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Abstract 

 

Current climate change is largely due to the continuing increase in the anthropogenic greenhouse effect, with major environmental 

repercussions, especially in agriculture. The increase of global warming, salinity of water resources and frequency of extreme 

weather events has devastating consequences on the primary sector, in particular on the photosynthetic activity of crops and, 

therefore, their agricultural yield. The current climate crisis, in fact, leads to an increase in water requirements, the proliferation of 

weeds, and the depletion of nutrients in the soil, necessitating the massive use of fertilisers, herbicides and pesticides, which, in turn, 

trigger substantial alterations in ecosystem balances. In response to these critical issues, precision agriculture (PA) constitutes a data-

driven approach based on the interpretation of multispectral and thermal datasets obtained by different remote sensing techniques 

and the use of latest-generation sensors to recognise the state of health of crops and, therefore, optimise agricultural production with 

a more rational and sustainable management of resources. 

This paper presents the results of a survey campaign carried out in October 2023 on two citrus fields located in south-eastern Sicily 

(Italy)  to highlight the health status of crops just before the harvesting period. By using multispectral and thermal sensors installed 

on a drone, different vegetation indices have been calculated to identify, in each field, the areas with the highest photosynthetic 

activity and the zones characterised by a lack of water or other nutrients, on which targeted agronomic interventions should be 

planned as a priority 

 

1. Climate change and agriculture 

The steady rise in temperatures over the past 150 years is 

causing growing concern about the problems it causes globally, 

from imbalances in environmental ecosystems to human and 

social repercussions. While life itself on the planet is guaranteed 

by the presence of greenhouse gases in the atmosphere (CO2, 

methane, but also water vapour) that retain part of the sun's rays 

reflected from the earth's surface, ensuring an average 

temperature of around +15 °C, the addition of the 

anthropogenic greenhouse effect causes an excessive rise in the 

amount of heat present on earth. According to the 

Intergovernmental Panel on Climate Change (IPCC), in fact, the 

earth's average temperature has increased by 0.98° Celsius 

compared to pre-industrial levels, and forecasts show that, if no 

action is taken, this value could increase by a further +1.5° in 

the next twenty years. The impacts of this warming are widely 

known, such as: the reduction of Arctic sea ice with consequent 

rise in sea levels (salinity of water resources), an increase in the 

frequency of extreme weather events such as cyclones, floods, 

acid rain, but also heat waves and periods of drought, which 

have direct consequences on both agricultural productivity and 

the very health of the population.  

With regard to the primary sector, which is essential for the very 

existence of humanity, the effects of the current climate crisis 

are multiple and affect both crop productivity and the 

sustainability of agricultural practices. Increased temperatures, 

as is well known, tend to cause water stress in species that are 

less resistant to heat waves, reducing the photosynthetic activity 

of the plant and, therefore, its agricultural yield. On the other 

hand, the difficulty of forecasting models to anticipate 

extraordinary weather events, such as long periods of drought 

followed by intense rainfall, does not help neither to efficiently 

manage water resources nor to prevent flooding, siphoning 

phenomena in fields and related problems of root system failure. 

All this also facilitates the proliferation of pests and diseases 

that compromise the health of crops and require pesticides and 

herbicides to eradicate them.  

In the light of these reflections, considering also the population 

increase beyond 9.7 billion by 2050, as estimated by analyses 

conducted by the United Nations, it is clear that agriculture 

plays a crucial role in combating the climate crisis, especially in 

terms of production yield, to continue to meet the food needs of 

all humanity in the near future. In particular, considering the 

already limited availability of water resources in agriculture, for 

the foreseeable future it becomes absolutely necessary to make 

the use of water more efficient with sophisticated irrigation 

scheduling strategies that take into account the actual water 

stress conditions of crops.  

In response to the ongoing climate crisis, for several decades 

now, many studies have been concerned with the intrinsic 

relationships between climatic-environmental parameters and 

productive green (Chen et al., 2021; Khikmah et al., 2024) 

developing a significant paradigm shift in the management of 

the agricultural sector: the so-called Precision Agriculture (PA), 

or Precision Farming (Zhang et al., 2023). It is a data-driven 

approach strongly oriented towards the optimisation of 

agricultural production and an increasingly rational and 

sustainable management of resources through the 

multidisciplinary integration of information datasets from 

various sectors (geomatics, agronomy, engineering, computer 

science, etc..) brought together through the use of different 

remote sensing techniques (from satellite or Unmanned Aerial 

Platform-UAV), the use of the latest generation of sensors (such 

as multi/hyper-spectral optics and high-resolution thermal 

cameras), geographic information systems (GIS) and global 

positioning systems (GPS), and the application of artificial 

intelligence algorithms (Say et al, 2018; Tantalaki et al., 2019; 

Weiss et al, 2020; Niyonzima,2024).  

