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Abstract

Satellite radar altimeters provide crucial insights into polar oceans and their sea ice cover, enabling the estimation of sea level, sea
ice freeboard, and thickness. These retrieval algorithms depend on accurate discrimination between radar altimeter waveforms from
sea ice and ocean surfaces in heterogeneous and dynamic surface conditions. A further and less mature step is classifying different
sea ice types in addition to the ice/ocean discrimination. We aim to develop new methods for a novel multi-category sea ice and
ocean surface classification directly from satellite radar altimeter data to improve sea ice climate data records. Traditional waveform
representations are limited to a small set of parameters, leading to information loss. Moreover, machine learning models for sea ice
classification often depend on supervised training, which is vulnerable to uncertainties in labeled data, especially in polar regions.
To address these limitations, we explore self-supervised learning methods to optimize waveform representations, which can capture
more detailed information for a classification with finer granularity. Furthermore, they do not require labeled data, which is not
available at the spatial coverage and resolution of radar altimeter waveforms. We apply these techniques to SRAL data from the
Sentinel-3 mission. We show that the information preserved in the latent space of an auto-encoder enhances the feature space of
traditional waveform parameters, improving the subsequent classification process, when comparing our results to available sea ice
charts and other remote sensing products. Our results demonstrate better generalization compared to supervised approaches.

1. Introduction

Figure 1. In the Arctic, satellite radar altimetry is used to
estimate sea ice thickness. For each footprint a single intensity
curve (called waveform) is generated. These contain valuable
information about the sea ice type and snow cover (depicted in

light blue) within the footprint.

In the sea ice domain, which consists of frozen seawater float-

ing on the ocean surface, satellite radar altimeter data is used
to estimate sea ice thickness and volume. To estimate the sea
surface height along the ground track of the satellite, reference
points of uncovered sea surface are required. This introduces
the need to distinguish sea ice from open ocean and fractures
in the ice, called leads. The sea surface height is then substrac-
ted from the ice surface heights yielding the fraction of the ice
columns above local sea level (freeboard).
Sea ice thickness is derived from freeboard using the buoyancy
of the ice and its snow load, which depends on the density of the
sea ice and water as well as on the snow mass. Uncertainties of
these parameters are critical for meeting the target uncertainty
for sea ice thickness of climate data records.However, they are
not routinely measured and information in retrieval chains rely
on external data sources, climatologies or parametrizations.
Sea ice density and snow load develop with the life cycle of
sea ice from formation to melt, which can be categorized as
stage of development. It is therefore desirable to classify radar
altimeter waveforms by sea ice type to improve the parametriz-
ation of sea ice density and snow load. Additionally, due to the
ice drift causing substantial displacements of the ice on small
timescales, it is desirable to retrieve information about different
ocean surface types (including open ocean, leads, and different
stages of sea ice development) directly from the same sensor
used for the sea ice thickness estimates, i.e., the radar altimeter
data (Quartly et al., 2019).

