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ABSTRACT:

Posidonia oceanica meadows are a species of seagrass highly dependent on rocks for their survival and conservation. In recent
years, there has been a concerning global decline in this species, emphasizing the critical need for efficient monitoring and assess-
ment tools. While deep learning-based semantic segmentation and visual automated monitoring systems have shown promise in a
variety of applications, their performance in underwater environments remains challenging due to complex water conditions and
limited datasets. This paper introduces a framework that combines machine learning and computer vision techniques to enable
an autonomous underwater vehicle (AUV) to inspect the boundaries of Posidonia oceanica meadows autonomously. The frame-
work incorporates an image segmentation module using an existing Mask R-CNN model and a strategy for Posidonia oceanica
meadow boundary tracking. Furthermore, a new class dedicated to rocks is introduced to enhance the existing model, aiming to
contribute to a comprehensive monitoring approach and provide a deeper understanding of the intricate interactions between the
meadow and its surrounding environment. The image segmentation model is validated using real underwater images, while the
overall inspection framework is evaluated in a realistic simulation environment, replicating actual monitoring scenarios with real
underwater images. The results demonstrate that the proposed framework enables the AUV to autonomously accomplish the main
tasks of underwater inspection and segmentation of rocks. Consequently, this work holds significant potential for the conservation
and protection of marine environments, providing valuable insights into the status of Posidonia oceanica meadows and supporting
targeted preservation efforts

1. INTRODUCTION

In recent years, significant advancements have been made in
the field of Autonomous Underwater Vehicles (AUVs). These
technological improvements have expanded visual data collec-
tion capabilities, enabling researchers and experts to access lar-
ger and more challenging underwater environments and obtain
real images. The enhanced capabilities of AUVs have revo-
lutionized the way underwater exploration and data collection
are conducted. These vehicles have advanced imaging systems
and sensors that can capture high-resolution images and collect
valuable data from previously inaccessible underwater environ-
ments. By navigating through diverse and challenging terrains,
AUVs provide researchers with a unique opportunity to explore
and document underwater ecosystems in unprecedented detail
(Williams, 2012).

The advancements in visual data collection have significant im-
plications for various fields of study. Environmental researchers
can monitor and analyze changes in underwater environments,
gaining valuable insights into the intricate and hidden world
of the seabed with improved accuracy and efficiency (Martin-
Abadal et al., 2018a). Additionally, these advancements con-
tribute to a better understanding of underwater ecosystems.
They enhance efficiency in research and conservation efforts
by providing a valuable understanding of the distribution and
behaviour of marine species, such as Posidonia oceanica, and
the overall health of the marine ecosystem. Furthermore, this
technology supports the sustainable management of our marine
ecosystem by aiding in effective decision-making and conser-
vation strategies.

Regrettably, reports indicate that the total area of meadows has
decreased by 34% over the past 50 years. This indicates that
the decline is a widespread issue primarily caused by the cumu-
lative impacts of various local stressors (Telesca et al., 2015).
The findings emphasise the significance of conducting surveys
to evaluate the current condition and prioritise areas for imple-
menting effective strategies to reduce threats. These measures
aim to reverse the current trends and ensure the long-term sur-
vival of Posidonia oceanica across the Mediterranean region
(Barcelona et al., 2021)(Serra et al., 2020). Given its ecological
importance, it is necessary to comprehend and conserve it and
its habitat. Understanding and preserving this seagrass species
has a huge weight in maintaining healthy coastal ecosystems
and preserving biodiversity.

Recently, (Ruscio et al., 2023) explored the use of the Mask R-
CNN model for segmenting Posidonia meadows, demonstrat-
ing its effectiveness in segmentation tasks. Furthermore, im-
age segmentation enabled an Autonomous Underwater Vehicle
(AUV) to implement a tracking strategy that generated guid-
ance references for tracking the contours of seagrass, serving as
a valuable tool for marine environment conservation. Building
upon the latter research, in this paper we introduce the inspec-
tion framework to monitor and map seabeds containing Posido-
nia seagrass.

2. RELATED WORK

The segmentation and detection of Posidonia oceanica in under-
water environments have seen significant advancements, driven
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Figure 1. Girona500 detecting a dark patch on a rock site. The robot is going to dive to check if there is a presence of Posidonia
meadows. On the left side, there are the images from the robot’s camera (top), and the image with the detected dark patches (bottom).

