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Abstract

Cracks are among the earliest indicators of deterioration in concrete structures. Early automatic detection of these cracks can
significantly extend the lifespan of critical infrastructures, such as bridges, buildings, and tunnels, while simultaneously reducing
maintenance costs and facilitating efficient structural health monitoring. This study investigates whether leveraging multi-temporal
data for crack segmentation can enhance segmentation quality. Therefore, we compare a Swin UNETR trained on multi-temporal
data with a U-Net trained on mono-temporal data to assess the effect of temporal information compared with conventional single-
epoch approaches. To this end, a multi-temporal dataset comprising 1356 images, each with 32 sequential crack propagation images,
was created. After training the models, experiments were conducted to analyze their generalization ability, temporal consistency,
and segmentation quality. The multi-temporal approach consistently outperformed its mono-temporal counterpart, achieving an
ToU of 82.72% and a Fl-score of 90.54%, representing a significant improvement over the mono-temporal model’s ToU of 76.69%
and F1-score of 86.18%, despite requiring only half of the trainable parameters. The multi-temporal model also displayed a more
consistent segmentation quality, with reduced noise and fewer errors. These results suggest that temporal information significantly
improves the performance of segmentation models, offering a promising solution for improved crack identification and long-term

monitoring of concrete structures, even with limited sequential data.

1. Introduction

Infrastructures such as roads, bridges, dams, harbors, and build-
ings are essential to the sustainability and efficiency of eco-
nomic activities, to ensure public safety, and to facilitate social
interactions (Zhou et al., 2023; Maboudi et al., 2024). Many
of these infrastructures are constructed from materials such as
concrete, asphalt, or stone and face various challenges, includ-
ing fatigue stress, cyclic loading, and cumulative effects of time,
along with increasing human and environmental pressure (Mo-
han and Poobal, 2018; Konig et al., 2022; Kheradmandi and
Mehranfar, 2022). These factors can compromise structural in-
tegrity (Hamishebahar et al., 2022) and diminish the asset value
of these constructions (Kheradmandi and Mehranfar, 2022). Con-
sequently, there is a pressing need for effective Structural Health
Monitoring (SHM) to maintain and prolong the lifespan of crit-
ical structures (Hamishebahar et al., 2022). This helps reduce
maintenance and repair costs (Kheradmandi and Mehranfar, 2022;
Konig et al., 2022) and prevents damage to humans and the en-
vironment (Mohan and Poobal, 2018).

Numerous structures worldwide are in poor condition and re-
quire continuous monitoring and damage detection systems. For
instance, German seaports feature approximately 3000 km quay
walls and 2500 km facilities along the federal waterways. Throu-
ghout 140 km of these quay walls, approximately 279 million
tons of goods are handled, underscoring the significant role of
these structures in the German economy. However, the current
state of quay walls and facilities is a concern. According to the
Federal Waterways Engineering and Research Institute (BAW),
70% of quay walls and facilities on waterways are in adequate
condition. This situation foreshadows the considerable main-
tenance efforts required to ensure continued transportation of
essential goods on German waterways (Alamouri et al., 2024).
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Looking across the Atlantic, a 2022 report highlighted that the
United States has 2000 dams and over 46 000 bridges with struc-
tural deficits (Konig et al., 2022), and 11% of roads are classi-
fied as in poor or mediocre conditions (Zhou et al., 2023). Sim-
ilarly, in the United Kingdom, approximately 10% of roads are
disrepaired (Konig et al., 2022). These examples illustrate the
significant global need for infrastructure assessment and main-
tenance.

One of the first and most common indicators of structural de-
gradation and reduced structural integrity is the presence of
cracks on the surfaces of structures (Konig et al., 2022; Ham-
ishebahar et al., 2022). Cracks begin at the microscopic level
and continuously reduce the local stiffness of materials and cre-
ate material discontinuities (Mohan and Poobal, 2018). If left
untreated, these cracks grow in size, and the cost and effort re-
quired to repair them increase accordingly. To mitigate con-
sequential safety issues, it is crucial for SHM to accurately as-
sess the state of a structure and identify indicators of future
damage, such as cracks Konig et al. (2022).

