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Abstract 

Accurate change detection is essential for understanding land disturbances. The Continuous Monitoring of Land Disturbances (COLD) 
algorithm is a widely used method for detecting rapid ground changes using Harmonized Landsat and Sentinel (HLS) data. Despite its 
advancements, change detection accuracy is often limited by frequent ground alterations, such as large-scale construction during 
urbanization. This study proposes an improved COLD algorithm that integrates land disturbances identified by COLD with publicly 
available land use/land cover (LULC) maps from Esri, covering the period from 2017 to 2024, to map and quantify construction 
activities. To evaluate the performance of the proposed method, this study takes the new capital of Egypt as the study area, which is 
experiencing a surge in national infrastructure projects. We focused on tracking construction dynamics from 2016 to the present. The 
spatiotemporal detection of land disturbances uses the COLD algorithm with a dataset of 559 images from Harmonized Landsat and 
Sentinel missions. The identified COLD breaks correspond to transition periods, capturing changes from July of one year to July of 
the next. Then, two distinct overlapping analyses were performed: first, we aligned the COLD-detected disturbances with the LULC 
maps of the same year; second, we overlaid the LULC maps of the following year with the COLD results. While both methods yielded 
similar insights, the latter approach identified a more extensive area classified as undergoing construction, providing a more accurate 
depiction of progressive development. We validated the results by visually comparing detected construction activities over time and 
cross-referencing with historical satellite imagery from Google Earth. This approach has proven effective for monitoring and mapping 
construction changes and holds potential for application in other regions with available LULC maps. 
 
 

1. Introduction 

Land disturbance refers to events that rapidly alter the structure, 
composition, or function of ecosystems. While natural events 
such as wildfires, floods, and earthquakes can drive these 
changes, anthropogenic activities, particularly deforestation, 
mining, and construction, have become the dominant sources of 
land disturbance in recent decades. With over 55% of the global 
population now residing in urban areas (United Nations, 2022), 
rapid urbanization has significantly accelerated land-use 
transformations, leading to both local and global environmental 
impacts (Winkler et al., 2021). A notable consequence of this 
urban expansion is that construction-induced disturbances 
disrupt ecological processes such as the carbon cycle, reduce 
biodiversity, and exacerbate climate change by altering surface 
properties like albedo and thermal characteristics (Friedl et al., 
2002). These far-reaching impacts underscore the need to 
continuously monitor land disturbances to support sustainable 
urban development and bolster climate resilience. 
 
Satellite remote sensing has become a critical tool for monitoring 
land disturbances because it provides consistent, large-scale data 
over extensive temporal ranges. Although high-resolution 
imagery (e.g., less than 5 meters) can capture fine details, its 
limited availability, higher costs, and lower revisit frequencies 
reduce its utility for continuous, large-scale monitoring (Li et al., 
2014; Sirko et al., 2023). Conversely, medium-resolution 
satellites such as Landsat and Sentinel-2 offer a balanced trade-
off between spatial resolution and temporal coverage, with 
frequent revisit times and global availability. These 
characteristics make medium-resolution imagery particularly 
well-suited for near-real-time monitoring of gradual surface 

changes, including those driven by construction activities 
(Wulder et al., 2008). 
 
However, construction activities represent a unique form of land 
disturbance, distinct from other processes like deforestation or 
agricultural expansion due to their multi-phase, recurring nature 
and long-lasting effects. Unlike other land-use conversions, 
construction transforms undeveloped areas into urban or 
industrial zones through multiple stages, such as vegetation 
removal, terrain modification, and the creation of impervious 
surfaces (Thornton et al., 2023). Each phase of construction 
generates unique spectral signatures in satellite imagery, making 
the detection and analysis of these activities more complex 
compared to uniform changes like forest clearing (Liu et al., 
2021). Additionally, construction can occur in both urban and 
rural environments, further complicating its spatiotemporal 
monitoring (Schott et al., 2016). 
 