The middle window will show the segmented Posidonia meadow is detected

by the need for accurate mapping and monitoring of this vi-
tal seagrass species. As a fundamental biological indicator, P.
oceanica meadows are very important for assessing the health
of marine ecosystems and play an essential role in conserving
coastal morphology. The composition, extent, and structure of
these meadows are influenced by various environmental factors,
including substrate type, seabed geomorphology, hydrodynam-
ics, depth, light availability, and sedimentation rates. Con-
sequently, effective monitoring of these meadows is critical for
environmental conservation efforts.

Recent advancements have introduced a variety of methodo-
logies aimed at enhancing the efficiency and accuracy of P.
oceanica monitoring, reducing the need for traditional, labour-
intensive, and potentially hazardous data collection methods in-
volving scuba divers. One approach leverages highly autonom-
ous marine robotic platforms, such as Remotely Operated
Vehicles (ROVs), equipped with multi-parametric sensors to
automatically detect and map underwater vegetation, including
this seagrass. This method, which combines acoustic data with
video imagery, enables the reconstruction of a 2.5D model of
the sea bottom, facilitating detailed environmental monitoring.
(Ferretti et al., 2017)

Another significant development involves the application of
deep neural networks for the semantic segmentation of P.
oceanica and its seafloor habitat (Martin-Abadal et al., 2019,
Martin-Abadal et al., 2018b). Utilizing the VGG16 CNN (Si-
monyan and Zisserman, 2014) for feature extraction and the
FCN8 architecture (Long et al., 2015) for generating confid-
ence maps, this method has shown high accuracy in segmenting
the seagrass meadows, demonstrating the robustness of CNNs
(LeCun et al., 2015) in underwater image analysis.

In (Gonzalez-Cid et al., 2021) CNNs are used to explore large
areas colonized by this seagrass. By creating 2D and 3D
maps and automatically quantifying the bottom coverage of P.
oceanica, this method significantly reduces costs, infrastruc-

ture needs, and safety risks compared to traditional diver-based
monitoring. It also enhances the mission scope, data qual-
ity, and processing accuracy, representing a new paradigm in
benthic marine habitat assessment. Furthermore, (Burguera,
2020) has introduced two models: Model I, a CNN, and
Model II, a simplified version without convolutional layers.
These models, combined with a region-growing algorithm, have
shown superior performance in detecting P. oceanica, particu-
larly in coastal areas of Mallorca, offering higher detection rates
and faster processing speeds than previous methods.

In (Bonin-Font et al., 2017) integration of Autonomous Un-
derwater Vehicles (AUVs) with bottom-looking cameras has
been explored to advance the seagrass monitoring. This tech-
nique involves training classifiers with Gabor filter image patch
descriptors and support vector machines (SVMs) to autonom-
ously detect P. oceanica in individual images. The process is en-
hanced by photo-mosaicking to create comprehensive coverage
maps, achieving high precision in detecting various seagrass
patterns across different environmental conditions.

In (Ruscio et al., 2021), a Smart Dive Scooter (Costanzi et
al., 2019) equipped with visual acquisition and acoustic loc-
alization systems was used. An acoustic-based geo-referencing
strategy was employed, leveraging the synchronization between
the camera’s audio track and transponder pings for acoustic po-
sitioning. The resulting diver path was refined using visual
odometry and further improved with a Rauch-Tung-Striebel
smoother. The processed data produced an image mosaic and a
qualitative distribution map of the seagrass, demonstrating the
effectiveness of this process in supporting divers during monit-
oring activities.

Finally, a photogrammetric approach has been proposed for
the rapid and reliable characterization of the seabed, with par-
ticular reference to P. oceanica coverage (Russo et al., 2023).
This methodology aims to reduce the effects of environmental
factors on underwater images, such as the bluish or greenish
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tints typical of underwater environments (Grimaldi et al., 2023).
By applying two different algorithms to restore the images,
the resulting 3D point cloud allowed for better categorization
of the surveyed area compared to traditional image processing
techniques. This enhanced workflow provides a more effect-
ive means of monitoring and mapping P. oceanica meadows,
contributing to a deeper understanding of the seagrass’s spatial
distribution and health.

