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Abstract

Semantic change detection (SCD) focuses on identifying changes in surface coverage while simultaneously classifying the types of
changes. This approach provides detailed information valuable for urban planning, environmental monitoring, and other applications,
making it a key area of interest in remote sensing research. Despite recent advances, existing SCD studies are hindered by the lack of
high-resolution satellite imagery datasets and insufficiently comprehensive semantic label coverage in publicly available datasets. To
address these limitations, we have developed a large-scale high-resolution remote sensing dataset consisting of 11,587 satellite image
pairs, each with 1-meter spatial resolution and a size of 512 × 512 pixels, representing land cover changes across Beijing between
2017 and 2018. This dataset encompasses diverse land surface scenes with comprehensive semantic annotations. Furthermore, it
includes full-coverage semantic segmentation labels from pre-change phases and a larger sample size of 2048 × 2048 pixels to
support future research on multi-class and large-format change detection. We benchmark eight state-of-the-art SCD algorithms using
this dataset, providing critical performance metrics that serve as valuable references for subsequent research. This dataset not only
addresses existing gaps but also establishes a robust foundation for advancing deep learning-based semantic change detection,
enabling more accurate and comprehensive analysis of complex and diverse land cover changes. More information about the project
can be found at https://github.com/17x-osborn/HRMS-SCD.

1. Introduction

Change detection involves recognizing differences in the state
of an object or phenomenon by observing it at different
periods (Cao et al., 2023). This process is of significant
importance in fields such as urban planning and
environmental protection. As a crucial branch of remote
sensing image analysis, semantic change detection extends
beyond locating the range of change, as in binary change
detection, to identifying the types of changes, making it a
focal point in current research (Tollerud et al., 2023).

In recent years, the application of deep learning in change
detection has led to significant breakthroughs in remote
sensing image analysis. Unlike traditional feature
engineering-based methods, deep learning can automatically
learn change features in images by building end-to-end
models, exhibiting strong advantages, especially in handling
complex scenes and multi-scale changes. Notably, classical
network architectures such as Fully Convolutional Networks
(Wu et al., 2023), Convolutional Neural Networks (Ding et al.,
2022; Feng et al., 2023; Guo et al., 2021; Huang et al., 2024),
and CycleGAN (Huang and Zhang, 2024; Zhang et al., 2022),
as well as more advanced models like Transformers (Chen et
al., 2021; Lin et al., 2024; Zheng et al., 2022) and
CNN–Transformer networks (Jiang et al., 2024; Li et al.,
2023a; Niu et al., 2023), have achieved remarkable results in
change detection tasks. Being data-driven methods, the
performance of deep learning models heavily depends on the
quality and scale of the datasets used. Therefore, high-quality,
diverse, and high-resolution change detection datasets are
critical for effective model development.

To evaluate the effectiveness of change detection methods
across different applications, researchers have released
datasets such as HRSCD(Daudt et al., 2019), SECOND(Yang
et al., 2020), Landsat-SCD(Yuan et al., 2022). While these
existing semantic change detection datasets in remote sensing
have significantly advanced the field, they have several
notable limitations. Most are derived from aerial imagery or
medium- to low-resolution satellite images. Although aerial
imagery provides high spatial resolution, it is costly, covers
limited areas, and is affected by atmospheric conditions and
changing illumination. Medium- to low-resolution satellite
images lack the spatial detail necessary to detect subtle or
small-scale changes. Additionally, many datasets are limited
to specific scenes, reducing their generalizability and
applicability. The absence of multi-scene datasets restricts
models' ability to generalize across diverse environments,
which is crucial for handling real-world complexities. Finally,
many datasets have sparse or incomplete label categories,
limiting studies on common land use and cover transitions
and thus constraining the research scope and understanding of
a broader range of semantic changes.

