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Abstract 

 

Consistent, individual-level crop monitoring enhances yields and crop health by providing farmers with relevant insights for each 

plant, boosting overall productivity and minimizing waste. Traditional methods are time-consuming, labour-intensive, error-prone, 

and unreliable, making automation necessary. UAVs equipped with cameras are popular for farm monitoring and can capture images 

over time for further analysis. However, processing these images proves challenging due to varying lighting conditions, changes in 

scale due to height differences, orientation shifts based on the drone operator's skill, and fluctuating image quality depending on the 

camera. For effective monitoring, it's crucial to map individual crops across different images taken at various times, achieving a 1:1 

crop matching over time. Traditional feature-matching algorithms fail here due to the significant visual changes caused by crop 

growth, weather, and farm activities. GPS offers a potential solution by tagging each crop with a unique coordinate feature for 

mapping, but GPS-based systems like Real-Time Kinematic and Post-Processed Kinematic are costly, complex, and struggle on 

uneven terrains. To address these challenges, we introduce a novel computer vision algorithm that handles variations in image 

quality, scale, orientation, and terrain by converting crops into 2D points for consistent matching. This method leverages the spatial 

relationships between crops to create unique geometric descriptors for each crop, enabling precise temporal 1:1 crop matching. 

Tested with UAV-acquired images, our algorithm achieved 0.84 accuracy in crop matching over time, and by incorporating Lowe’s 

ratio test, the precision was improved to 0.94, making the method a reliable, cost-effective, robust, and user-friendly solution. 

 

 

1. Introduction 

Agriculture is a cornerstone of India's economy, accounting for 

18% of GDP (PIB, 2023) and employing 46% of the workforce 

as of 2023 (Sansad.in, 2023). Looking ahead to 2050, India will 

need to feed nearly 1.7 billion people with limited resources, as 

the net sown area has stagnated around 140 million hectares 

(Naas, 2022). These challenges demand a shift towards 

technology and data-driven, evidence-based methods to 

optimize and enhance farming efficiency, and help us navigate 

the evolving ecological challenges we face today.  

 

Precision agriculture emerges as a promising solution in this 

context. By using advanced technology to optimize the use of 

resources like water, fertilizers, and pesticides, it offers a means 

for farmers to optimize yield and maximize profits. In contexts 

like India, where the average landholding is small (Kareemulla 

et al., 2021), generic insights are less beneficial, making 

individual crop monitoring far more valuable. Therefore, there 

is a need for more precise crop monitoring and mapping at the 

individual crop level to effectively track changes over time. 

Such "1:1" crop matching would involve identifying and 

following the same crop across different images taken at various 

time frames.  

 

Leveraging techniques from precision agriculture to provide 

accurate and automated individual-level crop monitoring would 

enable precise application of pesticides and fertilizers, ensuring 

each plant gets exactly what it needs without waste. Early 

detection of issues like pests or diseases would also become 

much easier, enabling timely interventions that protect yield and 

quality. It would help with irrigation management, as it helps 

deliver the right amount of water to each crop, preventing both 

drought and waterlogging. For small-scale farmers, this means  

 

more efficient resource use and less waste, while large-scale 

farms can achieve optimal productivity and maximize returns.  

 

Traditionally, farmers relied on labor-intensive and time-

consuming manual methods for crop monitoring, such as field 

surveys and pen-and-paper data logging (Teucher et al., 2022, 

Tian et al., 2020). Attempts to automate these methods using 

tractors and robotic platforms remain resource-intensive, 

struggle with complex field operations (Fountas et al., 2020), 

and do not scale well for larger fields as they still involve 

manual inspection.  

 

Aerial sensing, particularly with drones or unmanned aerial 

vehicles (UAVs), offers a promising solution for such crop 

monitoring. Due to the widespread availability of commercial 

UAVs, farmers are now able to consistently obtain field image 

data without requiring expert assistance. UAVs offer numerous 

advantages: they are cost-effective, easy to operate, capable of 

vertical take-off and landing, and fly under cloud cover and 

other atmospheric barriers.  