3. DATASETS

A diverse dataset is essential for accurately classifying un-
derwater species and optimizing deep-learning models for un-
derwater object recognition. It ensures that the deep-learning
model recognizes a wide variety of distinct features and ap-
pearances, improving its capacity to detect and classify ob-
jects accurately. Additionally, the model becomes more resili-
ent to changes in appearance, lighting, and other environmental
factors, enabling it to perform effectively in different underwa-
ter settings and adapt to the challenges posed by the complexity
and dynamic nature of the marine environment. For this reason,
the dataset was acquired at distinct locations and altitudes above
the seafloor, using different cameras and under varying envir-
onmental conditions, such as visibility and illumination. Of the
dataset previously obtained, 86% primarily consisted of images
of Posidonia oceanica and debris from (Ruscio et al., 2023).
These images were captured using a waterproof GoPro Hero 2
Action Cam (1920x1080 pixels) mounted on an AUV at various
altitudes along the coast of the Croatian island of Murter. Addi-
tionally, during the monitoring of meadows in the coastal region
of Rapallo, Italy, some images were taken by a diver using four
GoPro Hero 5 cameras, each with a resolution of 2704x1520
pixels, mounted on a scooter. Others were recorded using the
bottom-looking camera (640x505 pixels) of the Zeno AUV. The
remaining images were captured in Costa Brava, Spain, using
the onboard camera of the Sparus II AUV, which has a resolu-
tion of 1936x1464 pixels.

The remaining 14% of the dataset is dedicated to the class
of rocks. These images, with a resolution of 3.2 megapixels,
were captured by divergent stereo cameras attached to the
Girona1000 AUV. They were collected in October 2022 along
the Catalan coast near San Feliu de Guixols, where the AUV
navigated approximately 4 to 6 meters above the seafloor.
Other images were collected in very shallow waters of up to
3 meters depth using a GoPro Hero 2 camera with a resolution
of 1920x1080 pixels. These were obtained in Palamos on the
Catalan coast and in Guadeloupe in the French Antilles in 2017.
Table 1 provides an overview of the dataset’s characteristics.

3.1 Image Enhancement

Some images posed challenges due to the distortion caused by
light reflections on the seabed and the inherent blurriness in-
duced by the water medium. Besides, the presence of rocks
covered in sand and plants resembling debris adds complexity.
These challenges have the potential to create confusion during
the model’s training process, thereby affecting the accuracy of
rock recognition.

To address these challenges, the diverse rock dataset was pre-
processed using histogram equalization and inverse gamma cor-
rection. By reducing the effect of light reflections and en-
hancing the visibility of rocks against the background, histo-
gram equalization improved the contrast of the underwater im-
ages. Inverse gamma correction was used to correct image

non-linearities, enhancing the features of rocks, and assisting
in their precise detection. The combined application of these
techniques aimed to optimize the underwater images, allowing
the model to capture important features that might have been
obscured or difficult to discern in the original images. As a res-
ult, the model can acquire more precise and robust representa-
tions of rocks despite the challenges, which facilitates accurate
model learning.

3.2 Data Labeling

The images of rocks and Posidonia oceanica were accurately
labelled using the open-source software makesense.ai. The an-
notations were saved in a JSON file, defining the precise bound-
aries of the Posidonia oceanica and rock regions within each
image. To prepare the data for Mask R-CNN, the annotations
were converted into binary masks. This mask format provides
the necessary input for Mask R-CNN to perform instance seg-
mentation accurately. Each pixel in the image was assigned a
value of 0, 1, 2, or 3, representing whether it belongs to the
background, Posidonia oceanica, debris, or rocks, respectively.