Tracking construction activities using remote sensing poses 
unique challenges. Construction sites are often small, covering 
only a few pixels in medium-resolution imagery, which makes 
accurate change detection difficult (Huang et al., 2014; Sirko et 
al., 2023). The spectral diversity of materials like concrete, 
asphalt, and metal adds complexity, as different construction 
phases exhibit distinct spectral signatures (Kotthaus et al., 2014). 
This variability complicates using a single classification 
algorithm that can reliably detect all phases. Additionally, 
construction changes are often obscured by other land 
disturbances, such as urban expansion or natural vegetation 
cycles, requiring advanced algorithms to differentiate these 
signals. Unlike the more uniform changes associated with urban 
expansion, construction activities occur sporadically and involve 
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rapid transformations in developed areas. This sporadic nature 
and the heterogeneity of materials across various sites and stages 
further complicate monitoring efforts. 
 
To address these challenges, specialized algorithms have been 
developed for detecting land disturbances over time using 
satellite data, including the Continuous Change Detection and 
Classification (CCDC) algorithm (Zhu and Woodcock, 2014), 
Breaks for Additive Season and Trend (BFAST) (Almeida et al., 
2018), and LandTrendr (Kennedy et al., 2010). These algorithms 
analyze temporal patterns in spectral data derived from dense 
time series, often sourced from medium-resolution satellites, to 
detect and classify land cover changes. Furthermore, the 
Continuous Monitoring of Land Disturbances (COLD) 
algorithm (Zhu et al., 2020) COLD algorithm excels in 
identifying "breaks" within time series data—points where 
significant land cover changes occur—enabling continuous 
disturbance monitoring across large areas (Suh et al., 2024).  
 
Land use/land cover (LULC) studies often focus on broad 
categories, such as built-up areas or impervious surfaces, rather 
than specific activities like construction (Thornton et al., 2023). 
Consequently, construction activities are frequently subsumed 
under general urban expansion, making distinguishing 
construction from other urban growth or redevelopment forms 
challenging. Additionally, the relatively small spatial extent of 
many construction sites, combined with the medium resolution 
of satellite imagery, poses challenges for accurately classifying 
these areas in LULC datasets (Wang et al., 2023). This limitation 
highlights the need for more refined classification methods to 
differentiate construction activities from other types of land 
change. Current LULC classification schemes are typically too 
coarse to capture the distinct phases of construction, resulting in 
an underrepresentation of construction dynamics in large-scale 
land use studies. Given these challenges, applying the COLD 
algorithm is insufficient for monitoring construction activities, 
and relying solely on LULC data presents similar limitations. 
 
In this study, we utilized the COLD algorithm on Harmonized 
Landsat and Sentinel (HLS) datasets to monitor construction 
activities in Egypt's New Capital. The COLD algorithm, known 
for detecting "breaks" in time series data, offers a robust 
framework for identifying land surface changes related to 
construction. By leveraging dense time series data from these 
satellites, we captured spatial and temporal breaks associated 
with ongoing construction, enabling continuous development 
monitoring in this rapidly expanding urban area. To further refine 
our detection process, we integrated publicly available LULC 
datasets from Esri with a 30-meter resolution to improve the 
classification of artificial surfaces. By overlaying the 
construction breaks detected by COLD with artificial surface 
data from the LULC datasets, we achieved enhanced 
classification accuracy for construction activities. We validated 
the proposed method by visually comparing it with high-
resolution Google Earth imagery. The experiment results 
indicate a strong agreement between the detected breaks in the 
time series and observed construction progress, demonstrating 
the effectiveness of our approach in monitoring construction 
dynamics at a large scale. 
 
The remainder of this paper is structured as follows: Section 2 
outlines the materials and methods, detailing the study area, data 
datasets, and algorithms. Section 3 presents and discusses the 
results. Finally, Section 4 concludes the paper by highlighting 
key findings and suggesting future research directions. 
 