To address these shortcomings, we introduce the HRMS-SCD
dataset—a large-scale, high-resolution, multi-scene satellite
imagery dataset for semantic change detection. This dataset
consists of 11,587 image pairs with a spatial resolution of 1
meter, each sized at 512 × 512 pixels, collected over Beijing
from 2017 to 2018. The HRMS-SCD dataset exhibits several
key features. First, it covers diverse land surface types,
including seven common categories such as planted land,
forest and grass cover, and buildings, with comprehensive
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semantic annotations. Second, it provides two image sizes
(512 × 512 pixels and 2048 × 2048 pixels) to accommodate
different computational resources and task requirements. The
larger images preserve global context information, while the
smaller images offer memory efficiency, making them
suitable for routine training and rapid experimentation. Lastly,
it spans multiple geographic environments—including urban,
rural, mountainous, forest, cropland, and river
scenes—enhancing model adaptability and robustness across
complex scenarios. This dataset provides a robust foundation
for advancing semantic change detection research.

To assess the effectiveness of our proposed HRMS-SCD
dataset, we compare it against existing general semantic
change detection datasets, presenting their differences in
Table 1. In our experiments, we apply multiple baseline
detection algorithms, including seven baseline detectors on
the HRMS-SCD dataset, to thoroughly analyze their
performance, advantages, challenges, and limitations. This
comprehensive evaluation not only assesses the effectiveness
of these algorithms on the proposed dataset but also uncovers
potential directions for future research. The key contributions
of this work are as follows:

Dataset Resolution Image
count

Image size
(Pixels) Classes Data Source Regional

Distribution
HRSCD

(Daudt et al., 2019) 0.5m 291 10000×10000 5 Aerial dataset Rennes and Caen.

SECOND
(Yang et al., 2020) 0.5 m 4662 512×512 6 Aerial images Hangzhou, Chengdu,

and Shanghai.
Landsat-SCD

(Yuan et al., 2022) 30 m 8468 416×416 4 Mosaic images Tumushuke

Hi-UCD (mini)
(Tian et al., 2020) 0.1 m 1293 1024×1024 9 Aerial images Tallinn

Hi-UCD
(Tian et al., 2022) 0.1 m 40800 512×12 9 Aerial images Tallinn

xDB
(Gupta et al., 2019) <0.8 m 11034 1024×1024 4 Globe Open Data Global

HRMS-SCD
（Ours） 1 m 11587 512×512/

2048×2048 7 Mosaic images Beijing

Table 1. Comparison of different SCD datasets

(1) High-Resolution Satellite Imagery: The dataset is
derived from high-resolution satellite remote sensing images,
providing clearer and more detailed surface information
compared to aerial images or low- and medium-resolution
satellite images. This enables models to learn finer surface
features and effectively supports the improvement of deep
learning models' detection performance.
(2) Comprehensive Semantic Labels: The dataset includes
semantic labels of seven common features—such as planted
land, forest and grass cover, and buildings—offering a unique
advantage in change type diversity. The full-coverage
semantic labels effectively address the category imbalance
problem, enhance the model's generalization ability during
training, and improve the classification accuracy in change
detection.
(3) Multi-Scene Coverage: Our dataset encompasses
different types of geographic environments, including
mountains, forests, croplands, grasslands, and rivers. This
compensates for the lack of complex scenario coverage in
existing datasets, helping models cope with more intricate
environmental changes and improving adaptability and
robustness in multiple scenarios.
(4) Flexible Image Sizes: To meet different computational
resources and task requirements, the dataset provides two
image sizes: 512 × 512 pixels and 2048 × 2048 pixels. The
larger images better retain global context information, while
the smaller images have advantages in memory consumption
and computational efficiency, making them suitable for
routine training tasks and quick experiments.

2. Related Work

2.1. Semantic Change Detection Dataset

In recent years, several datasets have significantly advanced
research in semantic change detection within the field of

remote sensing. Each dataset offers unique features; however,
they also present certain limitations that impact their
applicability across various scenarios. Below is an overview
of some key semantic change detection datasets:

HRSCD (Daudt et al., 2019) is one of the earliest semantic
change detection datasets, composed of high-resolution aerial
imagery with annotated surface types. It is particularly useful
for monitoring urban and agricultural land use changes.
Nevertheless, the labels are derived from Urban Atlas vector
maps, which are not always precisely aligned with the
imagery, potentially leading to classification errors.