4. SEGMENTATION: ARCHITECTURE, TRAINING
AND EVALUATION

4.1 Network Training

The dataset used for the 3 classes, Posidonia oceanica, Debris,
and Rocks with a total of 6949 images, with binary mask labels
used as ground truth during training. The entire dataset was
randomly divided into three subsets: 70% training (4865 im-
ages), 20% validation (1389 images), and 10% testing (695 im-
ages). Then, the network training process followed a three-step
approach: In the first session, starting from epoch 0 and con-
tinuing until epoch 440, the training commenced by leveraging
pre-trained weights from the COCO detection dataset specific-
ally for the rock images to test the model’s capability to learn
on these images and make accurate predictions. The models
showed good prediction results on the test set. Subsequently, in
the second session, the training was repeated using pre-trained
weights from the COCO detection dataset. This time train-
ing encompassed the combined dataset, which included three
classes: Posidonia oceanica, Debris, and Rocks, also starting
from epoch 0 to 440. Unfortunately, due to dataset imbal-
ance, the model couldn’t predict the rocks in the image. The
training progressed to the third session where the weights ob-
tained from (Ruscio et al., 2023) were utilized. Lastly, the fo-
cus was on adding rocks as a new class to the existing model.
In this case, the model showed an undesirable behaviour, res-
ulting in false positives, where it incorrectly segments rocks as
debris. This misclassification occurs because of the similarit-
ies between the debris colour and the sand covering the rocks.
Table 3 shows the adopted hyper-parameters during the training
of the Mask R-CNN model while table 2 depicts the different
training sessions. In the fourth training session, we employed
the pre-trained weights from (Ruscio et al., 2023) and trained
the model exclusively on the enhanced rock images. In the fifth
training session, we tackled the network imbalance caused by
the limited number of rock images by applying geometric data
augmentation techniques such as rotation, flipping, scaling, and
zooming to the enhanced images. This process yielded a total of
10,822 training images, encompassing rocks, Posidonia ocean-
ica, and debris.
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Table 1. Characteristics of the dataset used to train the Mask R-CNN model

Location Camera Image Size (Pixels) Number of Images Classes

Island of Murter, Croatia GoPro Hero 2 Action Cam 1920×1080 4190 Posidonia, Debris

Rapallo, Italy GoPro Hero 5 2704×1520 460 Posidonia, Debris

Rapallo, Italy Basler ace 640×505 930 Posidonia, Debris

Costa Brava, Spain Teledyne Flir 1936×1464 420 Posidonia, Debris

Catalan coast Stereo cameras 3.2Mpixels 66 Rocks

Guadeloupe, French Antilles GoPro Hero 2 Action Cam 1920×1080 455 Rocks

Palamós, Catalan Coast GoPro Hero 2 Action Cam 1920×1080 455 Rocks

Table 2. Different Network Training Sessions

Training Class Name Number of Images Number of Epochs Best Epoch
Training 1 Rocks 976 0-440 256

Training 2 Posidonia, Debris, Rocks 6949 0-440 268

Training 3 Posidonia, Debris, Rocks 6949 440-600 511

Training 4 Rocks (image enhancement) 976 440-660 509

Training 5 Posidonia, Debris, Rocks (image enhancement) 10822 440-660 509

Furthermore, an additional trial of continue-training sessions
was conducted on the enhanced rock images. It exhibited in-
teresting results by classifying most of the rocks in the image
as shown in 2 d). Even though some batches displayed peaks
indicating challenging images and false positives, these images
were not trained enough to achieve high performance. Overall,
the model showed promising behaviour.

Hyper-parameter Value
Number of Classes 3+1 (background)

RPN anchor scales [32, 64, 128, 256, 512]

RPN anchor ratios [0.5, 1, 2]

Optimiser SGD (with momentum)

Momentum 0.9

Weight decay 1.e−4

Learning rate 1.e−4

Epochs 110

Batch size 2

Table 3. Hyperparameters of the Pre-trained Network

4.2 Network Evaluation

The segmentation performance of the Mask R-CNN model
was assessed by evaluating its accuracy. The evaluation used
a measure called Intersection over Union (IoU), which com-
pares the overlap between two regions. The IoU ratio, defined
in Equation (1), compares the model’s predicted mask to the
ground truth labelled mask. Higher IoU values indicate better
overlap.

IoU =
groundtruth ∩ prediction

groundtruth ∪ prediction
(1)

A mean value of 0.824 was computed from the testing im-
ages set. This result is compelling evidence for the effect-
ive performance of the suggested classification model, particu-
larly considering that the model had not previously encountered
these specific images. Figures 2 and 3 show the results of the
different training sessions.

5. INSPECTION FRAMEWORK

The inspection framework, depicted in figure 6 is composed of
three nodes which will define the behaviour of the robot.

5.1 PathPlanner Node

This node creates the inspection trajectory 5 for the robot to fol-
low during the inspection process, enabling it to navigate across
the water’s surface while ensuring comprehensive coverage of
the environment.