Although lagging behind the international context, in the last 

five years even the Italian primary sector has become 

increasingly interested in the principles of PA, recognized and 

regulated by Ministerial Decree 33671 of 22/12/17: it is in this 

perspective that the here presented work fits in, which concerns 

the results obtained from a survey campaign carried out in 

October 2023 on two citrus fields located in south-eastern Sicily 
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(Italy) using multispectral and thermal sensors installed on a 

drone.These surveys are part of a broader multi-year monitoring 

activity of several orchards belonging to the historical farm 'F.lli 

Solarino', which, for some years now, has been optimising its 

business management processes by implementing the PA to 

increase the quality of its production of organic oranges, lemons 

and grapefruits and to face the increasingly stringent market 

challenges.  

 

2. Precision agriculture and vegetation indices 

Remote sensing techniques applied to the primary sector are 

based on the measurement of the spectral reflectance of crops, 

also called albedo and understood as the ratio of the amount of 

energy reflected by the leaf surface to the incident energy. The 

interaction with the chemical composition and physical 

structure of the invested surfaces, in fact, alters the percentage 

of reflected solar radiation in the different ranges of the 

electromagnetic spectrum (Sishodia et al., 2020; Sansare et al., 

2020), transforming it into an identification signature, called a 

spectral signature, capable of distinguishing one reflecting body 

from another. The acquisition of the spectral signatures of 

crops, supplemented by an in-depth knowledge of the 

vegetation species, the age of the plant, the chemical 

composition of the soil and the climatic parameters (rainfall 

rate, temperature trends), represents, therefore, the essential data 

for recognising their state of health, i.e. the presence of good 

photosynthetic activity (high concentration of chlorophyll), 

correct water content at leaf level and nutrient content at global 

level (Gavrilovskaya et al., 2021). 

After acquisition, in fact, the multispectral datasets are analysed 

and interpreted through the calculation of the so-called 

vegetation indices, i.e. some mathematical formulas applied to 

the pixel values of the remote sensing multispectral images, 

which are useful to assess crop vigour, biomass density and, 

more generally, ecosystem dynamics (D'Urso et al., 2018; 

D'Urso et al., 2024). These numerical indicators combine the 

values of reflected radiation in different ways according to 

certain wavelengths in specific bands of the electromagnetic 

spectrum: for photosynthesis activity, for example, the 

chlorophyll present in a healthy leaf absorbs more red radiation 

while the chloroplasts in the cell walls of the parenchyma retain 

ultraviolet and blue radiation; on the other hand, the green and 

near-infrared (NIR) bands are almost entirely reflected. It is 

clear, therefore, that reflected energy values in the red and near-

infrared ranges, measured using high-resolution multispectral 

cameras and thermal sensors mounted on Unmanned Aerial 

Vehicles (UAVs), underlie the calculation of most vegetation 

indices (Sansare et al., 2020; Buitink et al., 2020; Del Castillo 

et al., 2018). 

Among these, the most widely used indicator in PA remote 

sensing applications is undoubtedly the normalised differential 

vegetation index (NDVI), which, as Table 1 shows, measures 

reflectance values in the red and near-infrared regions to obtain 

useful information about the growth level of the crop and its 

vigour. NDVI values close to 1 indicate healthy green growth, 

while negative values (-1 min value) identify the absence of 

photosynthetic activity, and thus identify non-vegetation 

surfaces such as urban areas, water or ice. Despite being widely 

used and easily interpreted, the NDVI is significantly affected 

by some external environmental factors, such as the effects of 

soil brightness, atmosphere, clouds and shadows cast by 

canopies. In addition, this indicator tends not to be fully reliable 

in presence of high-density vegetation, as it misinterprets high 

biomass concentration as very healthy vegetation. To overcome 

these criticalities, the NDVI analysis can be supplemented with 

the calculation of other vegetation indices, always normalised 

with values between -1 and 1, some of which are shown in 

Table 1. The Modified soil adjusted vegetation index 2 

(MSAVI2), for example, minimises the backscattering radiation 

reflected from the ground: for this reason, it is particularly 

suitable for studying arid or semi-arid contexts in which 

vegetation is sparse or limited (D'Urso et al., 2023). On the 

other hand, the Green Normalised Difference Vegetation Index 

(GNDVI), by replacing the red band with the green band, 

significantly increases the sensitivity to the presence of 

chlorophyll and reduces interference due to the soil, thus 

becoming particularly effective for analyses of contexts with 

low and diffuse vegetation (Mediterranean scrubland). 