2. Material and Methods 

2.1 Study Area 

This study focuses on New Cairo City and the New 
Administrative Capital, two regions in Egypt undergoing rapid 
urban development and large-scale construction. Figure 1 
illustrates the spatial extent of the study area, emphasizing the 
urban boundaries and key regions of interest within both New 
Cairo City and the New Capital. In 2016, the Egyptian 
government launched the second development phase for New 
Cairo City and commenced the first construction phase for the 
New Administrative Capital. New Cairo City, situated southeast 
of Cairo, is an urban development project to alleviate congestion 
in the capital. The New Administrative Capital is located east of 
Cairo, a cornerstone of Egypt for a modern administrative hub. 
These regions arid desert climate, characterized by minimal 
vegetation and low cloud cover, makes it highly suitable for 
remote sensing-based analysis of construction changes. The total 
area encompasses approximately 1,000 square kilometers, 
extending between latitudes 29.8° and 30.0° N and longitudes 
31.3° and 32.0° E.  
 

 
Figure 1. Geographic location of the study area. a) Geographic 

location of Egypt. b) Geographic location of the HLS tile 
(36RUU) represented by the dashed black rectangle. c) 

Geographic location of New Cairo City and the New Capital, 
surrounded by red and blue polygons, respectively. 

 

 
Figure 2. Data availability from the Harmonized Landsat and 
Sentinel (HLS) dataset based on a cloud coverage criterion of 

less than 5% spanning from July 1, 2013, to July 1, 2024. 
 
2.2 Harmonized Landsat and Sentinel 

The Harmonized Landsat and Sentinel (HLS) dataset (NASA, 
2023), which integrates data from Landsat 8 and Sentinel-2, was 
employed to monitor construction activities in the study area. We 
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utilized version 2.0 of the HLS dataset, which offers a spatial 
resolution of 30 meters. To enhance the temporal resolution of 
the dataset, a temporal consistency fusion of both satellite 
missions was performed, allowing for precise monitoring of land 
disturbance and construction-driven changes over time. To 
ensure optimal data quality, we applied a filtering process to 
select scenes with less than 5% cloud cover. Through the 
integration of Landsat-8 and Sentinel-2 observations, 559 near 
cloud-free images were acquired, spanning the period from July 
1, 2013, to July 1, 2024. Figure 2 illustrates the temporal 
distribution of HLS scenes that met these criteria. These criteria 
provided a robust framework for capturing detailed and 
comprehensive spatial-temporal dynamics related to 
construction activities in New Cairo City and the New 
Administrative Capital. This multi-year analysis facilitated 
urban expansion and land transformation, tracking across the 
evolving landscape, demonstrating the utility of dense time 
series satellite data for continuous monitoring. 

 
2.3 Land Use Land Cover 

Numerous land use and land cover (LULC) datasets are 
available; however, many are constrained to data from 2019 or 
2020. For this study, we selected the ESRI LULC dataset (ESRI, 
2024), which offers a spatial resolution of 30 meters and a 
continuous time series spanning from 2017 to 2023. This 
extended temporal coverage is ideal for monitoring land use 
changes over time and aligns with the objectives of this study to 
assess ongoing urbanization processes. Figure 3 illustrates the 
LULC changes across the same spatial extent as the HLS tile, 
maintaining matching spatial resolution. The time series analysis 
of the LULC dataset reveals a substantial increase in built-up 
areas, consistent with the development plan to establish new 
urban centers in East Cairo, including New Cairo City and the 
New Administrative Capital. 
 

 

 
Figure 3. Time series of land use and land cover (LULC) extracted from the ESRI dataset from 2017 to 2023. 

 
2.4 Land Disturbance 

The Continuous Monitoring of Land Disturbance (COLD) 
algorithm (Zhu et al., 2020), implemented in Python (GERSL, 
2022), analyzes satellite imagery to detect breaks in surface 
reflectance, signifying disturbances, or recovery events. These 
breaks are caused by construction activities, land clearing, or 
afforestation and can be identified by comparing successive 
observations with the time series model output. The formula used 
by the COLD algorithm is a combination of constant, linear, and 
periodic trends that can be expressed as follows: 
 