Traditionally, manual visual assessment by an inspector has been
the standard method for identifying cracks. However, new ma-
chine learning (ML) techniques, particularly deep learning (DL),
have begun to change this landscape. Manual assessments are
costly, labor-intensive, time-consuming, and require highly trained
experts. Despite this training, human factors can lead to sub-
jective results (Hamishebahar et al., 2022; Mohan and Poobal,
2018; Maboudi et al., 2021). For instance, inspectors may ex-
perience fatigue during assessments, exhibit inconsistencies in
their evaluations, or receive inadequate training (Konig et al.,
2022). Moreover, the manual inspection can pose hazards to in-
spectors owing to unsafe structures (Kheradmandi and Mehran-
far, 2022). In some instances, the locations requiring inspec-
tion may be inaccessible to humans (Konig et al., 2022), or the
inspection process could result in downtime for the structure
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(Konig et al., 2022; De Arriba Lépez et al., 2024), leading to
interruptions in traffic on roads, bridges, or tunnels (Kherad-
mandi and Mehranfar, 2022).

Given these disadvantages, automatic crack detection methods
are required. Computer vision (CV) techniques, in conjunc-
tion with ML/DL, have proven to be effective for this purpose.
In this subfield, image-based approaches have emerged as the
most cost-effective methods because of the widespread availab-
ility of cameras (Hamishebahar et al., 2022). When mounted on
UAVs, these systems can reach otherwise inaccessible locations
without interrupting structure use (Mohan and Poobal, 2018).

To the best of the authors’ knowledge, and as stated by Konig et
al. (2022), there is a lack of research regarding the use of multi-
temporal data for CV tasks related to crack detection. In this
context, we focus on the semantic segmentation of cracks using
multi-temporal data, which is compared to approaches that util-
ize mono-temporal data. We aim to address the research gap in
multi-temporal crack propagation data for semantic segmenta-
tion by providing a multi-temporal dataset and a corresponding
deserialized mono-temporal dataset, which provide a founda-
tion for future research. The contributions of this study can be
summarized as follows:

e Development and assessment of mono- and multi-temporal
models for crack segmentation.

e Creation of a multi-temporal dataset and a corresponding
deserialized mono-temporal dataset.

2. Related works

Crack detection techniques can be based on RGB, infrared, ul-
trasonic, laser, and other types of images (Mohan and Poobal,
2018). In this study, we focused on camera-based detection,
similar to the dataset used in our experiments. Many review
papers categorize automatic crack detection methods into two
fundamental types: rule- and data-driven approaches. Rule-
driven methods rely on edge information of cracks, morpho-
logical operations, and thresholding techniques. These meth-
ods may struggle to perform adequately on less structured and
more complex data because of their rigidity and inability to ad-
apt to different contexts (Kheradmandi and Mehranfar, 2022;
Gong et al., 2024; Hamishebahar et al., 2022). By contrast,
data-driven approaches outperform rule-driven approaches in
managing complex scenes by learning useful feature represent-
ations from training data, particularly DL-based methods. As a
result, they tend to be more accurate, easier to automate (Gong
et al., 2024) and computationally more efficient. Consequently,
this study focused on exploring DL approaches.

Semantic Segmentation of Cracks: DL approaches can be ap-
plied to various tasks related to crack analysis, with the most
significant being: crack classification (presence of cracks in the
image, e.g., transverse or longitudinal cracks), crack segmenta-
tion (distinguishing between crack and background pixels), and
crack detection (localization of cracks). An overview of this can
be seen in Figure 1. Semantic segmentation can be extended to
instance segmentation, which aims to classify and localize each
pixel of an individual crack (Konig et al., 2022). Most studies
have emphasized crack segmentation because it provides the
most precise localization and extent of cracks at the pixel level,
making it particularly valuable for SHM (Hamishebahar et al.,
2022; Gong et al., 2024; Zhou et al., 2023).