Improving sea ice thickness measurements is essential because
sea ice conditions in the polar regions significantly influence the
global climate system and data about its declining thickness is
an important input to climate models. However, current radar
altimetry-based sea ice thickness products do not yet meet the
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target accuracy requirements (World Meteorological Organiz-
ation, 2022), and we consider sea ice type classification as an
avenue towards this goal.
Radar altimetry, unlike most other Earth observation methods,
is not an imaging technique. It produces single intensity curves
for footprints of a narrow swath along the trajectory of the satel-
lite. These signals are called waveforms and it is usually desired
to extract information for each of the corresponding footprints.
This is depicted in Figure 1.
Existing approaches (Section 3) do not use the radar altimeter
data as direct input to their classification models. Instead, a few
parameters are extracted from the waveforms that describe its
shape. Only these extracted parameters are used for the classi-
fication process.
For thresholding methods, this representation by waveform
parameters is a natural choice, since thresholds for these para-
meters are historically found empirically to distinguish between
leads and sea ice. However, representing waveforms with only a
few parameters may result in the loss of additional information
inherent in the waveform signal. Although the increase of com-
putational power and the development of more sophisticated
machine learning methods now enable the use of more complex
representations as input, the practice of using those waveform
parameters continued with the exploration of machine learning
methods.
On the other hand, using the whole waveform as input for
classification would correspond to an unnecessarily high fea-
ture space and lead to computational inefficiencies, potentially
causing over-fitting due to the curse of dimensionality. Find-
ing an optimized representation for the classification process
might also facilitate the adaptation of the complete classifica-
tion pipeline to other satellite radar altimeter missions.
However, radar altimeter data differs significantly from other
data sources for which extensive machine learning techniques
have been developed. Unlike image-producing sensors, radar
altimeters generate intensity curves that are distinct from typ-
ical time series signals, as they are very short and of lower fre-
quency. Therefore, techniques from these two research fields
cannot be directly applied, requiring adaptations of machine
learning methods for this specific type of data.
Additionally, the existing literature on sea ice surface type clas-
sification primarily focuses on supervised classification meth-
ods, where the adjustment of internal parameters requires a
labeled dataset. In the polar regions, this is challenging because
these labels are derived from other remote sensing data (includ-
ing synthetic aperture radar, passive microwave, visual, as well
as thermal-infrared data) that come with inherent uncertainty.
The differences of spatial resolution between data sources and
collocation over drifting sea ice introduces additional uncertain-
ties. This uncertainty is difficult to quantify due to the scarcity
of available ground truth data, resulting from limited access to
polar regions. Consequently, supervised learning is highly sus-
ceptible to the quality and reliability of its training data.

As an alternative approach, we explore self-supervised learn-
ing techniques to learn a representation of the radar altimeter
waveforms that can be used for classifying polar ocean sur-
faces. Specifically, we train an auto-encoder and a variational
auto-encoder to extract meaningful waveform representations
and evaluate their suitability for classification. Our results show
that the learned representations retain additional information to
that contained in traditional waveform parameter representa-
tions and improve surface classification. This confirms that a
learning objective focused on signal reconstruction can capture
relevant information but cannot yet completely substitute tra-

ditional approaches. Additional loss functions and the incor-
poration of class labels in the training have to be investigated.
We verify that our network architecture effectively extracts the
necessary information directly from the waveforms by train-
ing a neural network classifier to distinguish between different
polar ocean surfaces based on the radar altimeter waveforms.
To the best of our knowledge, this is the first study to apply
self-supervised representation learning to radar altimeter wave-
forms, providing new insights into representation learning for
polar ocean surface classification.

2. Background

In the following sub-section 2.1, we give a general introduction
to satellite radar altimetry, the kind of data it produces, and how
this is traditionally represented by waveform parameters. We
also provide the background on operational ice charts in sub-
section 2.2, which is the main source of class labels not only in
this study but also in the existing literature.

2.1 Satellite Radar Altimeter Data

There are several satellite radar altimeter missions suitable for
polar ocean observation. They span approximately the last 30
years with overlapping intervals. In this study, we are using
data from the most reasoned missions. These are the Sentinel-
3A and -3B missions of the same satellite series equipped with
identical Sentinel-3 Radar Altimeters (SRAL) (ESA, 2022).
Our long-term goal is to derive methods that are easily adapt-
able to older missions. For this reason, the following introduc-
tion is kept general. Satellite radar altimeter sensors are act-
ive sensors that are usually used to measure surface elevation.
They do not produce image data, instead only single measure-
ments for footprints (of a size of approximately 300 x 1500m
for SRAL) along the satellites ground trajectory are produced.
The sensor continuously sends radar pulses which get reflected
at the surface and are received at the altimeter. Each of these
single looks describe the received echo power as a function of
time. Multiple looks are combined to form a synthetic aperture
to increase the along-track ground resolution. Each so called
multi-looked waveform is not a single intensity peak associated
to one single timestamp. It is dispersed over a wider time frame
of a few micro- to milliseconds (Wingham et al., 2006). This
echo is sampled in a limited number of time bins (256 bins in
case of the Sentinel-3 missions) called waveforms. The shape
of the measured waveform depends on the properties of the alti-
meter sensor and the applied synthetic aperture, but also on the
properties of the reflecting surface, specifically the roughness,
backscatter properties from the ice and snow layers as well as
the backscatter incidence angle dependence. For example, leads
represent a very flat surface with specular reflection yielding
a very narrow waveform. Older sea ice surfaces are rougher,
with diffuse backscatter properties and higher height distribu-
tion thus yielding broader waveforms (see Figure 5b). This dis-
crepancy is exploited for surface type classification. Addition-
ally, sea ice surfaces evolve through the stage of development
by dynamic and thermodynamic processes which are then re-
flected in waveform properties. This allows for a more finer
distinction of surface types based on waveforms shapes.

