Mask2Former was evaluated 

with various backbone architectures, including Swin 

Transformer, EVA02, and GLIP. The tiny version of these 

models was selected in this investigation. The experiments were 

conducted using the PyTorch, MMsegmentation, and 

MMPretrain frameworks. The models were trained and evaluated 

on a 64 GB of RAM workstation powered by an NVIDIA Titan 

RTX graphics card, which provides 24 GB of dedicated memory. 

The proposed model was trained using the AdamW optimizer, 

with a batch size of 2 and a learning rate of 0.0001.  

 

Model complexity, often assessed based on memory 

consumption and computational demands, plays a crucial role in 

comparing different deep learning (DL) models. More intricate 

and deeper DL architectures typically involve a higher number of 

parameters and sophisticated design structures. The total number 

of parameters for each backbone is as follows: DAViT has 28.36 

M parameters, Swin Transformer has 28.29 M, GLIP has 27.521 

M, and EVA02 has 5.759 M. The training time for Mask2Former 

with the DAViT backbone was 40.89 h, 36.3 h with EVA02, 24.1 

h with GLIP, and 19.4 h with Swin Transformer. Figure 3 

illustrates the computed mF-scores at every 5000 training 

iterations for each evaluated Mask2Former model with different 

backbones.  

 

Table 1 presents the highest mIoU and mF-score achieved on the 

validation and testing datasets. The proposed approach, 

Mask2Former with the DAViT backbone, outperformed the 

other models on the validation and testing datasets. This approach 

achieved mIoUs of 82.3% and 84.06% and mF-scores of 89.5% 

and 90.7% on the validation and testing data, respectively. The 

Mas2Former models based on GLIP and Swin Transformer also 

demonstrated strong performance on the testing dataset. 

Specifically, the GLIP-based model achieved an mF-score of 

90.42% and a mIoU of 83.67%, while the Swin Transformer-

based model attained an mF-score of 90.27% and an mIoU of 

83.43%.  
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Figure 3.  mF-score values computed from the validation 

dataset over the training steps for each evaluated 

Mask2Former model with different backbones. 

 

Table 1.  Experimental results of the evaluated segmentation 

architectures. 

 

Figure 4 presents a set of images selected from the testing dataset 

(first column), along with their ground-truth data (second 

column) and the segmentation results of the proposed approach 

(third column). The proposed approach successfully segmented 

Acacia trees of varying sizes and in diverse surrounding 

environments (Figure 2). Moreover, the model effectively 

recognized and delineated Acacia trees in images collected on 

different dates and times despite variations in shadow locations 

due to changing lighting conditions.  

 

The field campaign in this study involved capturing the locations 

of only 9100 Acacia trees distributed over a large area for model 

development. Given the vast coverage of the study area and the 

scattered nature of these samples, the number of labeled trees 

must be augmented using image interpretation of UAV data and 

Google Street View images. This approach leveraged Acacia 

trees’ distinct appearance and shadows to identify additional 

samples. However, the process faced challenges due to 

significant variations in the color of Acacia trees—depending on 

their water content—and the potential inclusion of similar 

species, such as Prosopis juliflora, and the presence of artifacts 

in some parts of the images. Although the image interpretation 

helped in expanding the dataset, it may have introduced minor 

inaccuracies due to misclassification. 

 

The proposed model successfully delineated Acacia trees in 

heterogeneous scenes (Figure 5a). The model accurately 

identifies the visible portion of an Acacia tree, even though 

another tree obscures part of it (Figure 5b). However, in some 

instances, such as in Figure 3c, the model struggles to detect 

Acacia trees in mountainous areas where the trees blend with the 

background (indicated by the yellow rectangle). Additionally, 

minor misclassifications were observed, with some parts of P. 

juliflora being mistaken for Acacia trees (Figure 3d). 

 

 
Figure 4.  Results of the proposed approach based on selected 

images from the testing dataset. 

Backbone 

Validation Testing 

mIoU  mF-score mIoU mF-

score 

Swin transformer 79.28 87.33 83.43 90.27 

GLIP 80.63 88.32 83.67 90.42 

EVA-2 81 88.60 81.7 89.0 

DAViT 82.3 89.50 84.06 90.7 
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Figure 5.  Examples of the proposed model’s performance in 

detecting Acacia trees across various challenging 

scenes. 

 

To the best of the author’s knowledge, this study represents one 

of the first efforts to map Acacia trees from large-scale UAV-

based imagery. The proposed method provides an automated 

approach for building a comprehensive dataset of this native 

species and can be adapted for mapping other native trees across 

the UAE. Although the proposed approach outperformed the 

evaluated architectures on the validation and testing datasets, it 

required a longer processing time. Future improvements could 

include refining the training and testing datasets and 

incorporating additional samples from diverse UAE regions to 

enhance the model’s generalizability. The effects of integrating 

CNN and transformer-based features might need to be further 

investigated in future studies. Considering the high cost and time 

investment of extensive field campaigns, future studies should 

also explore semi-supervised DL models to effectively map 

Acacia trees from a limited amount of labelled data. 

 

4. Conclusion 

The Acacia tree, one of the UAE’s native species, is a vital 

resource, providing essential livestock feed, preventing soil 

erosion, and supporting beekeeping and honey production, 

thereby substantially contributing to the UAE ecosystem. This 

study aimed to harness the capabilities of deep vision 

transformers in capturing global and contextual information from 

the data to map Acacia trees using large-scale UAV imagery. In 

this study, the Mask2Former architecture, a semantic 

segmentation architecture utilizing a dual attention vision 

transformer (DAViT) backbone, was utilized. DAViT efficiently 

captures and integrates the spatial and spectral features of the 

data. The performance of the proposed approach was compared 

with those of Mask2Former based on Swin transformer, GLIP, 

and EVA02. The proposed architecture demonstrated strong 

performance, outperforming the evaluated models and achieving 

an mIoU of 84.06% and an mF-score of 90.7%. This study 

underscores the effectiveness of vision transformers for large-

scale mapping of Acacia trees using UAV imagery. The proposed 

architecture shows potential for developing tree inventories, 

updating geospatial databases, and facilitating the sustainable 

management of native Acacia trees. Furthermore, this approach 

can be adapted to map other tree species. 
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