 

However, UAV-captured images present several challenges. 

Research indicates that UAV photogrammetry in low-light or 

artificial lighting conditions is unreliable for surveying or 

cartographical applications due to factors such as camera type, 

brightness, and post-processing analysis (Burdziakowski et al., 

2021). Additionally, the height and position from which drones 

capture images can vary, depending on the operator’s skill and 

training (Gugerty, 2004), leading to changes in the scale and 

rotation of images, even for the same plot of land. Furthermore, 

the type and quality of the camera have been shown to 

significantly affect the resolution and overall quality of the 

images (Kim et al., 2024).  
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Traditional feature matching algorithms that rely on consistent 

features across images to match the target objects, face 

additional challenges such as changing crop shapes due to 

growth, varying weather conditions, inconsistent lighting, and  

diverse terrains which further makes it difficult to accurately 

monitor the crops in images.  

 

GPS technology offers one potential solution to this problem, 

where drone images are geotagged using onboard GPS 

processors, offering a unique location-based descriptor to each 

crop which can further be utilized for 1:1 crop matching. 

However, commonly used drones like the DJI Phantom 4 

struggle with poor GPS resolution (Coptrz, 2024). To resolve 

this issue, they rely heavily on Ground Control Points (GCPs). 

GCPs are calibrated markers used to subtract out the 

accumulated errors. However, they are expensive and difficult 

to maintain over time as they can be displaced or obstructed by 

farming debris.  

 

Achieving meaningful accuracy requires up to 12 GCPs on 

farms as small as 7 hectares (Yu et al., 2020), each incurring 

installation and upkeep costs. The need for additional GCPs 

increases in hilly or uneven terrains.Real-Time Kinematic 

(RTK) and Post-Processed Kinematic (PPK) methods enhance 

crop monitoring accuracy by using a base station for precise 

positioning, reducing the need for numerous GCPs (Tomastik et 

al., 2019). However, RTK drones need to stay within range of 

the base station to maintain a constant internet connection 

(Sitemark, 2024) and can face challenges due to signal 

interference and altitude variations (Rokaha et al., 2020), 

making them suitable mainly for flat terrains (Sitemark, 2024). 

RTK drones also need to fly slowly to maintain accuracy, which 

increases operational costs and time (Geodetics, n.d.). PPK 

drones, while more versatile across terrains, need complex and 

costly post-processing software and specialized training 

(Propelleraero, n.d., Dinkov et al., 2020).  

 

Addressing these key challenges, this paper introduces a novel 

method for precise individual crop-level monitoring by 

combining computer vision, geospatial analysis, and image 

processing to register UAV images of an agricultural field over 

time. The system generates a unique geometric descriptor for 

each crop, based on its spatial relationships with other crops. By 

comparing and matching a given crop’s descriptor across the 

same farm images across timeframes, it establishes one-to-one 

crop correspondence over time. Our approach bypasses the need 

for large numbers of GCPs and avoids the complexities and 

costs of GPS-based systems.  

 

In this paper, the prior research is reviewed in Section 2. Next, 

the novel geometric-descriptor based approach is introduced in 

Section 3. Section 4 outlines the experimental methodology 

using a real farmland image dataset. In Section 5, results are 

discussed, and key conclusions are presented in Section 6. 

 

2. Literature Review 

With the increasing use and prevalence of remote sensing tools, 

there has been substantial progress in automated robotic 

applications and techniques in precision agriculture. 

Researchers have introduced several methods using ground and 

aerial vehicles for automated field monitoring (Bryson et al., 

2010). One group used a modified vegetation index to 

differentiate crops from weeds, enabling targeted weeding 

(Zhang et al., 2018), while (Rocha et al., 2023) used 

orthomosaic aerial images of sugarcane fields and assessed 

multiple machine learning algorithms to identify crop row gaps, 

aiding in yield estimation. Authors in (Ramprasad et al., 2024) 

developed a Mask R-CNN segmentation approach for 

monitoring farms, focusing on detecting diseased crop areas and 

estimating crop yields at a farm level. 