Crack Identification
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Figure 1. Overview of methods to analyze cracks.

Semantic segmentation methods can be divided into two main
categories: hybrid and pure segmentation. The former integ-
rates classification or detection techniques with image processing
methods, whereas the latter focuses solely on segmentation without
these additional components. Given the scope of this study, we
focus on the latter. According to Hamishebahar et al. (2022),
pure segmentation architectures can be further divided into two
fundamental types: encoder-decoder and non-encoder-decoder
architectures. The encoder-decoder structure is a prominent
paradigm in segmentation because it allows the use of various
backbones to extract features (Gong et al., 2024). This archi-
tecture emphasizes the extraction of contextual information and
multi-scale features, rather than the depth of the network. Typ-
ically, this is achieved by concatenating features from feature
maps of different resolutions, thereby enabling the combina-
tion of high-level contextual information with low-level local-
ization features (Gong et al., 2024). The encoder module is then
responsible for extracting features from the input image while
downsampling it by strided convolutions or attention mechan-
isms. The decoder module concatenates the information from
the encoder and upsamples the extracted features to generate
pixel-level predictions (Zhou et al., 2023). The encoder can be
substituted by any model architecture that produces hierarchical
feature maps. The most commonly used backbones, as noted
by Gong et al. (2024) and Hamishebahar et al. (2022), in-
clude VGG (Simonyan and Zisserman, 2015), ResNet (He et
al., 2016), and transformers (Vaswani et al., 2017).

Multi-temporal data: The limited availability of multi-temporal
crack propagation datasets has resulted in most crack segment-
ation research focusing on mono-temporal images (using data-
sets such as CrackTree (Zou et al., 2012), CFD (Shi et al.,
2016), CRKWHI100 (Zou et al., 2019), DeepCrack (Liu et al.,
2019), and Crack500 (Yang et al., 2020) , ignoring the crack
propagation effect over time. On the other hand, remote sens-
ing (RS) exploits spatio-temporal features due to its access to
satellite data from different locations around the world at dif-
ferent times. In this context, RS approaches can be effectively
extended to crack detection, as both fields utilize similar data
types, namely high-resolution images.

Numerous methods have been utilized in DL models for crack
segmentation, with the most notable being those that rely on
Convolutional Neural Networks (CNN) and the attention mech-
anism (Gong et al., 2024; Kheradmandi and Mehranfar, 2022).
In the first category, a distinction can be made between 1D
(along the time dimension), 2D (along the spatial dimensions),
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and 3D (along the spatial and time dimensions) convolutions,
depending on the type of relationships learned by the model
(Zhong et al., 2019). The attention mechanism can function as
the sole mechanism within a transformer architecture (as a fea-
ture extractor) or can be integrated into encoder-decoder archi-
tectures alongside CNN-based networks (using spatial or chan-
nel attention). This mechanism processes data from a global
perspective and assigns weights based on the learned signific-
ance of information. Although the attention mechanism offers
advantages over CNNs in capturing long-range dependencies,
it may exhibit limitations in localization capabilities because of
its large receptive field (Gong et al., 2024; Zhong et al., 2019).

Mono- and Multi-temporal models: One of the first models
for semantic segmentation was the Fully Convolutional Net-
work (FCN) (Shelhamer et al., 2016), which first reduces the
size of the input image through convolution and pooling layers
(encoder) and then upsamples the features again through de-
convolutional layers (decoder) to generate a segmentation map
for all pixels. Similarly, SegNet employs an encoder-decoder
structure, where pooling indices from the encoder are used dur-
ing upsampling in the decoder. Later, U-Net (Ronneberger et
al., 2015) further developed this structure by adding skip con-
nections between the encoder and decoder to preserve spatial
information, being successfully applied for crack segmentation
(Konig et al., 2022).