SECOND (Yang et al., 2020) provides 4,662 pairs of
annotated aerial images covering six surface categories in
cities such as Hangzhou, Chengdu, and Shanghai. While it is
well-annotated, the limited number of categories may not
meet the needs of more complex change detection tasks.
Additionally, the reliance on aerial imagery can affect data
consistency due to acquisition constraints.

Landsat-SCD (Yuan et al., 2022) is a multi-temporal dataset
built on Landsat satellite imagery, offering long-term land
cover change data with high temporal resolution. However, its
relatively low spatial resolution of 30 meters limits its
applicability for detecting fine-scale changes.

Hi-UCD (mini) (Tian et al., 2020) is an ultra-high-resolution
urban change detection dataset with a spatial resolution of 0.1
meters, providing detailed semantic labels for urban features.
However, the increased resolution introduces challenges such
as shadows and occlusions, which can affect change detection
accuracy.

Hi-UCD (Tian et al., 2022) expands upon the Hi-UCD (mini)
dataset, covering 102 square kilometers in Tallinn with
40,800 image pairs, supporting multi-temporal semantic

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-323-2025 | © Author(s) 2025. CC BY 4.0 License.

 
324



segmentation and change detection. Despite its
comprehensive coverage, certain fine-grained changes—such
as farmland transitioning to grassland—may not be
effectively captured, affecting its utility in specific scenarios.

xBD (Gupta et al., 2019) is a large-scale dataset focused on
post-disaster building damage assessment, providing pre- and
post-disaster imagery with annotations for building damage
levels. While valuable for disaster-related change detection,
its narrow focus limits its application to other types of change
detection tasks.

While these existing datasets each contribute significantly to
the field, they also exhibit limitations: aerial imagery is costly,
offers limited coverage, and is susceptible to weather
conditions; low- and medium-resolution satellite images
struggle to capture subtle changes; and datasets limited to
single scenes with fewer label classifications constrain the
model's generalization ability. To address these issues, the
new dataset proposed in this paper utilizes high-resolution
satellite images rich in detailed information, covers multiple
scenes, and provides a more comprehensive label
categorization. This facilitates in-depth study of multiple
change types and promotes the advancement of semantic
change detection research.

2.2. Semantic Change Detection Algorithm

In recent years, the application of deep learning to remote
sensing image change detection has made remarkable
progress. Early models predominantly relied on
Convolutional Neural Networks (CNNs), which excelled in
computer vision tasks and were thus widely adopted in
semantic change detection. For example, the High-Resolution
Semantic Change Detection (HRSCD) algorithm is primarily
based on deep learning and CNNs(Ding et al., 2022). This
algorithm approaches the problem of semantic change
detection as two interrelated tasks: binary change detection
and classification of change types.

To achieve this, HRSCD proposed four distinct
strategies(Cheng et al., 2024). First, it involves directly
comparing land cover maps by training a land cover mapping
network and comparing the predicted labels; however, the
accuracy of this approach depends on the quality of the land
cover maps. Second, it treats changes as independent labels
and performs direct semantic change detection. Although
intuitive, this method results in the number of categories
growing quadratically with the number of land cover
categories, leading to class imbalance issues. Third, it trains
two separate networks: one for binary change detection and
another for land cover mapping, which simplifies category
prediction and optimizes performance. Fourth, it integrates
these two networks into a multi-task network that utilizes land
cover information for change detection. By inputting two
co-registered images and outputting three maps, this approach
enables information sharing and improves detection accuracy.

Among these methods, multi-task semantic change detection
networks demonstrate greater potential and have become a
focal point of research. Building on this foundation, the
Asymmetric Siamese Network (ASN) (Yang et al., 2020)
introduced a novel architecture to capture asymmetric
changes between different time periods. It employs an
asynchronous spatial pyramid to reduce computation while
focusing on varying spatial regions and integrates features
through deep connections to enhance change detection. To

address some limitations of prior methods, SSCD-l extends
previous work by using two separate CNN encoders to extract
temporal semantic features and merging them through a deep
change detection unit, optimizing for changes over time.
Expanding on the concept of temporal correlation, Bi-SRNet
adds semantic reasoning modules to capture temporal
correlations and introduces semantic consistency loss to
enhance accuracy in unchanged regions (Ding et al., 2022).
The latest CdSC network (Wang et al., 2024a) enhances the
modeling of complex changes by exploring the interaction of
features across time.