 

Efforts to utilize automated computer vision-based algorithms 

for temporal image mapping face significant challenges due to 

variations caused by seasonal changes, noise, and issues with 

image quality. For instance, researchers in (Valgren, 2010) 

found that classical feature matching techniques achieved only 

30% accuracy for panoramic images of buildings taken in 

different seasons. By adding constraints to maintain consistent 

distances between matched features, they improved accuracy, 

but high noise levels still required multiple images for reliable 

matching. Other researchers have explored post-processing 

techniques to achieve lighting invariance, such as combining 

RGB channels into a grayscale image based on camera and 

scene elements (Arroyo, 2018, Yang et al., 2021, Clement et al., 

2020) or using gamma correction to enhance low-light images 

for better day-to-night matching (Sun et al., 2021). Traditional 

machine vision methods like Hough transform (Slaughter et al., 

2008), linear regression (Montalvo et al., 2012), and Theil-Sen 

estimator (Guerrero et al., 2013) have been attempted for use in 

crop-row and weed detection, but these methods often produce 

false matches due to high weed density and gaps in crop rows.  

 

Feature-detection algorithms such as Scale-Invariant Feature 

Transform (SIFT) (Lowe, 2004), Speeded Up Robust Feature 

(SURF) (Bay et al., 2006), and Oriented FAST and Rotated 

BRIEF (ORB) (Rublee et al., 2011) are commonly applied in 

image matching tasks due to their ability to handle scale, 

rotation, and certain viewpoint changes. These algorithms excel 

in identifying unique keypoints—distinctive spots within 

images—that remain relatively stable under various 

transformations. However, in agricultural applications, the 

landscape evolves over time due to crop growth and farming 

activities, which significantly alter these visual features. This 

makes it challenging for these algorithms to consistently match 

keypoints across different images, as the distinct features they 

rely on may not remain stable.  

 

A similar challenge arises with deep learning approaches which 

rely on finding distinct features in large amounts of data for 

efficient object detection and tracking. In agricultural contexts, 

crops are often highly similar in appearance and planted 

simultaneously, resulting in minimal visual diversity. This 

uniformity limits deep learning’s effectiveness, as it depends on 

recognizing unique, distinguishing features in the data to 

achieve reliable training outcomes, and ultimately predicting 

crop pairs spread across different timelines, as it lacks the 

necessary distinguishing cues for accurate temporal matching.  

 

To increase robustness to significant lighting and seasonal 

fluctuations in images taken over a long period, researchers in 

(Griffith et al., 2017) combined visual data with GPS and 

compass measurements to match images from different surveys. 

However, they are still prone to failure when visual appearance 

changes drastically, such as during rain, flooding or plant 

growth.  

 

There is a marked gap in works that focus on crop monitoring 

over time, particularly at the individual crop level. A robust 

methodology that can facilitate individual crop-level monitoring 

within precision agriculture and that can handle the 

complexities and diversity of real-world farmland datasets is 

needed. 
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3. Approach 

The geographic position of the crop remains static throughout, 

irrespective of terrain, crop growth, weather, time of the day or 

any other constraints that have remained as a challenge so far 

for individual level crop monitoring. The proposed novel 

algorithm harnesses these fixed spatial locations of the 

individual crops to create unique geometric keypoints or 

descriptors for each individual crop. As discussed earlier, these 

distinct descriptor values get matched across images and hence 

needs to be stable. Now since the crop position is independent 

of the growth of a crop, these values serve as a reliable 

keypoint.  

 

When comparing two UAV images of the same farm area, the 

intra-variance of the descriptor values for each individual image 

(1 and 2) needs to be high. This ensures that each crop has its 

unique identity which is very different from others in order to 

identify them easily, despite their similar visual appearance. 