2.1.1 Waveform Parameters In the existing literature a
classification of surface types is not based directly on the al-
timeter waveforms. Instead, a few parameters are derived from
the signal and used for the classification. These waveform para-
meters describe the shape of the waveforms. Below, we list a
few waveform parameters used in this study:
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Normalized Backscatter Coefficient (σ0). The radar back-
scatter coefficient quantifies the radar signal’s return strength
from the Earth’s surface. It is defined as the ratio of the power
scattered back to the radar from a unit area of the surface to the
power incident on that area. It provides insights into surface
characteristics, especially roughness. Its calculation depends
on a lot of internal parameters of the sensor (Dinardo, 2016).

Pulse Peakiness (PP). PP measures the peakiness of the
waveforms. It is found by dividing the maximum power Pmax

by the total accumulated power of the waveform, which is the
sum of the power Pi measured for each bin i (Wernecke and
Kaleschke, 2015).

PP =
Pmax∑n

i=1
Pi

(1)

Leading Edge Width (LEW). LEW measures the length of
the signal before its maximum peak. Specifically it counts the
number of bins from the onset of intensity increase to the peak
maximum. It is calculated using a smoothed curve fitted to the
waveform (Wingham et al., 2006).

Late-Tail-to-Peak-Power ratio (LT2PP). LT2PP parameter
measures the off-nadir power in the tail of the waveform (Rinne
and Similä, 2016). It is calculated as the ratio of the accumu-
lated echo power between the 50th and 70th bin after the signal’s
maximum (max) and the maximum power.

LT2PP =

1
21

∑max+70

i=max+50
Pi

Pmax
(2)

2.2 Operational Ice Charts

We derive class labels from the operational ice charts (OIC) of
the U.S. National Ice Center (USNIC) (U.S. National Ice Cen-
ter, 2022). These charts are manually created on a weekly or
biweekly basis by experts using a combination of satellite im-
ages and observational data accumulated over the previous three
days.
The ice charts define polygons with a homogeneous distribution
of different stages of ice development. For labeling, we sum-
marize these stages into the overall categories New Ice, First
Year Ice (FYI) and Multi Year Ice (MYI). For each polygon,
the total sea ice concentration is provided as a percentage, along
with the concentration of the three thickest ice types present in
the polygon. Therefore, they do not provide exact class labels
but rather a mix of different ice types. They also do not include
information about leads, so these labels must be extracted from
a different source.

3. Related Work

The existing literature on detecting of leads using radar al-
timeter data can be categorized into two main approaches:
thresholding methods (Wernecke and Kaleschke, 2015; Laxon
et al., 2013; Passaro et al., 2018) and methods using machine
learning techniques (Müller et al., 2017; Poisson et al., 2018;
Longépé et al., 2019; Bij de Vaate et al., 2022; Dawson et al.,
2022).
The classification of different ice types is focused on distin-
guishing between FYI and MYI. As for lead detection, they
all use traditional waveform parameters to represent altimeter

waveforms. Zygmuntowska et al. (2013) classified leads, FYI
and MYI using a Bayesian approach. Rinne and Similä (2016)
used a nearest neighbor approach to classify open ocean, thin
FYI (< 70 cm), thick FYI (> 70 cm) and MYI.
While the focus of Zygmuntowska et al. (2013) is on an im-
provement of sea ice thickness and mass estimates, but using
an airborn radar altimeter, ASIRAS, the study of Rinne and
Similä (2016) aims at an automated ice charting to support the
operational ice charting for navigation.
Shen et al. (2017) and Shu et al. (2020) classify ice types
based on a Random Forest approach, but Shu et al. (2020) av-
erage features over segmented patches of homogeneous wave-
form information (Object-based Random Forest). All the above
studies use operational ice charts as a label source. Fredens-
borg Hansen et al. (2021) on the other hand use labels based on
sea ice type charts from Ocean and Sea Ice Satellite Applica-
tion Facility (OSI SAF) and compared four different classific-
ation methods: threshold-based, Bayesian, Random Forest and
k-nearest neighbour (kNN). Aldenhoff et al. (2019) do not de-
rive a method for automated classification. Rather, they are in-
vestigating possibilities to combine SAR imagery and altimeter
data. They compare the distribution of different waveform para-
meters for FYI and MYI, manually labeled based on SAR im-
ages. For a few representative scenes collocated with radar alti-
meter data, they have analyzed the concordance of the two data
sources.