Cigek et al. (2016) introduced a 3D U-Net, where 3D convolu-
tional layers are employed to segment volumetric images. This
model can be easily extended to multi-temporal data, where
the third dimension is interpreted not as depth, but as the tem-
poral domain. Xu et al. (2019) presented a Long Short-Term
Memory (LSTM) multi-modal U-Net, which is a U-Net with
multiple encoder paths designed to process multi-modal data
for the segmentation of brain tumor data. An attempt was made
to increase the learning capabilities of the model by not fusing
the feature extraction of different channels. The decoder con-
catenates information from every encoder path and produces a
segmentation mask. This multi-modal U-Net is applied to dif-
ferent slices of volumetric multi-modal input data. The output
segmentation masks create a sequence of segmentation masks
based on the depth of the image. This sequence is sequentially
input into Convolutional LSTM (ConvLSTM) networks to cap-
ture the sequence dependencies. Therefore, volumetric data is
fully segmented. Rustowicz et al. (2019) employed a 2D U-
Net in combination with a ConvLSTM for crop type segment-
ation using multi-modal and multi-temporal satellite data. The
model has a U-Net type structure, where the encoder first ex-
tracts the features of each channel independently using CNNss,
and these features are each fed into a ConvLSTM. Zhou et al.
(2023) proposed the Swin UNETR model, which also employs
a U-Net architecture with a Swin Transformer as a backbone in
the encoder, enhanced to process volumetric data. Feature ex-
traction of the backbone relies solely on the attention mechan-
ism, whereas CNNs are only employed within residual blocks
in skip connections to refine the features. The decoder concat-
enates features from the feature maps with different resolutions
and upsamples them to the size of the input data. Therefore,
volumetric or multi-temporal data can be fully segmented. Be-
cause this model extracts features using the attention mechan-
ism and can segment multi-temporal data in the original input
size, we selected this model for multi-temporal crack segmenta-
tion. Moreover, to the best of the authors’ knowledge, attention
mechanisms have not yet been applied to multi-temporal crack
segmentation.

Figure 2. Concrete block in the last epoch. This is the last stage
of crack propagation on the concrete block. The preceding 24
images show the incremental crack propagation through time.

3. Materials and Methods

To address the aforementioned research question, a multi-temporal

dataset was created, and a Swin UNETR model was selected to
serve as the foundation for a comparative analysis of mono- and
multi-temporal approaches.

3.1 Dataset

A temporal sequence of images depicting crack propagation is
required to create a multi-temporal dataset for crack segment-
ation. For this purpose, a setup was constructed involving a
vertical concrete slab with an area of 2m? and thickness of
15cm (see Figure 2), which was reinforced and positioned up-
right. A force was applied to the center of the slab, with the
load incrementally increasing by 20 kN at each load stage, re-
ferred to as epochs, until the maximum load was reached. Eight
epochs were recorded before the concrete slab failed. Dur-
ing each epoch, high-resolution RGB images, aligned by refer-
ence points on the concrete slab, were captured using a moun-
ted camera positioned at a specified distance (Backhaus et al.,
2024). This study used 25 images with a resolution of 11664 x
8750 pixels and a ground sampling distance of 0.3 mm from
the final epoch to generate training data. These images are in
temporal order and provide a detailed view of the entire con-
crete block, with the progression of cracks between the images
visible upon visual inspection.

The creation of mono- and multi-temporal datasets can be di-
vided into three phases: labeling, post-processing, and aggreg-
ation. In the labeling phase, because manual annotation of all
images is tedious and extremely time-consuming, a set of three
images was manually annotated and used to train a segmenta-
tion model (auxiliary U-Net) to assist the annotation process of
the remaining 25 images. The post-processing phase involves
the removal of false positives (pencil drawings, concrete pores,
shadows, and cables) and segmentation errors (isolated groups
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Figure 3. Swin UNETR architecture. A 3D Swin Transformer is used as a feature extractor, and in the decoder, the feature maps are
concatenated and upsampled to the original input size. Adopted from (Hatamizadeh et al., 2022).

of pixels smaller than five pixels) in the auxiliary U-Net predic-
tions. Then, morphological operations were applied (closing
with a 3 x 3 kernel), followed by manual cleaning to refine
the crack annotations. Finally, the aggregation phase consists
of fulfilling the model requirements for training, as the multi-
temporal model requires sequences of 32 images (cf. Section
3.2), but only 25 are available. To address this, seven images at
evenly spaced intervals were duplicated to expand the sequence
to 32 images.