 

Index Definition/Equation 

Normalized difference 

vegetation index – NDVI 
 

Green normalized 

difference vegetation 

index – GNDVI  

Modified soil adjusted 

vegetation index 2 – 

MSAVI2  

Red edge normalized 

difference vegetation 

index – NDRE  

Chlorophyll Absorption 

Ratio Index - CARI  

Modified chlorophyll 

Absorption Ratio Index - 

MCARI  

Chlorophyll index - CI 
 

Chlorophyll vegetation 

index - CVI  

(Crop Water Stress 

Index)statistic – CWSIstatistic  

 

Table 1. Some of the most used vegetation indices for remote 

sensing applications in precision agriculture 

 

Special consideration can be given to certain spectral indices 

developed to specifically monitor the presence of chlorophyll at 

leaf level as a direct indicator of the plant's primary biomass 

production and its photosynthetic potential. Reflectance in the 

Red-Edge region is often used for this purpose as it is able to 

penetrate deeper into the leaf structure than the red band that is 

absorbed by chlorophyll in the first layers. The Chlorophyll 

Index CI, for example, is a function of the simple ratio of the 

reflected radiation in the near-infrared band to that in the red-

edge, while the Normalized Difference Red Edge Index 

(NDRE), calculated as shown in Table 1, is a good indicator of 

crop health in the advanced stages of growth, when the 

chlorophyll concentration is highest (thus exceeding the 

saturation limit of the NDVI in large presence of biomass). 

Other interesting indicators are the Chlorophyll Absorption 

Ratio Index (CARI) and the same index modified by Daughtry 

et al. (2000) (MCARI) to improve sensitivity to chlorophyll 

uptake. These indices make it possible to estimate the 
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chlorophyll absorption ratio to localise any anomalies: high 

CARI/MCARI values, in fact, are due to low chlorophyll 

concentrations, a symptom of the presence of pathogenic 

elements (bacteria/insects), the precise localisation of which 

allows rapid and targeted management of the problem with 

timely phytosanitary treatments. These indicators, however, are 

particularly sensitive to the reflectance properties of the soil, 

being more reliable in the presence of high-density crops (wheat 

fields, cereals, etc.). On the contrary, the calculation of the 

Chlorophyll vegetation index (CVI), a function of the ratio 

between reflectances in the red, green and NIR regions, is more 

suitable for agricultural areas with low leaf area indices. 

In addition to these indicators, the use of thermal sensors to 

precisely detect crop temperature, a fundamental parameter that 

influences the physiological processes of vegetation, such as 

evapotranspiration and the concentration of photosynthetic 

activity, has proved particularly interesting. Temperature and 

water content are in fact two intrinsically linked aspects: while, 

on the one hand, the loss of water through transpiration is a 

necessary process to lower plant temperature, on the other hand, 

excessive transpiration due to rising temperatures can cause an 

imbalance in the water content at leaf level, which is essential 

for growth and cell division. In other words, the plant comes to 

lose more water than it can absorb from the soil, creating a 

condition of water stress that can lead to the withering of the 

crop itself, drastically reducing photosynthesis activity. 

Monitoring, therefore, the surface temperature of crop canopies 

by means of thermal sensors that detect radiation in the mid- 

and far-infrared band is an important indicator (Crop Water 

Stress Index - CWSI) for the detection of possible water 

shortages (Messina et al., 2020). Over time, several indicators 

have been developed to quantify this water stress: some based 

on the relationship between the vegetation/air temperature 

gradient and the vapour pressure deficit (Idso et al., 1981), 

others on the canopy energy balance (Jackson et al., 1981).  