4. Methods

We explore different self-supervised learning methods to derive
representations of the radar altimeter waveforms that can later
be used to classify different sea ice surface types. To evaluate
the quality of these waveform representations, we measure
the inter-class and intra-class variability between polar ocean
surface classes. This is done by applying the kNN algorithm
to the feature space under analysis, which could be either the
representation derived from a self-supervised method or its
combination with traditional waveform parameters.
Since the kNN is sensitive to class imbalance, we use a labeled
test dataset with a uniform distribution of surface classes.
Class labels are assigned using a leave-one-out method, where
each test sample is classified based on the majority vote of the
k = 1 closest samples in the test set (excluding the sample
in question). The proximity between samples is determined
by Euclidean distance in the feature space. We use the kNN
classification accuracy as an objective measure of the quality
of waveform representations for surface classification. As a
baseline, we use the four waveform parameters described in
section 2.1.1 to represent waveforms.
Although our primary focus is on self-supervised methods, we
first develop a simple multilayer perceptron (MLP) to classify
the four different surface classes: New Ice, FYI, MYI and
leads, as described in subsection 4.1. This step allows us to
assess whether this architecture can effectively extract relevant
information for surface classification from the radar altimeter
waveforms.
Subsequently, we will train an auto-encoder (sub-section 4.2)
and a variational auto-encoder (sub-section 4.3) with the same
MLP architecture in the encoder. The latent space of the trained
models will then be evaluated against our baseline dataset using
kNN accuracy.
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(a) MLP classifier with the waveform as input.

(b) AE and the VAE

Figure 2. Shown are sketches of the used neural network models.

4.1 Multilayer Perceptron Classifier

A multilayer perceptron (MLP) is a simple feed forward neural
network (Hastie et al., 2009). We first train a MLP with a simple
architecture in a supervised manner, using an One-Hot Encod-
ing for the labels from the OIC as targets and the waveforms as
inputs. Although this study focuses on self-supervised learning,
this step verifies whether the chosen architecture can extract rel-
evant information from the normalized waveforms. Addition-
ally, we use the four selected waveform parameters as input to
compare the results.
In both cases, we use a similar network architecture consisting
of five fully connected linear layers, each followed by a recti-
fied linear unit (ReLu) as activation function to introduce non-
linearity. The only difference is in the input layer size, which
reflects the dimensions of the input vectors. In the first case, the
linear layers are of sizes 256-128-64-32-18-4, where 256 cor-
responds to the number of bins in the waveform. In the second
case, the input layer contains only four neurons, correspond-
ing to the four waveform parameters. In the final layer, we are
applying the LogSoftmax activation function to output the prob-
abilities for each class. The architecture is shown in Figure 2a.
For training, we use the negative log-likelihood loss function,
with class weights adjusted according to the number of samples
in each class to address the imbalanced class distribution. Based
on this, the model’s learnable parameters are updated using the
Adam optimizer, which combines momentum and an adaptive
learning rate and therefore tends to converge faster compared
to standard Stochastic Gradient Descent (Kingma and Lei Ba,
2014). The initial learning rate is λ = 0.0001.

4.2 Auto-Encoder

An auto-encoder (AE) is a neural network trained in a self-
supervised manner, that can be used to learn a low-dimensional
representation of the input data. Its architecture consists of two

parts: (i) an encoder, which reduces the input signal to a min-
imal form (defined by the size of the last layer in the encoder,
called latent space), and (ii) a decoder, which reconstructs the
compressed signal back to an output with the same dimensions
as the input data. The network is trained by applying a loss
function that compares the input with the reconstructed signal,
to preserve as much information as possible in the latent space
(Bank et al., 2023).
We want to use the AE’s latent space as a new representation of
waveforms, with the normalized waveform as the input. The
loss function used is the mean square error (MSE) between
the input and the reconstructed waveforms, meaning no surface
type information is required for training.
The encoder has a similar architecture to the MLP classifier,
except it lacks the LogSoftmax activation and has a smaller last
layer. We test different latent space sizes, ranging from two to
ten neurons. The decoder mirrors the encoder’s architecture,
with layer sizes of 18-36-64-128-256. The AE is trained using
the Adam optimizer, with a learning rate of λ = 0.0001.