5.2 Dark Patch Detection Node

This node works upon the detection of a region with reduced
luminosity, indicative of a dark patch. To add some complex-
ity and try to simulate real-world conditions, the input image is
pre-processed using the Beer-Lambert law (Stavn, 1988), which
allows to further simulate backscattering and challenging visib-
ility conditions. Then the node will apply a first threshold to
eliminate the white particles of the backscattering, then the im-
age is converted in the HSV space (hue, saturation, value) and
finally a threshold on the Value channel will allow us to find
the contours of the black patches. The threshold and the Beer-
Lambert law parameter are proportional to the actual depth of
the robot. Furthermore, to eliminate the dark patch that is
created by the reflection of the robot on the seabed, the dark
patches that are in a bounding box with the centre equal to the
centre of the image are not considered. Allowing the robot to
descend towards the seabed near the target area to perform a
segmentation process. It is worth noting that the node will cre-
ate an ”alpha shape” using the points on the surface and the
point at the bottom projected to the surface, to create a map of
the “already explored areas.” This will prevent the robot from
descending twice in the same area.

5.3 MaskRCNN-boundaries Node

This node takes input images and uses the Mask R-CNN model
to perform image segmentation allowing for accurate detection,
the model will analyse the segmented data, enabling the identi-
fication of Posidonia oceanica meadows. In the case of Posido-
nia oceanica detection, the node activates a contouring proced-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-307-2025 | © Author(s) 2025. CC BY 4.0 License.

 
310



Figure 2. A comparative analysis highlighting the issues in each training session. (a) Good prediction in training session 1. (b) False
positives in training session 2. (c) The model couldn’t predict on the same image in training session 3. (d) Promising results on

enhanced images.

Figure 3. Results of the fifth training session demonstrated that rocks could be detected even when partially covered by sand or
illuminated by sunlight patterns.

Figure 4. Contour following

ure specifically tailored for these underwater meadows gener-
ating reference values for the control system. The robot depth
can be set and in our experiment was set to 5m from the seabed
which is at 15m from the sea level as shown in 4.

6. EXPERIMENT

6.1 Simulation Environment and Setup

The open-source Stonefish C++ simulation library (Cieślak,
2019),(Grimaldi et al., 2025) combined with the interface pack-
age Stonefish ros Robot Operating System (ROS) were used in
this work to validate the inspection framework. Stonefish is
specially designed for marine and surface robots. It supports
buoyancy, collision detection, geometry-based hydrodynamics,
and rigid body dynamics. To replace the actual system with a
simulated robot, it simulates all underwater sensors and actuat-
ors as well. Additionally, the library incorporates light absorp-
tion and scattering models, enabling the software to generate
authentic underwater images, and enhancing the fidelity of the
simulation. The main advantage of using Stonefish is to closely
mimic the complexity and realism of an underwater environ-
ment.

The Girona 500 AUV (Ribas et al., 2012) is used for the simula-
tion task, specifically for intervention tasks and monitoring sur-
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Figure 5. The inspection trajectory

veys. To ensure an accurate simulation of the vehicle’s physical
characteristics and forces, the simulator incorporated the geo-
metric model and material properties of its components. The
simulator also integrated the complete software architecture of
the AUV, which is based on the Robot Operating System (ROS)
ensuring integration between the proposed framework and the
actual system of the vehicle.

During the simulations, the AUV configuration consisted of five
thrusters providing control over all degrees of freedom except
for roll motion. The stability in the roll was achieved through
careful weight distribution and flotation devices. For navig-
ation, the AUV was equipped with a Doppler Velocity Log
(DVL), an Inertial Measurement Unit (IMU), and a pressure
sensor. These sensors’ measurements were fused using an Ex-
tended Kalman Filter (EKF)-based navigation algorithm to ac-
curately estimate the AUV’s motion. Additionally, the AUV
was equipped with a bottom-looking camera situated in the
lower hull to capture images of the seafloor.