To create the multi-temporal dataset, images and correspond-
ing segmentation targets were stacked in temporal order. From
these stacks, non-overlapping spatial patches of size 128 x 128
pixels were extracted, resulting in a total of 5,632 samples, each
consisting of a sequence of 32 consecutive crack propagation
image-target pairs. As expected, there were several samples
without cracks. To balance the dataset, all multi-temporal
samples with cracks were included, and samples without cracks
were randomly selected and removed to achieve a 2:1 ratio of
images with cracks to those without cracks. The training, valid-
ation, and test sets were created at the following proportions:
60%, 20%, and 20%, respectively. To generate the mono-
temporal dataset and ensure that both models have access to
exactly the same data, the multi-temporal samples within the
splits were deserialized. Table 1 shows the dataset statistics.

Sample Crack image Crack pixel

Type size ratio (%) ratio (%)
All 1356 66.7 1.2
Multi- Train 813 66.5 1.2
temp. Val 271 66.8 1.3
Test 272 66.9 1.2
All 43392 40.1 1.2
Mono- Train 26016 40.1 1.2
temp. Val 8672 39.1 1.3
Test 8704 41.3 1.2

Table 1. Statistics for multi-temporal and mono-temporal
datasets.

The sample size of the multi-temporal dataset is 32 times smal-
ler than in the mono-temporal dataset because of sequential
stacking. The deserialization of the multi-temporal dataset
leads to a decreased crack image ratio in the mono-temporal
dataset.

3.2 Methodology

The methodology employed in this study is as follows. First, the
datasets were created and annotated as previously mentioned.
Second, a multi-temporal model was trained to perform the seg-
mentation task on the datasets. Finally, the assessment of the
multi-temporal approach will be quantitative, based on metrics,
and qualitative, based on a visual inspection of the segmenta-
tion results.

We selected the Swin UNETR model for multi-temporal crack
segmentation to extract features from the spatial and temporal
domains using its attention mechanisms.

Swin UNETR: The Shifting Window U-Net Transformer
(Swin UNETR) was introduced by Hatamizadeh et al. (2022)
and extends the Shifting Window Transformer (Swin Trans-
former) (Liu et al., 2021) to perform semantic segmentation
on three-dimensional inputs. This is achieved by combining
a Swin Transformer adapted for three-dimensional inputs with
a U-Net architecture. In Figure 3 the architecture of Swin UN-
ETR is depicted. The input tokens are patches of pixels, which
are embedded into a feature dimension C'in the input layer. The
Swin Transformer then serves as a feature extractor in the en-
coder path, whereas the decoder path reassembles the original
input shape and predicts each voxel using the feature maps pro-
duced by the Swin Transformer. The encoder path features five
downsampling operations, resulting in a reduction of resolution
by a factor of 2° = 32. Therefore the minimum input resolu-
tion of samples is 32 x 32 x 32 pixels. The Swin Transformer
enables dense prediction tasks for the transformer architecture,
which is not feasible in the preceding Vision Transformer (ViT)
(Dosovitskiy et al., 2021), owing to its quadratic computational
cost.

The computational complexity of the Swin Transformer is re-
duced to a linear order by applying the attention mechanism
only in local windows instead of the whole image and shifting
the window configuration to introduce the global context in two
consecutive Swin Transformer blocks. The attention mechan-
ism is embedded within the window-masked self-attention and
shifted-window masked self-attention modules in transformer
encoder blocks, which were presented by Vaswani et al. (2017)
in the original transformer. Patch-merging layers decrease the
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resolution of feature maps in each stage, thereby creating a hier-
archical structure of feature maps that can be used for dense
prediction tasks.