Recently, Vision Transformers (ViTs), known for modeling
long-range dependencies with self-attention, have gained
popularity in computer vision and have demonstrated superior
performance in remote sensing image change detection
(Dubey and Singh, 2024). ChangeMask (Zheng et al., 2022)
decouples Semantic Change Detection (SCD) into temporal
segmentation and binary change detection tasks, leveraging
semantic causality and temporal symmetry to improve
detection efficiency and accuracy. Extending this approach,
MTSCD-Net adopts a multi-task learning framework with
Swin Transformer-based multi-scale feature extraction and a
feature aggregation module to integrate low- and high-level
features (Cui and Jiang, 2023), effectively balancing task
correlation and model performance. Moreover, SCanNet
(Ding et al., 2024) considers spatio-temporal dependencies to
improve the accuracy of SCD and significantly outperforms
baseline methods in detecting critical semantic changes and
maintaining semantic consistency in the obtained bitemporal
results. CTST (Wang et al., 2024b) designs a unique
feature-integrated encoding model combining CNN and
Transformer architectures, which enhances the model's
understanding of global dependencies and improves the
extraction of local features, outperforming mainstream and
state-of-the-art methods on three datasets

Through these innovative methods, semantic change detection
is advancing toward higher accuracy and robustness. However,
the success of deep learning algorithms relies not only on
model design but also on the availability of large-scale,
high-quality annotated datasets. Such datasets enhance model
adaptability to diverse and complex scenarios and improve the
ability to capture subtle changes. Therefore, constructing
diverse, high-quality datasets is essential for advancing deep
learning in change detection. High-quality datasets are not
only catalysts for technological breakthroughs but also the
foundation for achieving precise and reliable change
detection.

3. Design of the Dataset

Originating from land cover surveys in China, the dataset has
been collected and quality-checked multiple times by
experienced remote sensing teams, ensuring high data
accuracy and reliability. This dataset is designed for both
research purposes and practical land use monitoring and
management.

3.1. Basic Image Information

The dataset consists of 11,587 images with a size of 512 ×
512 pixels and a resolution of 1 meter, which were acquired
via the Resource 1, Resource 2, and Beijing 2 satellites, and
cover the whole land category changes in Beijing during
2017-2018. In addition, the dataset includes large-size images
of 2048 × 2048 pixels, which helps to improve the accuracy
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and finesse of change detection.In order to visualize the image
changes more, we provide the change legend in Figure 1.

Figure 1. Anterior and posterior time-image changes legend.

3.2. Full Coverage Labeling

In this paper, reference is made to the Content and Indicators
of China Geographic National Information Census and other
related documents to ensure that the labeling system of the
dataset is scientific and reasonable. In order to simplify the
classification system and meet the practical application
requirements, this paper combines cropland and plantation
into “Planting land”, reflecting the land use type of
agricultural and horticultural production. Meanwhile, forest
land and grassland, which have similar ecological functions,
are combined into “forest and grass cover” to simplify the
categorization while maintaining an accurate reflection of the
natural environment. In the end, the feature classification
system consists of seven categories: planting land, forest and
grass cover, buildings, railway and roads, structures, artificial
excavation, and waters. The classification provides
comprehensive coverage of both urban and natural surfaces to
support change detection and land use analysis, and detailed
definitions and illustrations of each category are presented in
Table 2.

Types Examples color Image Examples

Planting land Paddy fields, dry land, orchards, tea gardens , etc.
Light Yellow

Forest and grass cover Grassland, tree forest, shrub forest, bamboo forest,
green forest land, etc.

Grass Green

Buildings Multi story building area, low rise building area,
abandoned building area, etc.

Brick Red

Railway and Road Track road surface, trackless road surface, etc.
Light Gray

Structures Hardened surface, hydraulic facilities, city walls,
greenhouses, greenhouses, solidification pools, etc.