𝜌𝜌�(𝑖𝑖,𝑥𝑥) = 𝑎𝑎(𝑖𝑖,0) + � �𝑎𝑎(𝑖𝑖,𝑘𝑘) cos �
2𝜋𝜋
𝑇𝑇 𝑥𝑥�

3

𝑘𝑘=1

+𝑏𝑏(𝑖𝑖,𝑘𝑘) sin �
2𝜋𝜋
𝑇𝑇 𝑥𝑥�� + 𝑐𝑐(𝑖𝑖,1)𝑥𝑥 

(1) 

 
where 𝑥𝑥 represents the Julian date, 𝑖𝑖 donates the ith band, and 𝑇𝑇 
is the number of days in a year. The term 𝑎𝑎(𝑖𝑖,0) corresponds to the 
constant coefficient for the ith band, while 𝑎𝑎(𝑖𝑖,𝑘𝑘)  and 𝑏𝑏(𝑖𝑖,𝑘𝑘)  are 
coefficients representing intra-annual periodic changes for the ith 
band. Additionally, 𝑐𝑐(𝑖𝑖,1) is the coefficient for intra-annual linear 

changes (slope) for the ith band and 𝜌𝜌�(𝑖𝑖,𝑥𝑥) signifies the predicted 
value for the ith band at the date 𝑥𝑥. 
 
As shown in Figure 4, the COLD algorithm effectively represents 
land disturbance in a spatiotemporal context by pinpointing 
individual pixel breaks in the temporal profile. Figure 4(a) 
indicates the temporal profile for the pixel located at (30.912° E, 
30.716° N), revealing a break identified on December 25, 2016. 
In contrast, Figure 4(b) presents the temporal profile for the pixel 
located at (30.938° E, 30.716° N), which displays three breaks 
identified on March 24, 2020; November 14, 2021; and January 
19, 2023.  
 
The COLD algorithm has been cross-validated with high-
resolution imagery to ensure accuracy in detecting and 
quantifying construction-induced land disturbances (Suh et al., 
2024). This technique is particularly well-suited for large-scale, 
ongoing construction projects, such as those in New Cairo City 
and the New Capital, where development occurs at varying rates 
across different zones. By applying the COLD algorithm, we can 
continuously monitor urban areas, enabling a detailed temporal 
assessment of urban sprawl and construction growth. 
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Figure 4. Visualization of land breaks extracted from the COLD 
time series algorithm. (a) Temporal profile for the pixel located 
at (30.912° E, 30.716° N). (b) Temporal profile for the pixel at 
(30.938° E, 30.716° N). The vertical black lines denote break 

events. 
 
2.5 Construction Change 

The detection and quantification of construction changes are 
conducted through a three-stage process, as illustrated in Figure 
5: (a) Estimating the time series of land disturbance breaks using 
the COLD algorithm, (b) Extracting the time series of artificial 
surfaces from LULC data, and (c) Determining the subset of 
construction changes by intersecting the land disturbance breaks 
with the artificial surface data. 
 
To identify and quantify land disturbances, we employed the 
COLD algorithm. This algorithm segments the spatiotemporal 
HLS data into small blocks and applies a time series model to the 
satellite observations of each pixel. Utilizing the red, green, blue, 
NIR, SWIR1, and SWIR2 bands, it detects land disturbances and 
change vectors in spatiotemporal maps by reconnecting the small 
blocks. The LULC time series data were utilized to extract 
artificial surfaces by categorizing built-up areas while grouping 
all other categories as background. To accurately capture 

construction changes, we concentrated on land disturbances 
within the defined urban development boundaries established by 
artificial surface extraction. Any land disturbance occurring 
within these boundaries is classified as a construction change. By 
intersecting land disturbances from one year with the urban 
development boundaries from the subsequent year, we can 
identify construction activities that transpired during the 
intervening period. This way, the proposed method can precisely 
track annual construction progress as new areas are disturbed and 
transformed into urban infrastructure. 
 

 
Figure 5. The proposed methodology for construction dynamics 
monitoring. a) HLS time series processing workflow. b) LULC 
time series processing workflow. c) Intersection between land 

disturbance time series and artificial surfaces time series. 
 