Additionally, the inter variability should be low to enable 

efficient crop matching.  

 

For this, the Hungarian algorithm is used, which is an optimal 

assignment method that pairs each crop across images by 

minimizing the calculated difference between descriptor values 

of potential matches. By selecting pairs with the smallest 

differences, the algorithm ensures each crop is accurately 

matched to its counterpart in the other image. Meeting these 

criteria is essential to generating robust geometric descriptor 

values for consistent crop identification across farm images 

taken at different times.  

 

Subsections 3.1 to 3.4 ahead detail the steps for generating 

geometric descriptors and creating the corresponding mappings. 

Subsection 3.5 provides a comprehensive example that walks 

through the entire workflow. 

 

3.1 Raw Image Processing Pipeline 

To achieve our goal of generating crop matching pairs across 

images, we begin with raw data – a sequential collection of 

farmland images captured over time. These images then 

undergo a pre-processing pipeline to ensure they are compatible 

with the algorithm assigned for generating the final crop 

mappings. This involves obtaining bounding boxes around each 

unique crop detected in the farmland. The centroid of a given 

crop’s bounding box is used as the crop’s location identifier in 

cartesian (𝑥, 𝑦) coordinates. 

 

3.2 Reference Crop Selection 

Unlike traditional feature-based descriptors which rely on the 

static nature of a given object's features, geometric descriptors 

capture the spatial relationships between crops, specifically the 

distance and orientation relative to designated reference points. 

These relationships remain stable regardless of individual plant 

size or shape variations, making them ideal for tracking crops 

over time. By comparing these unique geometric descriptors 

across a series of images, the algorithm can establish a one-to-

one correspondence between individual crops over time.  

 

Our investigation into reference and pivot crop selection for the 

geometric descriptor-based crop detection algorithm explores 

four methods. The first method uses K-nearest neighbours 

(KNN) as reference points for each crop, with the farthest of the 

K neighbours as the pivot crop. This is to identify crops based 

on spatial proximity, aiming to capture the unique geometric 

relationship each crop has with its immediate neighbours. 

However, given that most fields have uniform, grid-like 

planting patterns, there may not always be enough variability in 

crop placement to generate sufficiently unique geometric 

descriptors. Hence, the remaining methods utilize the concept of 

fixed reference points in various ways (see Fig 1), which is 

inspired by the use of stationary GCPs as discussed in Section 1 

(Baseline Equipment, n.d.).  

 

As aerial images of fields typically appear like polygons, the 

second method, Corner Points (CP), involves manually 

annotating the corner or extreme edge points of the field in each 

image as references, with one of the points randomly chosen to 

be the fixed pivot. This method aims to produce more unique 

geometric descriptors for each crop due to the increased 

variability in crop positions relative to these fixed references 

(Figure 1 (a)).  

 

For the third method, K-Specific Points (KSP), we hypothesized 

that when applying CP, crops in the innermost region of the 

farm might be considerably distant from the crops at the farm 

boundaries, potentially leading to negligible variations in 

distances between them (Figure 1 (b)). Therefore, KSP uses K 

reference crops positioned halfway between the outermost 

boundary and the center of the farm. One of these middle points 

is arbitrarily selected as the pivot. Random selection is 

acceptable because the unique crop placement in each farm 

ensures that any consistent selected reference point would 

provide a comparable basis for measuring distances. 

 

 
(a)                                                      (b) 

 

Figure 1. Distance variations between crops and reference 

points in sparse versus dense farms. 

 

This approach is based on the hypothesis that by choosing 

reference crops that are, on average, close to all the crops in the 

field, the variability in crop distances can be enhanced. The 

fourth method, CP-KSP is a combined approach that 

incorporates both the corner crops and K points from the 

interior of the field as references, with one of the outer extreme 

corner crops designated as the pivot, in an attempt to synergize 

potential advantages from CP and KSP. Another rationale for 

this method is to assess whether increasing the number of 

reference points leads to more distinct descriptor values, thereby 

enhancing the reliability of the mappings. This would ensure 

that each crop is better differentiated from one another.  