Lavender

Artificial excavation Open pit mining sites, stacking materials, construction
sites, etc.

Light Pink

Water Water surface, water channels, glaciers, and perennial
snow accumulation, etc.

Sky Blue

Table 2. Labeling Categories and Legends

3.3. Multi-scene Variations

The dataset covers various typical landscape scenarios,
including urban areas, rural areas, mountains, forests,
croplands, grasslands, rivers, and lakes, as shown in Figure 2.
Including urban and rural areas enhances the model's ability
to capture human activity, while mountains and forests
improve its recognition of changes in natural ecosystems.
Farmland and grassland scenarios relate to agricultural
production, helping monitor crop growth and land use
changes. Changes in rivers and lakes provide key information
for waterbody monitoring, enhancing the model's robustness
and broad applicability in change detection. This diverse

combination of scenarios improves the model's performance
and accuracy across various geographical environments, both
natural and man-made.
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Figure 2. Different scene examples in the dataset.

3.4. Double-sized Image

For large or longer objects, their geometric features and
semantic correlations cannot be well rendered in a local
window, so contextual information should be modeled over a
larger image scale(Ding et al., 2021). GLNet (Chen et al.,
2019) significantly improves segmentation by processing the
whole image and local pixel blocks at the same time.
MFVNet(Li et al., 2023b) is proposed, with pyramid sampling
and scale alignment, solves the multi-scale information fusion
problem and achieves leading performance on multiple
datasets.

Therefore, this paper also proposes a large-size image of 2048
× 2048 pixels to preserve both global and local information
to achieve more accurate semantic segmentation results when
dealing with complex geographic scenes.

3.5. Statistical Characterization

We analyzed Table 3 and Figure 3 for changes in surface
cover in the before and after time phases, and the results show
that planted land decreased from 1.85% to 0.98%, buildings
decreased from 2.98% to 0.40%, and manual excavation
increased from 1.01% to 4.79%. The decrease in cultivated
land and the decline in buildings are associated with urban
development and the renovation of old urban areas, while the
increase in manual excavation indicates the intensification of
regional infrastructure development. These changes have not
only affected land-use patterns, but have also had a profound
impact on the ecosystem and regional economic development.

Label T1 T2

Planting land 1.85% 0.98%

Forest and grass cover 3.00% 3.26%

Buildings 2.98% 0.40%

Railway/Road 0.24% 0.27%

Structures 2.11% 1.38%

Artificial excavation 1.01% 4.79%

Water 0.11% 0.21%
Table 3. Proportion of different land cover types.

Figure 3.The number of pixels of different types by region.

4. Evaluation Results

4.1. Baseline Algorithms

To evaluate the performance of the dataset, we selected eight
algorithms that perform well in semantic change detection
tasks for comparison. These include HRSCD-str4, which
takes into account temporal correlation through differential
hopping connections; SSESN(Zhao et al., 2022), which
utilizes spatial and semantic feature aggregation modules to
improve accuracy; SSCD-l, which extracts bitemporal image
features; Bi-SRNet, which introduces semantic inference
blocks and consistency loss; MTSCD-Net, which combines
multiscale features with spatial enhancement module;
SCanNet(Ding et al., 2024), modeling semantic changes using
(CSWin)Transformer; CdSC, exploring feature interactions in
conjunction with 3D convolution; and DEFO-MTLSCD(Li et
al., 2024), boosting performance with dual- and triple-branch
decoder architectures.

4.2. Experiment Details

The experiments were run on a desktop workstation equipped
with an NVIDIA GeForce RTX 3090 GPU with 24G of
memory, and all programs were implemented based on the
PyTorch platform. The input image size was 512 × 512 pixels,
and the training set was normalized and data-enhanced with
random Gaussian noise, random flipping and rotation. The
batch size is 4 and the model is trained for 50 epochs.
HRSCD-str4, SSESN, SSCD-l, Bi-SRNet, SCanNet, and
DEFO-MTLSCD use the SGD optimizer with an initial
learning rate of 0.1; MTSCD-Net is learned at a rate of
0.00015 using AdamW(Loshchilov and Hutter,
2017)optimization and warm-up strategy; CdSC also uses
AdamW with a learning rate of 1e-4 and linear decay.