Conversely, the empirical approach for the calculation of the 

CWSI consists in calculating the normalised canopy 

temperature by taking the temperatures of the wet canopy 

(Twet), i.e. when the leaves are wet and therefore fully 

transpiring with open stomata, and of the dry canopy (Tdry), 

when the leaves are not transpiring at all. Since all these 

formulations are somewhat dependent on meteorological-

environmental factors, which are not always readily available, it 

is often more suitable to calculate the statistical CWSI (Cohen 

et. al., 2017), which estimates the Twet as the mean value of the 

lower 5% fractile of the distribution histogram of the measured 

temperatures, and the Tdry as the air temperature increased by 

5°C, as indicated by the formula shown in Table1. The higher 

the CWSI value, the closer the crop is to a condition of water 

stress, and thus to a reduction in chlorophyll synthesis to 

conserve water. To identify the health status of crops, it is 

therefore particularly useful to analyse these thermal indices in 

parallel with the spectral indicators developed to detect 

chlorophyll levels, such as NDRE, CI and CVI. 

 

3. Geographical framework of the case study 

An innovative integration between vegetation indices calculated 

from multispectral datasets and indicators directly linked to 

water stress detection was tested on two citrus grove fields 

located in south-eastern Sicily (Italy) to monitor their state of 

health and identify any areas affected by water or nutrient 

deficiencies before the beginning of the harvest season. The first 

test area, of approximately 5.6 hectares, is located in the 

Pontevecchio locality (36°51'15.0 ‘N 15°00'28.0 “E) along the 

south-eastern Sicilian state road that connects the towns of 

Rosolini and Noto; the second test field is located along 

Provincial Road 46 on the southern outskirts of the town of 

Ispica (36°46'05.8 ”N 14°54'14.5 ’E) and extends over 

approximately 3 hectares (Fig.1). 

 

 
Fig. 1 – Geographical framework 

 

Geographically the two orange groves are located in the so-

called Valle di Noto, situated between the provinces of Siracusa 

and Ragusa, and characterised by a hilly landscape with gentle 

undulations and valleys alternating with more massive reliefs, 

such as the Iblei mountain chain, to the north, which form a sort 

of natural barrier. The relative proximity of the sea also favours 

mild climatic conditions with temperature gradients and 

humidity levels that make the area particularly suitable for 

growing citrus fruits and vineyards (in the winter, temperatures 

do not fall below 10°C, while in the summer, the highest peaks 

are around 40°C). Thanks to the application of the principles 

advocated by the PA through planned monitoring on a multi-

year scale, the company that owns the two citrus groves 

(‘Bioagricola F.lli Solarino’) has been representing a virtuous 

model of optimization of business management processes for 

some years now. This model aims for quality production 

capable of responding to consumer needs by pursuing 

sustainable processes.  

The results presented in this work constitute the founding 

operational procedures of this innovative approach that uses 

multispectral and thermal datasets to recognize the state of the 

vigor of citrus groves as an indispensable knowledge base for 

improving the efficiency of agricultural practices, i.e. favoring a 

rational use of resources (e.g. by reducing the water wastage of 

traditional sprinkler irrigation with more concentrated watering 

in areas under water stress) and employing so-called "useful 

insects" (e.g. ladybirds) instead of classic pesticides to contain 

and control the action of crop-damaging pests in an eco-

sustainable manner.  

 

4. Methodology and survey  

The precision photogrammetric survey for the acquisition of the 

multispectral and thermal datasets useful for the elaboration of 

the proposed analysis methodology was carried out using state-

of-the-art sensors installed on a UAV platform with high flight 

autonomy, so as to guarantee the complete acquisition of each 

field with a single flight plan. 

Specifically, the pre-calibrated Micasense RedEdge-M 

Multispectral sensor was used, capable of simultaneously 

registering 5 multispectral bands (B1=blue; B2=green; B3=red; 

B4=red-edge; B5=NIR) with a spatial resolution of 1280 x 980 

px, pixel size of 3.75 x 3.75 μm and focal length of 5.5mm. The 

FLIR XT2 thermal radiometric sensor with a Focal Plane Array 

(FPA) was used for reflectance measurements in the thermal 

infrared range, which returns a spatial resolution of 640 x 512 

px, pixel size of 91.9 x 115 μm and focal length 13mm. 

Following the acquisition phase, the entire photogrammetric 
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datasets of each field were imported into the Agisoft Metashape 

software and grouped using the multi-camera system. 

 

 PONTEVECCHIO  ISPICA  

 
Multisp. 