 

The approaches to reference point selection for all the methods 

can be visualized in Figure 2, where the grid represents a crop 

field, the unfilled dot is the crop point of interest, the triangle 

icon is the pivot crop, and the square icons are the reference 

points chosen for the given method. 
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Figure 2. Reference and pivot point selection across KNN, CP, 

KSP and CP-KSP methods. 

 

3.3 Geometric Descriptor Computation for 1:1 matching  

For a given crop, we need a unique geometric descriptor based 

on its relative position and orientation with respect to the 

reference and pivot points chosen as discussed in subsection 

3.2. These descriptors can then be compared across images to 

determine a match. To generate this descriptor, the distances 

and angles to the reference points for each crop are normalized 

and aggregated into a single resultant descriptor for each crop.  

 

We explored several methods for aggregating the normalized 

angles and distances, including simple addition, multiplication, 

and weighted averages. Ultimately, we found that simple 

addition produced the most unique descriptors and the best 

mapping accuracy, making it the preferred aggregation method. 

This is illustrated in Figure 3. 

 

 
 

Figure 3: Block Diagram of Algorithm Steps. 

 

3.4 Filtering Incorrect Matches 

To ensure the algorithm's reliability and confidence in its 

matching, apart from direct comparison of descriptors, there is a 

need to filter out false positives—matches that the algorithm 

may produce that are incorrect, which could be worse than not 

predicting a match for the crop. Mismatched crops might 

receive inappropriate treatments, leading to damage or stunted 

growth. This not only wastes valuable resources like water, 

fertilizers, and pesticides but also directly impacts crop yields 

and quality.  

 

Thus, instead of focusing on the accuracy of the algorithm, i.e., 

the ratio of the number of correct matches to the total number of 

crops to be matched, there is a crucial need to account for and 

enhance the precision of the algorithm, i.e., the ratio of correct 

matches or ‘true positives’ to the total matches generated by the 

algorithm.  

 

This effect can be observed in Figure 4. Although the image 

pair on the left yielded more correct matches (marked as solid 

lines) in absolute terms, the matches generated for the image 

pair on the right are more desirable due to a higher ratio of 

correct matches among the total matches provided, resulting in 

increased precision in the predictions due to fewer false positive 

matches (marked as dotted lines). 

 

 
 

Figure 4. Comparison of two hypothetical crop matching results 

with varying precision. 

 

To improve the precision of our algorithm’s results, we utilize 

the Lowe’s ratio test (Lowe, 2004). This test helps distinguish 

correct matches from false positives by comparing the ratio of 

distances between the nearest and second-nearest neighbors, and 

eliminating matches that are too close to each other to be 

conclusively distinct. While this test improves the performance 

outcomes of the model by eliminating mismatches, it also 

results in some true matches being missed. However, this 

tradeoff is justified by the increased confidence in the matches 

resulting from this filter, which outweighs the data loss 

incurred. 

 

3.5 Example Walkthrough of Geometric Descriptor 

Algorithm using CP Method 

To illustrate the entire methodology, we can walk through an 

example with artificially generated images of farmland. Each 

image is first preprocessed to create bounding boxes around 

each crop, and the centroids of each crop are found and labelled. 

Let a crop of interest be labelled 𝑃. For reference point and 

pivot selection, we arbitrarily choose to use the CP method. As 

shown in Figure 5, we first record the distances from 𝑃 to each 

of the four corner crops. To compute the angles, we designate 

R1, R2, R3 as reference crops and R0 as the pivot to compute 

angles about 𝑃. As per our convention, the angles are computed 

in the anticlockwise direction. 