U-Net: The U-Net was introduced by Ronneberger et al. (Ron-
neberger et al., 2015) and features a encoder-decoder structure
employing convolutional down- and up-sampling layers as well
as skip connections. Due to its simple architecture and robust
performance it is often used in crack segmentation (Hamishe-
bahar et al., 2022; Kheradmandi and Mehranfar, 2022) and will
be considered as a baseline. To produce outputs of the same
size as the inputs, padding was aplied in this work.

4. Experimental Setup and Results

In order to compare the mono- and multi-temporal approach
this section will show the different experiments conducted and
draw a conclusion based on the results of the experiments.

4.1 Experimental Setup

Three experiments were conducted by modifying the size and
transformations of the training set. The first experiment ex-
amined the effect of a reduced sample size, where the mono-
temporal training and validation datasets for the U-Net were
matched to the smaller size of the multi-temporal dataset. The
second and third experiments focused on data augmentation
(DA) by applying five transformations (horizontal and vertical
flips, brightness, contrast, and blurring) with a probability of
0.5. The second experiment applied DA to expand the multi-
temporal SwinUNETR dataset, whereas the third applied DA
to the mono-temporal U-Net dataset.

As baselines, the following models were used: a mono-
temporal U-Net (31M parameters) and a multi-temporal Swin-
UNETR (15.7M parameters), both implemented using PyTorch
(Paszke et al., 2019) and trained on a Tesla P100 GPU. We em-
ployed early stopping with a patience of 20 epochs, monitoring
the validation Intersection over Union (IoU) for the crack class,
along with a step learning rate scheduler that adjusted the learn-
ing rate by a factor of 0.1 if the validation loss for the class crack
does not decrease for 10 epochs. For the batch size, a value of
4 was chosen. Both models processed 128 x 128 images owing
to memory constraints. SWinUNETR was taken from the Med-
ical Open Network for Al (MONAI) (Cardoso and et al., 2022)
framework and has an input channel size of 3, an output channel
size of 1, and a feature size C' = 24; otherwise, the configura-
tion is the default one described in the MONAI documentation.

4.2 Results

4.2.1 Quantitative analysis: Table 2 summarizes the res-
ults obtained on the test set in the three experiments and the
baseline models (BL) in terms of different quantitative metrics:
IoU, Precision (P), Recall (R), and F1-score (F1). DS and DA
are the downsampled dataset and dataset with data augmenta-
tion, respectively. We can see that the BL multi-temporal Swin
UNETR outperformed all mono-temporal U-Net models. BL
Swin UNETR achieved the highest metric scores, with an IoU
of 82.7% and an F1-score of 90.5%. Swin UNETR DA (exper-
iment 2) performed only slightly worse than BL Swin UNETR,
a difference that may be attributed to the inner randomness of
each model, given that the metrics are closely aligned. Notably,
the recall is higher in the DA model compared to the BL model.
Overall, both models exhibited similarly strong performance on

Maetrics (%)
IoUT Pt Rt FIT

Exp. Model DS DA

BL U-Net — — 767 87.0 86.6 86.8
BL Swin UNETR — — 82.7 91.9 89.2 905
1 U-Net v — 719 80.5 87.1 837
2  SwinUNETR — v 825 91.2 89.6 904
3 U-Net — Vv 757 86.0 86.3 86.2

Table 2. Results overview. Metrics obtained by the selected
methods in the test set. BL: baseline, DS: downsampled dataset,
DA: dataset with data augmentation.

the test set, with balanced P and R, indicating robust segmenta-
tion capabilities.