3. Results and discussions 

3.1 Artificial Surfaces Time Series 

The LULC from ESRI provides a temporal evolution of the 
overall urban development in the study area, as shown in Figure 
6. In 2017, the artificial surfaces were approximately zero in the 
New Administrative Capital, revealing the preconstruction 
activities of the last year. The time series of artificial surfaces 
from 2017 to 2023 shows a significant increase consistently with 
the urban development of the first phase of the New 
Administrative Capital.  
 

 

 
Figure 6. Time series of the artificial surface grouped from the LULC. 
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3.2 Land Disturbance Time Series 

The COLD algorithm effectively detected spatiotemporal land 
disturbances across the study area, as shown in Figure 7. Between 
2013 and 2016, the number of identified disturbances remained 
relatively low, mainly due to the limited frequency of satellite 
observations, as this period relied solely on Landsat data. This 
finding is further supported by the fact that New Cairo City and 
the New Capital exhibited no significant land disturbances during 
this timeframe, as major construction activities had not yet 
begun. Starting in 2016, a marked increase in land disturbances 
was observed, correlating with the initiation of significant 
construction efforts. These early disturbances predominantly 
involved excavation, land leveling, and other pre-construction 

activities and are not classified as built-up areas (see Figure 6). 
The sharp rise in disturbances signifies the preparatory phase of 
large-scale urban development, signaling the transition from 
undeveloped land to urbanized infrastructure. 
 
Outside the defined urban development boundaries, land 
disturbances were primarily linked to agricultural land 
encroachment, which is strictly regulated under Egyptian law. 
Additionally, substantial disturbances were observed in the 
northeastern portion of the study area, where land reclamation 
projects aimed at expanding agricultural lands were 
undertaken—a key initiative by the Egyptian government to 
increase arable land for cultivation. 
 

 

 
Figure 7. The spatiotemporal time series of land disturbance calculated from the COLD algorithm. 

 
3.3 Construction Change Time Series 

We concentrate on land disturbances within urban development 
boundaries, emphasizing the importance of utilizing an accurate 
and current LULC dataset. While Figure 6 shows a general 
increase in artificial surface areas over time, it potentially 
underestimates the true extent of built-up regions, as suggested 
by the broader land disturbances detected in Figure 7. These 
disturbances include construction activities such as foundational 
work, which may not have been classified as artificial surfaces in 
Figure 6. To mitigate this discrepancy, we utilize artificial surface 
data from the subsequent year, which typically provides a more 
accurate representation of newly developed areas (Suh et al., 
2024). This time-lag approach helps to better correlate land 
disturbances with construction activities. Figures 8 and 9 display 
the intersection between artificial surfaces (in green) and land 
disturbances (in red), highlighting areas of construction change 

(in blue), using the same year data and a year difference data, 
respectively. Figure 9 shows a little increase in the construction 
area, depending on a lot of land disturbance leading to artificial 
surfaces in the consecutive year. In Figure 10, the cumulative 
areas of other artificial surfaces, other land disturbances, and 
construction changes are presented for the entire tile. Figure 10 
(a) depicts the year-by-year intersection of artificial surfaces and 
land disturbances, while Figure 10 (b) illustrates the intersection 
between artificial surfaces and land disturbances from the 
previous year. The latter method, shown in Figure 10 (b), captures 
a similar pattern but with a slight increase in the area classified 
as construction change, offering a more accurate portrayal of the 
progression of urban development over time. The construction 
changes range from 18.3 × 10³ to 27.4 × 10³ square meters 
annually. 
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Figure 8. Time series of construction changes calculated by intersecting artificial surfaces and land disturbances in the same year. 

 

 
Figure 9. Time series of construction changes calculated by intersecting artificial surfaces and land disturbances from the previous 

year. 
 