A virtual environment was created to evaluate the performance
of the Mask R-CNN model, which was an extension of the work
conducted in (Ruscio et al., 2023), who developed two distinct
mosaics as part of his study. These mosaics were specifically
designed to simulate varying distributions of seagrass on the
seafloor. However, to thoroughly test the detection capabilities
of the Mask R-CNN model, the virtual environment was expan-
ded to four times its original size. Within this enlarged virtual
environment, five isolated patches were strategically placed at
distinct locations, allowing the robot to thoroughly explore and
interact with the environment. These patches were designed
to represent different scenarios: some consisted solely of rocks,
others solely of Posidonia oceanica, and some contained a com-
bination of rocks and Posidonia oceanica. By incorporating
these variations, the virtual environment aimed to closely mimic
the complexity and realism of an underwater environment.

A mission was then set creating a reference point using the soft-
ware IQUA View 1. These reference points guide the Autonom-
ous Underwater Vehicle (AUV) along the desired trajectory,
within the identified meadow. Conversely, if the model iden-
tifies the presence of rocks, the robot will ascend and continue
its trajectory toward the subsequent waypoints while adhering
to the procedure. This iterative process continues until the com-
pletion of the predefined trajectory.

1 https://iquarobotics.com/iquaview-graphical-user-interface

7. RESULTS

The experiment begins with a predefined trajectory as shown in
5, featuring a specific orientation and speed. The vehicle ini-
tiates its inspection along this trajectory, actively searching for
dark patches. Upon detecting a dark patch, it descends closer
to the seabed, enabling the model to segment these patches and
determine the presence of Posidonia meadows. Once detected,
the vehicle initiates a boundary-tracking procedure. Otherwise,
in the case of rocks, the AUV elevates and continues inspection
until the entire trajectory path has been covered.

Two outcomes were observed in the experiment. The first out-
come is that the model successfully identified dark patches as
expected, which means that the AUV can dive and arise de-
pending on what the dark patch is composed of. The second
one is that the network was not able at first to detect the rocks
and Posidonia meadows. This is because Stonefish simulates
Jerlov water types (Jerlov, 1968). These water types can be
defined either by their irradiance transmission through a given
thickness of water, or via the diffuse attenuation coefficient av-
eraged over a given depth. Each water type has its properties,
which significantly impact the image perception in the presence
of water and its interaction with light. As a result, the presence
of water and its interaction with light significantly impact the
image perception of rocks. These distinct attributes introduce
variations in the image appearance that differ from the training
data initially provided to the model. Consequently, the model
encounters difficulty in accurately detecting rocks and mead-
ows within the simulated environment. We added the images
from the simulated Stonefish environment to the model’s train-
ing dataset to solve this issue.

8. CONCLUSION

This study introduced an inspection framework that could be
used to monitor seabeds, search for areas containing Posidonia
meadows, and map them. The dark patches detector is used
to avoid areas containing only rocks and only map areas
that are meaningful to monitor. The framework integrates
an improved Mask R-CNN model with an autonomous
underwater vehicle (AUV) including a new class for rock
segmentation. A video showing the performance of the tool
can be found at this address: https://drive.google.com/

file/d/1FRyNY8swtXrbUQYesDI5HEACoHtEnHyZ/view?

usp=sharing.
This approach provides a reliable tool for continuous monitor-
ing and offers valuable insights to support conservation efforts,
ensuring the protection of Posidonia oceanica meadows for the
future.

9. ACKNOWLEDGEMENT

The Spanish government supported this work through the
SIREC “Seafloor Intelligent Robot Exploration and Classific-
ation” Project with reference: PID2020-116736RB-IOO. It has
also been partially supported by the project ”IURBI - Intelli-
gent Underwater Robot for Blue Carbon Inventorying” (Ref.
CNS2023-144688), funded by the Spanish Ministerio de Cien-
cia, Innovación y Universidades.

REFERENCES

Barcelona, A., Colomer, J., Soler, M., Gracias, N., Serra, T.,
2021. Meadow fragmentation influences Posidonia oceanica

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-307-2025 | © Author(s) 2025. CC BY 4.0 License.

 
312

https://drive.google.com/file/d/1FRyNY8swtXrbUQYesDI5HEACoHtEnHyZ/view?usp=sharing
https://drive.google.com/file/d/1FRyNY8swtXrbUQYesDI5HEACoHtEnHyZ/view?usp=sharing
https://drive.google.com/file/d/1FRyNY8swtXrbUQYesDI5HEACoHtEnHyZ/view?usp=sharing


Figure 6. Nodes composing the inspection framework
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