The best-performing U-Net on the test set was the BL U-Net
model, which achieved an IoU of 76.7% and an Fl-score of
86.2%. A similar trend is observed in the Swin UNETR models,
where the model trained with DA performs marginally worse
than the BL model on the original dataset. Notably, the F1-
score of the BL model was only 0.63 percentage points higher
than that of the DA U-Net from experiment 3. In contrast,
the U-Net from experiment 1, which was trained on a down-
sampled (DS) set (denoted as DS U-Net), showed a larger per-
formance gap compared to both the BL. model and the DA U-
Net. The IoU and F1-score for the DS U-Net are both more
than 3 percentage points lower than those of the DA U-Net and
BL models. Furthermore, P and R were balanced for all U-
Net experiments, except for experiment 1. In experiment 1, R
was the highest among all U-Net experiments on the original
dataset; however, this model exhibited a lower P compared to
P across all other U-Net experiments. In summary, the results
indicated that the multi-temporal approach consistently outper-
formed the mono-temporal approach across the test set. This
suggests that the multi-temporal model effectively learned the
temporal dependencies between sequential images, leading to
improved segmentation results.

4.2.2 Qualitative analysis: In addition to the metrics, it is
crucial to visually inspect the predictions of both the mono- and
multi-temporal models to assess whether the multi-temporal
model successfully learns temporal dependencies, in contrast
to the mono-temporal model. For this purpose, the predictions
of the baseline models were used.

A brief visual inspection of numerous examples revealed that
the multi-temporal Swin UNETR exhibits superior segmenta-
tion quality, aligned with the expectations set by the metrics.
This improved performance was observed in several aspects.
First, the predictions made by the Swin UNETR were smoother
and contained less noise than those of the U-Net. This suggests
that the Swin UNETR effectively learned the temporal depend-
encies associated with crack propagation, resulting in greater
confidence when consistently classifying the same region of an
image as a crack. Second, although U-Net captures the general
shape of the cracks, it introduces a substantial number of arti-
facts into its predictions. This inconsistency is particularly evid-
ent in Figure 4, where Swin UNETR demonstrates greater con-
sistency in predicting the crack shape and accurately classifying
regions according to crack propagation. In contrast, U-Net’s
predictions vary significantly from image to image, primarily
because of the noisy outputs. Consequently, more segmenta-
tion holes appear in the U-Net predictions, which are signific-
antly less prevalent in those from Swin UNETR. While U-Net
generally captures the edges of cracks well, it often lacks the
same level of detection quality at the center of the cracks.
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Figure 4. Comparison of U-Net and Swin UNETR sequential
predictions. The Swin UNETR produces smoother and more
consistent predictions containing less noise than the U-Net.

U-Net and Swin UNETR demonstrated similar performance on
early stage cracks, as illustrated in Figure 5, where both models
produce consistent predictions that accurately depict the target.
However, thin and low contrast cracks are a challenge for both
models. In the later stages of crack propagation, as shown in
the subsequent images of Figure 5, U-Net’s predictions become
less consistent and exhibit numerous holes not present in the
target. In contrast, the Swin UNETR maintains a high level of
consistency with no holes in its segmentation.

4.2.3 Evaluation of false positives and false negatives:
On the concrete slab, there were several distinct challenges for
both models to handle, such as pencil-drawn numbers, sensors,
cables, thin and low-contrast cracks, and cavities which all
proved to be potential sources for false positive classifications.
By generating the prediction of the entire image of the concrete
slab, we can see whether the models learned to mitigate these
challenges.

The most significant segmentation error is the labeling of the
numbers drawn on the concrete with a pencil as cracks. Visual
inspection of the input images revealed 18 visible numbers in
a single image. By examining the segmentation masks of both
models on the complete images, it is possible to count the num-
bers labeled as cracks by each model, providing insight into
whether the models can differentiate numbers from cracks. In
the final segmentation mask of the Swin UNETR, nine num-
bers are visible, whereas U-Net identifies 17 numbers as cracks
in the figure. This significant difference underscores the in-

U-Net
prediction

Swin UNETR
prediction

Input

~
I

w

=

Uy

Figure 5. Early stage vs. late stage crack segmentation. Both
models perform well on early stages cracks except for thin and
low contrast cracks, which are also seldom in the targets. Only
the Swin UNETR manages to maintain adequate segmentation

quality in later stages of crack propagation.

terpretation that the multi-temporal Swin UNETR has learned
that these numbers do not possess typical crack features such
as propagation over time, and are therefore not cracks. In con-
trast, U-Net relies more on less sophisticated features, such as
the shape and color of the numbers, to determine if they repres-
ent cracks. Some examples of these challenges are presented in
Figure 6. The pencil-drawn number is completely recognized
as a crack by U-Net, as well as parts of the sensor and cable.
On the other hand, Swin UNETR managed to overcome these
challenges; in particular, even thin and low-contrast cracks were
partly segmented. Cavities in the concrete proved to be a source
of noise in the segmentation masks, as both models classified
some cavities as cracks. However, U-Net does this to a larger
extent than Swin UNETR.