 

 
 

Figure 5. Representative farmland image with annotations. 
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Now, the distances (𝑑1 , 𝑑2 , 𝑑3) are normalized by dividing the 

distance between 𝑃 and R0 (in this case 𝑑0) to get normalized 

distance vectors (𝐷1, 𝐷2, 𝐷3). Similarly, we normalize the angles 

(𝑡1, 𝑡2, 𝑡3) by converting to radians and dividing by 2π to get a 

corresponding normalized angle vector (𝑇1, 𝑇2, 𝑇3). Together 

the polar coordinate pairs of the form (𝐷𝑖, 𝑇𝑖) where i = 1, 2, 3 

uniquely identify the position of crop 𝑃 with respect to its 

reference points. 

 

We then convert the polar coordinate pairs to cartesian 

coordinates of the form (𝑥𝑖, 𝑦𝑖 where 𝑖 = 1, 2, 3) to obtain (𝑥1, 

𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3). We then aggregate them by adding the 𝑥 

and 𝑦 coordinates to get (𝑥1 + 𝑥2 + 𝑥3 = 𝑋, 𝑦1 + 𝑦2 + 𝑦3 = 𝑌), and 

converting this aggregated cartesian coordinate back to polar 

form to get (𝐷𝑎𝑔𝑔𝑟, 𝑇𝑎𝑔𝑔𝑟). 
 

We then simply add the 𝐷𝑎𝑔𝑔𝑟 and 𝑇𝑎𝑔𝑔𝑟 raw values to get a 

singular geometric descriptor value 𝐺 for crop 𝑃. We repeat this 

for every crop in the image, and for each image in the dataset of 

the farmland over the time period of interest. We can now 

compare the geometric descriptors of each crop to every other 

crop using the Hungarian Algorithm (Kuhn, 1955) with L2 

norm as the cost function.  

 

To mitigate the influence of spurious matches, the Lowe's ratio 

test is then applied. This test operates by comparing the absolute 

difference between a descriptor in one image of a given crop 

and its potential matches in another image. The ratio 𝐿𝑏𝑒𝑠𝑡 / 

𝐿𝑠𝑒𝑐𝑜𝑛𝑑 is calculated, where 𝐿𝑏𝑒𝑠𝑡 represents the distance to the 

nearest matching descriptor and 𝐿𝑠𝑒𝑐𝑜𝑛𝑑 denotes the distance to 

the second-nearest match. If this ratio is less than or equal to a 

predefined threshold of 0.8, the match is considered reliable and 

retained for further processing. Conversely, matches exceeding 

the threshold are discarded due to ambiguity in their 

correspondence, suggesting a weak geometric relationship 

between the features.  

 

Thus, by applying the methods discussed above, we can extract 

unique geometric descriptors for each crop from raw field 

image data acquired over time. 

 

4. Experimental Results  

4.1 Image Processing  

4.1.1 Data Acquisition: The dataset for this study is a 

collection of RGB images obtained from a 3.5-acre 

pomegranate orchard in Tiptur, Karnataka, India, using an 

unmanned aerial vehicle (UAV) equipped with a high-

resolution camera. The UAV captured 4k resolution images of 

the farmland at a speed of 2.3m/s during a 11-minute flight.  

 

In this image dataset, the shape of the farm was roughly a 

quadrilateral, and none of the bounding boxes around the crops 

overlapped with each other. To capture the variability in the 

crop's appearance for effective crop monitoring, images were 

taken at different stages of the crop cycle. 

 

4.1.2 Image Data Preprocessing: Orthomosaic stitching 

was performed on the drone images of the farm using Pix4D 

tool to obtain high-quality .tif files. However, these large file 

sizes posed challenges for efficient upload and processing. To 

address this, the images were converted to .png format, ensuring 

they remained manageable for subsequent image processing 

tasks. 

 

4.1.3 Image Annotation: The ground truth annotations for 

the pomegranate orchard were generated using the Roboflow 

tool, creating bounding boxes around each crop (see Figure 6), 

and the labelled bounding box data was saved in .json format. 