4.3 Variational Auto-Encoder

A variational auto-encoder (VAE) is a type of generative model
that extends the concept of a regular AE (Kingma and Welling,
2014). While in a standard AE, the encoder maps the input data
to a deterministic latent vector, in a VAE, each latent variable
is represented as a probability distribution. Specifically, the en-
coder outputs the mean µ and standard deviation σ of a Gaus-
sian distribution for each latent variable. Samples are drawn
from this probability distribution, which are then decoded. As
a result, outputs of the VAE that are similar in terms to the re-
construction loss are also close to each other in the latent space.
This property is not necessarily present in a standard AE.
The loss function of a VAE has two components. One is the
reconstruction loss, as in a regular AE. The other is a regulariz-
ation term that forces the latent space distribution to approx-
imate a Gaussian distribution. This is achieved by applying
the Kullback–Leibler (KL) divergence, a measure of the differ-
ence between two probability distributions (Kullback and Lei-
bler, 1951). Figure 2b shows the concept of a VAE.
The VAE’s latent space could potentially have an advantage for
the classification of sea ice surfaces, as waveforms of the same
surface type are likely to be more similar compared to those
from different classes. The key architectural difference from
the regular AE is the division of the latent space into its mean
and variance components, with the KL-divergence added to the
loss function.

5. Data

We use radar altimeter data from the SRAL sensor aboard the
Sentinel-3A and -3B missions, as provided in the level 2 data
from PySiral (Hendricks et al., 2024). This dataset also includes
labels for leads, resulting from a thresholding approach. For
dates on which operational ice charts are published by the US-
NIC, we retrieve ice class labels for footprints located within
polygons where the sea ice concentration for a single stage of
development is at least 90%. We labeled data for an entire sea-
son (October 2022 to April 2023) and distributed it across train-
ing, validation, and testing datasets. We summarize sub-classes
into the four main categories: New Ice, FYI, MYI and Leads,
with the distribution of these classes shown in Table 1. For self-
supervised learning, no labels are needed for training. Thus, we
augmented the training dataset with radar altimeter data of the
day before and after the dates on which OIC data is released
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Class Name Training Validation Test
New Ice 3,561 4,121 729
FYI 163,319 66,228 93,216
MYI 253,665 92,303 109,468
Leads 126,114 49,688 12,029
Total 546,659 212,340 214,835

Table 1. Distribution of different surface classes in the training,
validation, and test sets.

(independent of the dates assignment to training, validation and
test set). This additional data improves Arctic coverage, as it is
not limited to footprints within polygons with a high, single sea
ice concentration. As a result, the number of training samples
increases by 2,842,088 footprints. The training dataset is used
for updating the model parameters based on the loss functions,
while the validation dataset helps select the optimal model by
epoch. The test set is reserved only for evaluating the selected
models. Since we require a balance of class labels for the kNN
algorithm, and the new ice class only contains 729 samples in
the test set, we define a class-balanced test set of 700 randomly
sampled footprints for each surface type.

5.1 Uncertainties in class labels

One challenge when working with remote sensing data in the
Arctic is validating data products, and the OIC data hold an in-
trinsic inaccuracy. Additionally, there is uncertainty in the class
labels due to inhomogeneities in the ice chart polygons. To es-
timate the uncertainties in these class labels, we compare FYI
and MYI class labels derived from the operational ice charts
with those from the OSI SAF Global Sea Ice Type Classific-
ation (Copernicus Climate Change Service, 2020), which also
contains its own uncertainties. The comparison yields an ac-
curacy of 0.87 in label agreement between OIC and OSI SAF
in the test set, highlighting that part of the evaluated methods’
inaccuracy comes from label inconsistencies in the test data.
To reduce this uncertainty, we select FYI and MYI samples with
matching labels from both OIC and OSI SAF for the balanced
test set, which is used for comparing different waveform rep-
resentations. This dataset is referred to as the OIC + OSI SAF
test set. To demonstrate the impact of data distribution shifts on
supervised learning, we also validate the MLP classifier using
a balanced test set based solely on the OIC labels (without the
comparison to OSI SAF data). This is referred to as the OIC
test set.