Survey 

Termic 

Survay   

Multisp. 

Survey 

Termic 

Survay   

Nr. of images 3170 708 1895 717 

Flying altitude 64.8 m 212 m 71.7 m 79.5 m 

Ground 

resolution 
4.39cm/pix 6.77mm/pix 4.91cm/pix 4.85mm/pix 

Tie points 1.110.758 469.010 871.630 718.775 

Projections 6.697.116 1.561.008 3.527.174 2.446.659 

Reprojection 

error 
0.759 pix 10 pix 3.55 pix 1.13 pix 

Table 2. Technical specifications of each acquisition campaign 

 

In this way, the totality of the multispectral images acquired 

were subdivided in relation to the number of channels recorded 

during the survey phase, resulting in a smaller number of 

images to be processed (which, however, retain all the 

multispectral information detected within them) and, therefore, 

a significant reduction in processing time. Having used a pre-

calibrated multispectral sensor, it was not necessary to enter the 

calibration data of the camera into the programme; instead, with 

regard to the thermal sensor, it was decided to confirm the 

calibration parameters estimated by the software itself. With the 

subsequent alignment phase, the different positions of the 

cameras were identified, determining the orientation of each 

image and the points of correspondence between them. To 

verify the accuracy of these calculations, positioning maps of 

the cameras were obtained from the software, including a 

graphic display of the estimated localisation errors. 

As can be seen, by way of example, in Fig.2 (flight plan of the 

Ispica field), in these maps the shooting positions recognised 

through the image alignment process are indicated as black 

points, while the ellipses centred on these points identify the 

estimated errors: the error along the z axis (in height) is 

represented by the colour of the ellipses, while their shape 

highlights the error in positioning the camera along the x and y 

directions. Specifically with respect to the Ispica field, for 

example, it can be seen from Fig.3 that the majority of the 

ellipses are green in colour and, therefore, there are no 

significant positioning errors in height; the almost circular 

shape of the ellipses and their small size also suggest that the 

positioning error in the xy plane is not very significant and 

homogeneous with respect to the two directions. Table 2, 

however, shows that the reprojection error is 3.55pix, which is 

relatively high considering a ground resolution of 4.91 cm/pix.  

This inconsistency can be understood by observing, again on 

the positioning map of the cameras, the presence of a number of 

larger, blue ellipses which, although influencing the value of the 

general reprojection error, actually refer to the area of the 

provincial road, with respect to which the survey was 

influenced by the updrafts due to the increase in asphalt 

temperature, causing greater rolling and pitching effects, with 

relative instability. On the other hand, the same analysis 

conducted on the citrus grove at Pontevecchio returns estimated 

errors that are almost irrelevant in all three directions x,y,z, as is 

also confirmed by the very low value of the reprojection error 

indicated in Table 2 (0.759 pix with a ground resolution of 4.39 

cm/pix). 

After these necessary operations, the Dense Point Cloud, the 

Digital Elevation Model (DEM) and, lastly, the multispectral 

orthomosaic were generated, as the basis from which the 

already presented vegetation indices were calculated, 

fundamental for studying the vigour state of the citrus grove.  

 

 
Fig. 2 – Ispica field: flight plan and estimated errors 

 

From an operational point of view, the multi-band orthomosaics 

were exported in GeoTiff format, to retain the geographical and 

multispectral information, and loaded into the QuantumGis 

software, where the input of the different mathematical 

formulae into the Raster Calculator made it possible to obtain 

the graphic processing of the NDVI, MSAVI2, GNDVI, NDRE, 

CI and CVI indicators (Fig.6-7). Finally, by processing the 

raster statistics, the average values of each index were 

calculated for both test areas, as also shown in Fig.6-7. 