These annotations were utilized to construct a dataset adhering 

to the Visual Object Classes (VOC) format. 

 

 
 

Figure 6. Annotated image of the UAV-captured farmland with 

bounding boxes. 

 

Upon receiving the bounding box coordinates for each crop 

from the annotation process, the next step involved calculating 

the center coordinates for individual crops using the centroid 

formula. These center coordinates serve as the location of each 

crop within the farmland. 

 

4.2 Geometric Descriptor Calculation 

Our investigation focused on achieving accurate matching of 

individual crops in images captured at different times using four 

methods to generate geometric descriptors for the matching. We 

tested these on the pomegranate field dataset using two images 

of the same farmland from different time frames. For the first 

round of testing, we used a section of the image with 25 labelled 

crop points as the ground truth for testing our methods. After 

testing with various values of K, we found that K=4 provided 

the best performance for the methods.  

 

The performance of the methods was evaluated using two 

metrics – accuracy and precision – with the following formulae: 

 

Accuracy =  Number of correct matches (1) 

 

 
Total number of crops to be matched 

Precision =  Number of correct matches (2) 

Number of crops left after filtering 

 

Accuracy was computed as the percentage of correct matches to 

total number of crops after applying Hungarian algorithm to 

produce matches. Then, after applying the Lowe’s test filter on 

the matches produced, precision was computed on these 

matches, as is captured in Table 1. 
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Method No. 

of 

crops 

Accuracy Initial 

Match 

Precision 

after 

Lowe’s 

test 

Match 

after 

Lowe’s 

test 

KNN 

(K=4) 
25 24.00% 6/25 37.50% 3/8 

CP 25 80.00% 20/25 94.73% 18/19 

KSP 

(K=4) 
25 76.00% 19/25 92.30% 12/13 

CP-KSP 

(K=4) 
25 76.00% 19/25 90.00% 18/20 

Table 1. Crop Matching Performance Across Methods 

 

As can be seen, CP significantly outperformed the other three 

methods on both the accuracy and precision metrics. To explore 

the limits of CP, we increased the number of analyzed crop 

points (see Table 2). Performance steadily improved, reaching a 

peak precision of 94.73%. However, as the number of points 

continued to rise, precision began to decline and the data loss 

after applying Lowe’s test began to increase. 

 

No. of 

crops 

Accuracy Initial 

Match 

Precision 

after 

Lowe’s test 

Match after 

Lowe’s test 

25 80.00% 20/25 94.73% 18/19 

50 84.00% 42/50 94.73% 36/38 

75 73.33% 55/75 86.36% 38/44 

100 67.00% 67/100 80.70% 46/57 

 

Table 2. CP Method Performance with Increasing Crops 

 

5. Discussion 

Even the most advanced smart farming techniques, including 

deep learning and artificial intelligence (AI), face challenges 

with individual-level crop monitoring due to the high similarity 

among crops and visual changes over time. Even in applications 

when these methods prove effective, they often come with high 

costs or require expert operation. In contrast, the proposed 

algorithm effectively addresses this challenge while remaining 

simple, interpretable and operationally cost-effective. 

Additionally, this method is immune to scale, orientation, and 

even external factors like lighting conditions. 

 

5.1 Precision versus Accuracy Metrics 

In assessing the methods' performance, our evaluation considers 

not only accuracy, which represents the percentage of correct 

matches out of the total crops to be matched, but also precision, 

indicating the number of correct matches within the predictions 

made. Relying solely on accuracy can obscure the algorithm's 

confidence in its matching. Therefore, despite the data loss 

incurred, utilizing Lowe's test as a filter helped improve our 

confidence in the algorithm, and the resultant precision scores 

provide a more complete picture of the algorithm’s 

performance. For all methods, the precision significantly 

improved after applying the Lowe's test compared to the 

accuracy derived from the direct comparison of geometric 

descriptors. 