4.3. Evaluation Metrics

In this paper, we use four widely adopted evaluation metrics
to assess the accuracy of the semantic change detection task,
including Overall Accuracy (OA), Mean Intersection and
Union Ratio (mIoU), Separate Kappa Coefficients SeK(Yang
et al., 2020), and F_scd scores(Ding et al., 2022). The
confusion matrix � = ��,� is computed from the prediction
results and the truth labels, where ��,� denotes the number of
pixels that are categorized as class �while the truth category
is�(�, � ∈ {0, 1, . . . , �}) (0 means no change) in the number of
pixels. OA denotes the percentage of pixels with correct
category prediction to the total pixels of the image and is
calculated as shown below:
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In the SCD task the unchanged class occupies the majority,
there is a class imbalance problem, and the recognition
accuracy of semantic categories cannot be accurately assessed
by OA alone, so mIoU and ��� are introduced to assess the
performance of the two subtasks of CD and SS, respectively.
Where mIoU is the average of the invariant region IoU1 and
the changing region IoU2 , and the calculation formula is
shown below:
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mIoU = IoU1 + IoU2 /2 (4)
Pixels with zero category truth value and zero prediction will
be ignored in the ���calculation, and only the categories in
the changing region will be considered to evaluate the
classification performance, thus mitigating the effect of label
imbalance.The ��� index is defined as follows:
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��� = ����1−1 ∗ � − � / 1 − � (7)

In addition, the ���� metric was used to focus on assessing
the precision of land cover classification within the change
area, which is based on the same principle as the F1 score,
and was calculated by the precision ���� and the recall ����
labeled as change area:
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With the help of the above four evaluation metrics, this paper
is able to provide a comprehensive and detailed evaluation of
the performance of the semantic change detection task, thus
providing insight into the performance of the proposed dataset
in various aspects.

4.4. Results and Analysis

4.4.1. Analysis of quantitative results
Table 4 demonstrates that the CdSC and MTSCD methods
outperform others, achieving Fscd metrics of 44.22% and
46.85%, respectively—over 8% higher than the competing
methods. The superiority of CdSC stems from its innovative
use of three-dimensional convolution, which explores
interactions between inter-temporal features and intrinsic
depth differences. This approach enables more effective
modeling of complex topography and varied changes in
bi-temporal remote sensing imagery, resulting in the highest
scores in the OA metrics. MTSCD, on the other hand,
combines the spatial attention weight map of the change
detection task with the location priori information from the
semantic segmentation task. By fully exploiting the
correlation between these two subtasks, it effectively
addresses the class imbalance problem in the dataset,
demonstrating excellent performance across all three metrics:
mIoU, SeK, and Fscd. Conversely, the traditional deep
learning method HRSCD4 performs poorly due to its
underutilization of semantic information and limited
connections between subtasks, making it ill-equipped to
handle diverse semantic changes.

Overall, the detection accuracies of existing algorithms on the
new dataset range from 18% to 46%, indicating significant
room for optimization. Future research on feature extraction
and inter-subtask linkage needs to address the challenges
posed by large-scale scenes and diverse types of semantic
changes.

Methods OA(%) mIoU(%) SeK(%) Fscd(%)
HRSCD4 80.14 51.98 -4.93 18.46
SSESN 82.85 55.34 4.46 35.48
SSCD-l 81.19 55.61 2.29 35.96
Bi-SRNet 81.87 56.37 2.78 36.13
SCanNet 80.21 54.62 0.70 33.79

DEFO-MTLSCD 81.98 56.64 2.14 34.73
CdSC 84.29 59.80 8.75 44.22
MTSCD 83.65 60.57 9.43 46.85
Table 4. Results of change detection in the dataset

To provide a detailed comparison, we evaluated the F1 scores
of each SCD model across different semantic change
categories within the change region. As shown in Table 5,
change detection for forest and grass cover, house structures,
and man-made heaps and diggings performed stably,
achieving more than 60% accuracy—likely due to the large
number of samples. In contrast, detection of planted land and
structures varied more, leading to misclassifications caused by
similar geometry and texture. Railroad roads were poorly
detected, possibly because of the low number of tags. Despite
the small number of samples, water bodies maintained high
detection accuracy for SSESN, CdSC, and MTSCD due to
their unique characteristics.
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Methods F1-Score(%)
Planting
land