 

 
Fig. 3 – Ispica Field: Temperature distribution histogram 

 

 
Fig. 4– Pontevecchio Field: Temperature distribution histogram 

 

The same methodology was applied for the elaboration of the 

thermal orthomosaics from which the CWSI indices were 

derived by applying the previously described statistical 

approach. Specifically, the histograms of temperature 

distribution in the two test fields were extracted from the 

calculation software, as seen in Figs. 3 and 4, thanks to which it 

was possible to estimate the Twet, necessary for the calculation 

of the CWSI, as the average of the lower 5% of the temperature 

values recorded during each survey campaign. For the field near 

Ispica, a Twet value of 285.95K, or 12.8 °C, was obtained, while 

on the citrus grove in Pontevecchio the lower temperature was 

calculated to be 287.85K, or 14.7 °C. Consulting the climatic 
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datasets, freely available for the entire region of Sicily, it was 

instead possible to identify the maximum temperatures recorded 

in the two localities on the exact day on which the survey was 

carried out (Tmax Ispica=26°C; Tmax Pontevecchio=27°C): these 

values increased by 5°C, as suggested by the statistical method 

for calculating the water stress index, returned the Tdry 

quantities to be used in the formula, equal to 31°C for Ispica 

and 32°C for Pontevecchio. Therefore, using the Twet and Tdry 

parameters thus obtained, it was possible to calculate the water 

stress indicators by entering the formula in the software's raster 

calculator to derive the graphic displays of the CWSI as had 

been done for the other vegetation indices. To make the reading 

of these calculations clearer, a colour scale was chosen which, 

from blue to red tones, associates increasing values of CWSI, 

and thus of water stress. 

5. Results 

Analyzing the spatial distributions of the vegetation indices 

calculated for the two test fields (Figs. 6-7) and the direct 

comparison of the relative average values shown in the graph in 

Fig.5, two important considerations immediately emerge: on the 

one hand, significant differences can be identified concerning 

the state of vigor of the plants within the same orchard, which 

correspond to the precise location of more luxuriant areas with 

regard to areas that are considerably more critical; on the other 

hand, it can be seen that the values returned by the indicators 

referring to the citrus grove near Ispica are considerably lower 

than those concerning the field in Pontevecchio.  

 

 
Fig. 5–Ispica and Pontevecchio fields: comparison between 

normalized mean vegetation values 

 

This diversity affects all the vegetation indices, starting from a 

minimum decrease of -0.114 referred to the NDRE index, up to 

the greatest difference (in absolut valude) detected by the 

MSAVI2 indicator, with an average value of 0.145 recorded in 

Ispica, compared to the average of 0.526 observed by the same 

index on the Pontevecchio field. 

Another interesting aspect is the difference between the values 

of the vegetation indices calculated using the NIR and Green 

bands: in fact, in both fields the average values of the GNDVI 

indicator are slightly lower than the corresponding NDVI values 

[Δ(NDVI-GNDVI)Ispica=0.065; Δ(NDVI-GNDVI)Pontevecchio 

=0.144]. These are slight variations that are, however, 

significant in relation to the very reliability of these indicators: 

since the survey was conducted shortly before the harvest 

season, it is reasonable to assume that the plants were in their 

maximum period of leaf development and this, as previously 

explained, has a negative effect on the calculation of the NDVI 

which, by its definition, saturates rapidly in the presence of high 

leaf density, returning values that are not fully reliable with 

respect to reality. In this case, therefore, the average values 

obtained using the reflectance in the green band are more 

reliable. This observation is also confirmed by comparing the 

spatial distributions (Fig.6-7) of the GNDVI index with those of 

the index calculated using the Red-Edge band (NDRE). In both 

test areas, in fact, the areas of the citrus groves characterised by 

the concentration of high GNDVI values, visualised with tones 

tending towards green/yellow, correspond precisely to the areas 

where the NDRE values are higher, i.e. where photosynthetic 

activity is higher and therefore the citrus groves are more 

vigorous and healthy. This is even more evident when analysing 

the maps of the CI and CVI chlorophyll indices which, although 

they are not normalised indices, record the highest amounts of 

chlorophyll [(CI=1.53 and CVI= 6.19)Ispica and (CI= 2.74 and 

CVI= 6.00)Pontevecchio] precisely in the same areas already 

highlighted by the GNDVI and NDRE. From a graphic point of 

view, these areas are clearly identified with colours tending 

towards orange/red and are located more or less in the central 

part of both citrus groves.  

Considering that the monitoring was conducted shortly before 

the start of the fruit harvesting period, the identification of these 

inhomogeneities, combined with the low values of the indices 

measured in general, is symptomatic of problems related to the 

state of health of the orange trees in the two test fields, with 

evident reductions in their productivity. 