5.2 Waveform pre-processing

Before feeding the altimeter waveforms to the neural network
models, we perform two pre-processing steps:

• First, we align the waveforms so that their maximum
power is consistently at the 100th bin. If the signal is
shifted to the right, the last few bins are truncated, and
the leading ones are padded with zeros, and vice versa for
leftward shifts, ensuring a fixed signal length of 256 bins.
This alignment is important as the waveform’s position
within the recorded time frame does not contain inform-
ation about the surface type. The time frame in which the
signal is recorded depends on the surface elevation and is
constantly adjusted.

• The second pre-processing step is normalization. Since
neural networks usually require the normalized inputs,

we normalize the waveforms by dividing each value by
its maximum. This ensures all waveform values range
between zero and one, though we lose the information
about the absolute heights in the process.

6. Experimental Evaluation

In this section, we first present the baseline (section 6.1) against
which we compare our results. To demonstrate that the chosen
architecture is capable of extracting relevant information for
classification, we train an MLP classifier (section 6.2). Finally,
we extract waveform representations from both auto-encoder
(AE) and a variational auto-encoder (VAE) (section 6.3).

6.1 Baseline

As a baseline for a waveform representation, we use the tra-
ditional waveform parameters described in section 2.1.1. We
select the three waveform parameters PP, LEW, and LT2PP be-
cause they are the ones used by Rinne and Similä (2016). While
Rinne and Similä (2016) additionally uses the parameter stack
standard deviation (SSD), this parameter is not available for
older satellite radar altimeter missions. Since we aim for our
methods to be transferable to these older missions, we omit this
parameter.
Instead, we include the normalized backscatter σ0, which has
been shown to capture information about the surface roughness
(Quartly et al., 2019). In Figure 3a, we present the confusion
matrix from the kNN algorithm based on these waveform rep-
resentations. The matrix on the left uses only the three wave-
form parameters PP, LEW and LT2PP, while the one on the right
additionally includes σ0.
It is evident that in both cases leads can be distinguished from
sea ice. However, the classification of different ice classes im-
proves significantly with the inclusion of σ0. The overall accur-
acy increases from 0.56 to 0.76 when σ0 is added to the feature
space. This improvement is particularly noticeable in the classi-
fication of new ice, where the information provided by σ0 plays
a crucial role. Additionally, the distinction between FYI and
MYI, which are otherwise difficult to separate, also improves.
This increase in accuracy by adding σ0 clearly demonstrates
that this parameter contains important information about ice
classes that is not captured by the other three waveform para-
meters.

6.2 MLP Classifier

The MLP classifier is trained on the labeled training dataset,
which is based only on the labels of the OIC data. To illustrate
how inaccuracies in class labels or shifts in the data distribution
between training and testing sets can impact the model’s per-
formance, we evaluate the MLP classifier using both the OIC
test set and the OIC + OSI SAF test set.

6.2.1 Evaluation using the OIC test set We first evaluate
the model using the OIC test set, which is constructed simil-
arly to the training dataset. Figure 3b shows the confusion mat-
rix for the MLP classifier with the pre-processed waveforms
as input (left) and with the four waveform parameters as input
(right). The accuracy for the waveform inputs (0.7) is signi-
ficantly higher than for the parameter inputs (0.66). While the
ability to classify FYI, MYI, and leads improves compared to
the baseline, the classification of new ice is notably lower, of-
ten misclassified as FYI or MYI. Although the overall accuracy
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(a) kNN classification using parameter baseline with PP, LEW, LT2PP
(left) and including σ0 (right)

(b) MLP classifier for OIC test set with waveforms (left) and waveform
parameters (right) as inputs

(c) MLP classifier for OIC + OSI SAF test set with waveforms (left) and
waveform parameters (right) as inputs

Figure 3. The confusion matrices are displayed using the
fractions of samples in the different categories.

is lower than that of the baseline, the classification perform-
ance for FYI and MYI improves, especially when using the full
waveform as input.
The difficulty in classifying new ice is likely due to the limited
number of samples in the training dataset. However, the res-
ults show that the chosen architecture is generally effective in
extracting relevant information from the waveform input. Fur-
thermore, using the full waveform as input to the neural network
model is superior to using only the waveform parameters, as it
contains more information for classification.