Next, there are 10 sensors with cables attached to the concrete,
which present segmentation challenges for the models. Both
models often misclassified the edges of these sensors and cables
as cracks. In examining the segmentation masks, U-Net mis-
classified the edges of nine out of ten sensors as cracks, whereas
Swin UNETR only did this for one sensor. The dark color of the
sensors contributes to this issue because their edges are some-
times mistaken for cracks. The cables attached to the sensors
pose an additional challenge to both models. Their long, thin,
and darker appearance makes it difficult to distinguish them
from the actual cracks. In this case, Swin UNETR outper-
formed U-Net. U-Net incorrectly classified most of the darker
cables as cracks, resulting in a significant false positive. In con-
trast, the Swin UNETR did not cause this error. However, it
misclassifies the edges of the blue cables as long, thin cracks.
The final prominent error observed is the misclassification of
cavities, which appear as small dark holes in concrete. A com-
parison of the segmentation masks reveals that Swin UNETR
has significantly fewer misclassified cavities than U-Net, which
is reflected in the higher IoU of Swin UNETR.

False negatives in this context are cracks which were not iden-
tified by the models. The Swin UNETR has a higher recall than
the U-Net and therefore is able to find more cracks, like in Fig-
ure 6 d). However, it is important to note that the performance
of both models for thin and low-contrast cracks is lower than
that for more common cracks.
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Figure 6. Comparison of segmentation errors. a) Pencil
drawings, b) Sensor, ¢) Cable, d) Thin and low contrast crack, )
Cavities

5. Conclusions

This study examined the effect of multi-temporal data on the
performance of semantic segmentation for crack images. The
Swin UNETR was trained on a multi-temporal crack dataset,
whereas a U-Net was trained on the deserialized version of the
same dataset for comparison. Swin UNETR achieved an IoU
of 82.72% and an F1-score of 90.52%, whereas U-Net resulted
in an IoU of 76.69% and an F1-score of 86.81% on the test set.
This indicates that the multi-temporal approach outperformed
the mono-temporal approach, even when utilizing only half the
parameters compared to U-Net.

The multi-temporal Swin UNETR demonstrated superior seg-
mentation quality compared with the mono-temporal U-Net.
Swin UNETR predictions exhibited greater consistency, re-
duced noise, and enhanced ability to distinguish cracks from
visually similar features in the images. By leveraging the en-
tire time-series data, the multi-temporal model significantly im-
proved its performance in ambiguous image regions, resulting
in more confident predictions. These properties enable a use-
case of multi-temporal segmentation models in SHM in long-
term scenarios. On one hand such models have less false neg-
atives, thereby triggering fewer false alarms and on the other
hand the superior segmentation quality facilitates a better de-
tection of actual cracks. Due to available temporal information,
small and continuous misalignments of images will be learned
by the model, making it easier for deployment in real-life scen-
arios. By employing data augmentation during training, models
can be adapted to be robust against changes to the surface due
to weathering.

In contrast, mono-temporal U-Net encountered several chal-
lenges. It struggled to segment larger cracks without introdu-

cing artifacts, and often produced noisy predictions. Further-
more, U-Net frequently failed to differentiate between actual
cracks and visually similar features, highlighting its limitations
in this specific application. Access to temporal information
proved to be a crucial advantage for the Swin UNETR, enabling
it to make informed decisions based on the evolution of features
over time. This temporal context allowed the model to better in-
terpret ambiguous areas and reduce false positives, resulting in
more accurate and reliable crack segmentation.
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