Forest and
grass cover Building Railway

and Road Structures Artificial
excavation Water Change

HRSCD4
(Caye Daudt et al., 2019) 25.48 45.59 63.32 0.00 22.14 49.48 0.00 40.32

SSESN
(Zhao et al., 2022) 52.70 64.77 90.73 33.60 54.65 87.68 75.82 45.12

SSCD-l
(Ding et al., 2022) 46.66 64.52 86.90 15.20 51.75 84.01 29.28 48.31

Bi-SRNet
(Ding et al., 2022) 53.03 62.32 87.99 21.00 46.45 83.26 17.95 49.17

SCanNet
(Ding et al., 2024) 37.97 60.16 86.83 21.73 39.83 82.98 23.65 47.26

DEFO-MTLSCD
(Li et al., 2024) 38.70 58.14 86.70 12.78 48.04 80.82 19.66 49.71

CdSC
(Wang et al., 2024) 77.10 74.63 90.15 34.50 66.41 89.09 81.91 53.91

MTSCD
(Cui and Jiang, 2023) 77.43 78.11 91.23 27.18 69.58 89.89 78.96 56.56

Table 5. Performance of the SCD model for each change type on the dataset.

Combining the results from Table 4 and Table 5, we observe
that this dataset exhibits rich and complex change patterns,
underscoring the potential of semantic change detection
algorithms in complex scene understanding. Although some
algorithms perform well in specific categories, existing
techniques still have limitations in multi-scale feature
extraction, global modeling, and dual-task correlation, and do
not fully utilize the category feature information of the dataset.
Future research should focus on developing finer local-global
modeling architectures and tighter dual-task complementary
strategies, as well as enhancing category distinguishability
through full-coverage semantic labeling to address class
imbalance.

4.4.2. Analysis of qualitative results
To qualitatively assess the experimental results, we analyzed
randomly selected samples presented in Figure 4. In

examining the outcomes of groups a and d, we found that
existing algorithms more accurately recognized changes
between manually excavated land and house structures. This
heightened accuracy is likely due to the distinct characteristics
and significant morphological differences of these objects.
However, the algorithms' accuracy decreased markedly when
detecting changes between forest and grass cover or between
planted land and structures. In groups c and d, some
algorithms struggled to recognize these changes or
misclassified the categories, mainly because of the ambiguous
feature differences and visual similarities among these types
in the images. The algorithms exhibited significant limitations
in handling subtle variations between complex surface types,
underscoring the challenge of processing complex and diverse
scenes. Future work should focus on developing more robust
models and refining algorithm designs to enhance the
accuracy and robustness of change detection.

Figure 4. Comparison of label prediction results using different SCD algorithms
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5. Conclusion

In this study, we introduce the HRMS-SCD dataset—a
high-resolution, multi-scene satellite imagery dataset designed
for comprehensive land-cover SCD to advance remote
sensing research. HRMS-SCD comprises 11,587 pairs of
images with a 1-meter spatial resolution, capturing land-cover
changes in Beijing between 2017 and 2018. The dataset
stands out due to its coverage of diverse land surface types
and the inclusion of detailed semantic annotations, making it
suitable for identifying and classifying changes across various
scenes. Additionally, it offers two image sizes—512×512
pixels and larger 2048×2048 pixels—allowing researchers to
study both fine details and broader contexts. Furthermore, the
dataset facilitates benchmarking of SCD algorithms,
providing a valuable resource for advancing deep learning
models in the analysis of complex and dynamic land-cover
changes. Experimental results demonstrate that while current
methods perform well for certain change types, they face
limitations when detecting subtle changes and handling
diverse scenarios. This underscores the potential for further
research into more refined local-global modeling architectures,
improved dual-task integration, and enhanced semantic
labeling to address class imbalance and improve robustness in
detecting subtle changes.
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