6.2.2 Evaluation using OIC + OSI SAF test set When
evaluating the MLP classifiers using the OIC + OSI SFA test
set (Sub-Figure 3c), we observe similar trends as with the OIC
test set. However, the accuracies drop to 0.63 for the full wave-
form input and to 0.58 for the waveform parameter input. This

(a) accuracy vs. size of kNN feature space (consisting of the waveform
parameters (WP) in combination with different sizes of the latent space

of the AE or VAE

(b) confusion matrix of the kNN for the six dimensional latent space of
the AE (left) and the combined feature space of latent space size four

together with the waveform parameters (right) given as fractions

Figure 4. The confusion matrices for the feature spaces with
highest accuracies are displayed.

demonstrates the MLP classifier’s limited ability to generalize
to data with a different underlying distribution. This finding fur-
ther motivates the exploration of self-supervised learning. Al-
though these methods also struggle in generalizing to unseen
data, they do not rely on potentially incorrect labels, offering a
key advantage.

6.3 (Variational) auto-encoder

Figure 4a shows the accuracy of the kNN algorithm based on
the latent space of both the AE and VAE for different dimen-
sions of the latent space, which correspond to the feature space
of the kNN. The accuracy increases as the latent space expands,
peaking at 0.57 for dimensions five, six, and seven, but then de-
clines to 0.55 for larger latent spaces.
The plot also shows the accuracy for a feature space combining
the latent space of the AE with the four normalized waveform
parameters. In this case, the accuracy is highest for smaller lat-
ent space dimensions and decreases with larger latent spaces.
Comparing this with the baseline, the combined feature space
performs better when the the latent space is of size four (leading
to a feature space of size eight) in the case of the standard AE.
For the VAE, while accuracies are consistently lower than those
of the AE, they follow a similar trend.
The confusion matrices for the AE’s latent space of size six
and the combined feature space (latent space of size four with
waveform parameters, resulting in a feature space of size eight)
are shown in Figure 4b. In both cases, leads are well-separated
from other ice classes, but the separation between different ice
classes, especially FYI and MYI, remains challenging, similar
to the baseline without σ0. In the combined feature space,
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(a) UMAP representation of combined feature space

(b) Original waveforms and their reconstruction

Figure 5. Sub-Figure 5a shows UMAP visualization of the
combined feature space (AE latent space size four and the four

waveform parameters) from the OSI SAF test set.
Representative waveforms and its reconstruction (highlighted in
5a with a wider marker) are shown in Sub-Figure 5b, with the σ0

parameter, which is logarithmic to the maximum received
power, provided for reference.

new ice is the second-best separated class after leads. How-
ever, FYI and MYI remain difficult to distinguish. This trend is
also visible in the UMAP representation (McInnes et al., 2020)
of the feature space consisting of the AE’s latent space of size
four combined with the waveform parameters (Sub-Figure 5a),
where leads form a distinct cluster, while FYI and MYI are
more intermixed.
The results indicate that the latent space of the AE conserves
additional information beyond what is captured by the wave-
form parameters, as demonstrated by the superior accuracy of
the combined feature space compared to the baseline. The latent
space, being trained to preserve information necessary for sig-
nal reconstruction, captures different aspects of the waveform
compared to the traditional parameter calculation. However,
this information alone is not enough to adequately separate the
ice classes. The accuracy increases with latent space size, sug-
gesting that the information content in the latent space increases
as well. In the combined feature space, accuracy decreases for
larger latent spaces, likely due to the curse of dimensionality or
because the features from the larger latent space dominate the
waveform parameters and the latent space information overlaps
with the waveform parameters.
Contrary to expectations, the VAE did not outperform the stand-
ard AE. One reason could be the inherent difficulty in separ-
ating FYI and MYI. The randomness introduced by sampling
from a probability distribution in the VAE’s latent space may
have increased the overlap between these classes, rather than
enhancing their separation, making it harder to distinguish
between those two classes effectively. Another reason could
be the added complexity of balancing two loss functions dur-
ing training. The reconstruction loss focusing on preserving in-