To better understand whether the encountered criticalities were 

due to leaf water stress, nutrient deficiency or the presence of 

weed pathogens, to the already calculated vegetation indices 

was also supplemented the study of thermal images and the 

calculation of the CWSI index. As can be seen from the 

graphical elaborations in Fig.6 and 7, in fact, although the 

temperature ranges recorded by the thermal sensor in the Ispica 

and Pontevecchio fields are comparable (ranging from a 

minimum of 7.10°C to a maximum of 40°C), the water stress 

index values calculated using the statistical approach in the two 

test areas highlight two quite different conditions. In light of a 

CWSImax of 0.04 in the citrus grove in Pontevecchio, i.e. 

decidedly low, in the Ispica orchard, crop water stress levels are 

much higher, with a CWSI index that reaches values above 0.5. 

The recognition of this critical condition is therefore consistent 

with what emerged from the study of the other vegetation 

indices which, for the Ispica citrus grove, had returned very low 

values: this is probably due to a water stress condition that can 

be resolved by implementing irrigation techniques On the other 

hand, the homogeneous spatial distribution of CWSI values 

both in Ispica and Pontevecchio fields does not seem to justify 

the different concentrations of photosynthetic activity 

highlighted by the chlorophyll indices. As they are not caused 

by localised water stress, the areas characterised by low CI and 

CVI values could be due to nutrient deficiencies or the presence 

of weeds and  other pathogens. In this respect, future research 

developments could supplement these analyses with specific 

investigations of soil composition, to identify nutrient 

deficiencies more precisely and to be able to rationally plan 

targeted fertiliser campaigns or whatever else is necessary. 

In summary, through the calculation of the different vegetation 

indices, it was possible to recognise a substantial difference 

between the good vigour of the orange trees cultivated in the 

field in the Pontevecchio locality compared to those in the 

citrus grove near Ispica, while the comparison with the water 

stress indicators made it possible to understand how this 

diversity is substantially due to a greater lack of water near 

Ispica (mean CWSI = 0.5) compared to that measured in the 

Pontevecchio locality (mean CWSI = 0.04).  

By analysing the spatial localisation of the individual values 

(Figg.6-7), it was also possible to understand how the leaf water 

content identified by the CWSI index, although higher in 

Pontevecchio and lower in Ispica, is in fact homogeneously 

distributed within each field (the colours on the map are
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Fig. 6 – ISPICA field test area. Top, graphical output of the calculation of the NDVI, MSAVI2, GNDVI, NDRE, CI and CVI 

vegetation indices. Bottom, thermal image and graphic output of the crop water stress index: comparative views. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-33-2025 | © Author(s) 2025. CC BY 4.0 License.

 
38



 

 
Fig. 7 – PONTEVECCHIO field test area. Top, graphical output of the calculation of the NDVI, MSAVI2, GNDVI, NDRE, CI and 

CVI vegetation indices. Bottom, thermal image and graphic output of the crop water stress index: comparative views.
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uniform and do not present localised peaks), unlike the uneven 

concentrations of photosynthetic activity highlighted by the CI 

and CVI indices (areas tending towards red). This fundamental 

finding allowed us not only to identify areas where crops are not 

fully healthy, but also to understand how this reduced vigour is 

attributable to nutrient deficiency or the presence of 

bacteria/pathogens, rather than localised water stress. 

 

6. Conclusions 

The results of the study presented in this paper highlight how 

precision agriculture is introducing important innovations in the 

management of the agricultural sector, making it more efficient 

and sustainable. In particular, the investigations presented in 

this work constitute, at a national level, a virtuous and 

innovative example of best practice that aims not only to 

localize agronomic criticalities but also to understand their 

causes by integrating the use of multispectral sensors installed 

on drones (indirect recognition of the state of vigor of crops 

starting from the calculation of traditional vegetation indices), 

with the processing of specific indicators of crop water content 

through temperature data recorded by UAV-mounted thermal 

cameras. This is an innovative and effective approach that can 

certainly be applied in further different contexts of productive 

green as it provides analytical tools and operational methods to 

monitor the health of crops in real time, allowing timely and 

targeted interventions only where necessary, optimising the use 

of resources and reducing waste. In the future developments, an 

important contribution will certainly be provided by the 

integration of these analyses with specific studies related both to 

other climatic factors (especially in relation to CO2 and 

nitrogen concentrations in atmosphere) and to the physical-

chemical characteristics of the soil, to even better optimise 

agricultural operations, reducing the risk of soil and water 

pollution and, also in relation to the state of the atmosphere, the 

increase in the anthropogenic greenhouse effect. 
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