 

5.2 Performance Comparison of KNN, CP, KSP and CP-

KSP 

We started matching the crops across two images from different 

time frames using KNN. Despite trying multiple K values, KNN 

was ineffective in generating sufficiently unique descriptors for 

the crops. This was demonstrated by the significant data loss 

when applying Lowe's test, reducing the number of crop 

matches generated from 25 to 8. This limitation might be 

attributed to the inherent uniformity of the crop field. With 

crops planted in a grid-like pattern, most crops have neighbors 

at roughly the same distance, leading to a lack of distinctiveness 

in the KNN-generated descriptors for each individual crop. 

 

As the farmland captured was in the shape of a quadrilateral, we 

utilized the four corner points as references for CP. This 

produced a matching precision of 94.73% for cases with 25 and  

50 points. However, this went down to 86.36% when we 

increased the points to be matched to 75 points.  

 

KSP attempted to improve on CP by choosing reference points 

within the interior of the field, and while the accuracy for 

matching 25 points was 92.30%, this method suffered from data 

loss after applying the Lowe’s test. KSP retained 13 matches 

while CP retained 19 out of the total of 25. CP’s superior 

performance could be attributed to the isolated nature of the 

corner crops, making them consistent and reliable references.  

 

As CP-KSP introduced more reference points, it outperformed 

the simpler KSP method by incurring less data loss after 

applying Lowe’s test. This is demonstrated by the better 

retention of crop matches after applying Lowe's test: CP-KSP 

retained 20 matches with 18 correct, whereas KSP retained only 

13 matches with 12 correct.  

 

The investigation culminated in CP emerging as the most 

successful method with the highest precision score of 94.73% 

for 25 and 50 crops, with the least data loss after filtering with 

Lowe’s test.  

 

Thus, this work successfully demonstrates individual-level crop 

monitoring using geometric descriptors to identify crops across 

images. This algorithm is robust to changes in visual appearance 

as it relies on stable planting locations to generate accurate 

mappings.  

 

The unique contribution of this algorithm is to focus on 

individual crop matching rather than broad farm-level insights, 

which is essential for precise farm management tasks like 

targeted pesticide application and resource allocation. 

Additionally, the integration of Lowe’s ratio test significantly 

enhances the algorithm’s performance by helping to 

differentiate correct matches from false positives, providing 

greater confidence in the results. 

 

5.3 Future Scope 

As noted, the accuracy of the algorithm declines when dealing 

with a larger number of crops. The primary issue we 

encountered was that as the field size increased, the distance 

between crops near the center of the image and those at the 

edges became negligible. This caused the descriptors to be too 

close together, ultimately reducing accuracy. To address these 

limitations, future work could explore ways to intelligently 

segment the farmland. We observed that accuracy was very high 

with lesser number of crops, indicating that if the large farmland 

could be segmented into sufficiently smaller sections with fewer 

crops, a similar performance could be achieved. The algorithm 

could determine the optimal segmentation, ensuring that each 

segment is accurately matched, even in larger fields with a 

higher number of crops. Further exploration can be done to find 

other descriptor-based methods for 1:1 crop matching. 
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6. Conclusion 

This research work presents a novel approach that leverages the 

convergence of computer vision, geospatial analysis, and 

remote sensing to address the critical need for precise individual 

crop-level monitoring in modern agriculture.  

 

The investigation first established the efficacy of geometric 

descriptors as an effective means to identify unique matches for 

individual crops within sequential field imagery, with an 

excellent precision of 94.73% on UAV-acquired images of a 

pomegranate farmland. The algorithm incurs minimal data loss 

after filtering out potentially false matches using Lowe’s ratio 

test. The selection of reference crops had a measurable 

influence on matching accuracy, with CP leading to the most 

optimal results.  

 

This work showcases the potential of geometric descriptors as a 

viable approach for precise 1:1 crop matching. This paves the 

way for the development of a comprehensive farm management 

system that equips farmers with granular data and insights into 

the health and status of their crops over time, ultimately 

empowering them to optimize yield and resource allocation. 
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