formation is crucial for reconstructing waveforms and is shown
to enhance class separability. Introducing the KL-divergence as
a second loss complicates this process. The model must balance
two objectives, which may dilute the reconstruction-related in-
formation in the latent space. Additionally, enforcing the latent
space to conform to a Gaussian distribution could smooth class
boundaries, leading to less distinct separations compared to the
deterministic latent space of the standard AE.

7. Conclusion

The major finding of this study is that self-supervised learn-
ing methods can effectively provide additional useful features
to the representation of radar altimeter waveforms, enhancing
their potential for sea ice surface classification. Compared to
supervised learning methods, these methods offer the signific-
ant benefit of not depending on correctly labeled training data,
which is a crucial advantage in polar ocean remote sensing,
where ground truth data is often limited and uncertain.
While the methods proposed in this study do not yet replace the
traditional parameter-based representations, they have demon-
strated potential as valuable enhancements to the classification
process.
Several challenges have emerged during the study. First, there
is the class imbalance in the training data, which complic-
ates the classification process. Second, distinguishing between
first-year ice (FYI) and multi-year ice (MYI) remains particu-
larly challenging. Both the auto-encoder and variational auto-
encoder are designed to cluster similar waveforms together in
the feature space. However, they do not explicitly enforce the
separation of dissimilar waveform shapes and surface classes.
The reconstruction loss employed by these models primarily
focuses on keeping information needed for reconstructing the
original waveforms, which may not be sufficient for effectively
distinguishing between surface types.
This shows that while self-supervised methods hold promise,
relying only on a reconstruction loss might not lead to optimal
separation of different surface classes. Incorporating class la-
bel information into the training process may be necessary to
improve performance, though this would diverge from the self-
supervised approach.
In the light of these findings, future research will focus on con-
trastive learning, a method that can be applied in both super-
vised and self-supervised contexts (Le-Khac et al., 2020). Con-
trastive learning explicitly focuses on the separation of dissim-
ilar samples in the embedded space by incorporating this object-
ive into the loss function, potentially overcoming the limitations
identified in the current study.
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Longépé, N., Thibaut, P., Vadaine, R., Poisson, J.-C., Guillot,
A., Boy, F., Picot, N., Borde, F., 2019. Comparative Evalu-
ation of Sea Ice Lead Detection Based on SAR Imagery and
Altimeter Data. IEEE Transactions on Geoscience and Remote
Sensing, 57(6), 4050–4061.

McInnes, L., Healy, J., Melville, J., 2020. UMAP: Uniform
manifold approximation and projection for dimension reduc-
tion.

Müller, F., Dettmering, D., Bosch, W., Seitz, F., 2017. Monit-
oring the Arctic Seas: How Satellite Altimetry Can Be Used to
Detect Open Water in Sea-Ice Regions. Remote Sensing, 9(6),
551.

Passaro, M., Müller, F., Dettmering, D., 2018. Lead detection
using Cryosat-2 delay-doppler processing and Sentinel-1 SAR
images. Advances in Space Research, 62(6), 1610–1625.

Poisson, J.-C., Quartly, G. D., Kurekin, A. A., Thibaut, P., Ho-
ang, D., Nencioli, F., 2018. Development of an ENVISAT Alti-
metry Processor Providing Sea Level Continuity Between Open
Ocean and Arctic Leads. IEEE Transactions on Geoscience and
Remote Sensing, 56(9), 5299–5319. Conference Name: IEEE
Transactions on Geoscience and Remote Sensing.

Quartly, G. D., Rinne, E., Passaro, M., Andersen, O. B.,
Dinardo, S., Fleury, S., Guillot, A., Hendricks, S., Kurekin,
A. A., Müller, F. L., Ricker, R., Skourup, H., Tsamados, M.,
2019. Retrieving Sea Level and Freeboard in the Arctic: A
Review of Current Radar Altimetry Methodologies and Future
Perspectives. Remote Sensing, 11(7), 881.
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