 
Figure 10. Area changes associated with different land disturbances: (a) The intersection of artificial surfaces and land disturbances 

within the same year, as depicted in Figure 8. (b) The intersection of artificial surfaces with land disturbances from the previous year, 
as illustrated in Figure 9. All dates correspond to the land cover dataset, reflecting the timing of land surface classification updates.  
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3.4 Validation 

To visually validate the proposed method, as shown in Figure 11, 
we obtained a time series of high-resolution imagery from 
Google Earth and overlaid it with the intersection of artificial 
surfaces and land disturbances from the previous year. Figure 11 
(a) highlights the preconstruction activities, such as excavation 
and land leveling, where land disturbance is at its peak. As 
artificial surfaces expand, this region transitions from disturbed 
land into an urbanized area. Figure 11 (d) shows significant 
construction activities in the octagon area, marked by the black 

circle, indicating the extensive construction activities. In Figure 
11 (f), numerous completed construction activities are visible, 
transformed into artificial surfaces, as shown in Figure 11 (g). 
This progression illustrates the evolution of initially disturbed 
areas into built environments, consistent with observed patterns 
of urban expansion. The overlay of high-resolution imagery with 
the detected land disturbances and artificial surfaces effectively 
validates the accuracy of the proposed method. The comparison 
results confirmed that the temporal and spatial patterns of 
construction change closely match real-world observations. 
 

 

 
Figure 11. Time series of Google high-resolution images over the Octagon (Egyptian Ministry of Defense) based on 9. The black 

circle denotes the octagonal area. 
 

4. Conclusions 

We proposed an enhanced COLD procedure to monitor the land 
disturbances for change detection. This method jointly utilized 
the HLS and the publicly available LULC datasets to track 
construction activities in rapidly developing areas. We take the 
new capital city of Egypt as the study area. By applying the 
COLD algorithm to Landsat and Sentinel-2 data, we effectively 
identified breaks in land disturbance and tracked construction 
progress from 2016 to the present. Integrating LULC maps with 
COLD breaks revealed the spatial-temporal development 
patterns and allowed for a refined classification of construction 
changes. Both overlapping analyses produced similar results 
using LULC maps of the same year and subsequent year. The 
latter method provided a slightly more comprehensive depiction 
of construction expansion, highlighting its utility in providing a 
more accurate picture of development over time. The comparison 
of satellite-based results with historical Google Earth imagery 
confirmed the robustness of this methodology for continuous 
construction monitoring. The experiment results demonstrate that 
the proposed approach can offer a scalable, cost-effective method 
for detecting and analyzing land-use changes in other regions, 

contingent upon the availability of time series data and LULC 
maps. 
 
The limitations of this study are primarily associated with three 
key factors: (1) the temporal scope of the time series data, (2) the 
accuracy of detected artificial surfaces, and (3) the spatial 
resolution of the datasets used. The ESRI LULC dataset spans 
from 2017 to 2023, restricting our analysis of artificial surface 
dynamics outside this period and consequently limiting insights 
into urban development trends from 2013 to 2016. The accuracy 
of artificial surface classification is critical for precisely 
delineating urban development boundaries; misclassifications 
may result in inaccurate representations of construction activities 
and urban expansion, which could skew the study’s findings. 
Furthermore, the 30-meter spatial resolution of the data may be 
inadequate for detecting small-scale construction activities, 
particularly in densely developed areas, thereby impeding 
detailed assessments of urban growth and fine-scale construction 
changes. 
 
To overcome these limitations, future work will focus on the 
following strategies: First, to extend the analysis to the 2013-
2016 period, deep learning-based methods will be explored for 
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reconstructing artificial surfaces and urban development patterns. 
These approaches could provide more consistent and accurate 
temporal coverage, enabling a continuous analysis of land 
disturbances over a longer timeframe. Improving the accuracy of 
artificial surface detection will be a priority, integrating higher-
resolution imagery to enhance the delineation of urban 
boundaries and refine the interpretation of construction activities. 
Additionally, leveraging higher-resolution satellite imagery will 
facilitate the detection of smaller construction sites, allowing for 
a more detailed examination of urban growth trajectories and 
construction progress. This will significantly benefit rapidly 
developing areas like New Cairo City and the New Capital, 
providing deeper insights into urban dynamics and development 
patterns. 
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