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Abstract 
We have applied a super-resolution technique to enhance the texture image quality of LOD2 building models. Specifically, we 
adopted SwinIR for upscaling low-resolution images. In order to achieve better results, several approaches for creating training data, 
consisting of pairs of low-resolution and high-resolution image were investigated. The results showed that training with low-
resolution images created by downsampling high-resolution images by a factor of four and then applying blurring and noise 
improved the sharpness of building edge lines in super-resolution images. Training data with augmentation techniques, such as the 
use of random noise and random rotation, are proved to be effective in enhancing super-resolution images. Using the super-resolved 
images, LOD2 building models were created, and a subjective evaluation of the building roof texture quality was conducted. The 
results indicated that for the input images used in super-resolution, 87% of buildings from high-quality aerial photographs and 78% 
from lower-quality photographs were rated as having sharp edges without distortion. Even with limited training data, the developed 
method was able to achieve high-quality super-resolution, regardless of the input image quality, leading to improved texture quality 
in LOD2 building models. 
 
 

1. INTRODUCTION 

Recently, the development of City Digital Twins, which 
replicate urban spaces in virtual environments, has been 
advancing in various countries and cities (Lehtola et al., 2022). 
A City Digital Twin is composed of 3D city models, with 3D 
building models being particularly important components. 
Consequently, there is increasing interest in technologies for the 
automatic generation and updating of 3D building models. 
 
PLATEAU is a project launched by Japan’s Ministry of Land, 
Infrastructure, Transport and Tourism (MLIT) in 2020 to 
promote the use of 3D digital twin models of cities. This project 
aims to advance the digital transformation of urban 
development, including the social implementation of smart 
cities, by establishing, utilizing, and opening to publish 3D city 
models as foundational data (Seto et al., 2023). As part of this 
project, efforts are being made to develop systems for the 
automatic generation and updating of 3D city models to support 
data development in various cities across Japan. Automatic 
LOD2 Building Model Generation Tool, which began 
development in 2022, is a system that automatically generates 
LOD2 building models using input data such as aerial 
photographs, DSM, and building footprint data, and outputs the 
models in CityGML format. LOD2 building models are 
representations that capture the roof structures of buildings 
(Figure 1). 
 

 
LOD 0 LOD 1 LOD 2 Textured LOD 2 

Figure 1. Conceptual diagram of building LOD 
 
The generation of 3D city models in the PLATEAU project 
primarily utilizes survey data, such as aerial photographs, 
provided by local governments. The textures of the 3D models 
generated by Automatic LOD2 Building Model Generation 
Tool are based on these aerial photographs. As a result, 

depending on the input data, there may be cases where the 
resolution is low, leading to concerns about texture quality. 
As the utilization of 3D city models expand, the demand for 
higher quality textures is increasing. Consequently, there is a 
need to explore methods for enhancing the resolution of these 
textures to support broader utilization. Enhancing the visibility 
of 3D building textures is expected to enable more realistic 
representations of urban landscapes and expand the application 
of 3D urban models beyond local governments and the mapping 
industry. Potential uses include visualization for events, 
interactive advertisements, and entertainment, promoting the 
development and utilization of 3D city models. 
 
Moreover, increasing the resolution of aerial photographs used 
in LOD2 building models may contribute to improved accuracy 
in 3D shape reconstruction. Recent approaches to detecting 
building footprints and roof edge lines from aerial and satellite 
imagery increasingly rely on deep learning-based methods 
(Alidoost et al., 2019), (Yu et al., 2021) and (Jeong and Kim, 
2021). Therefore, as the resolution of the input aerial images 
increases, the performance of automatic roof shape recognition 
is expected to improve, enabling the automatic generation of 
more detailed 3D models. 
 
Efforts to apply super-resolution (SR) techniques using deep 
learning for the extraction of urban features have been actively 
pursued. Guo et al. (2019) employed SR techniques to generate 
high-resolution (HR) images from satellite data, improving the 
accuracy of building semantic segmentation. Panangian et al. 
(2024) addressed the SR of low-resolution (LR) DSMs, noting 
their applicability in 3D urban modeling and planning. 
 
In this study, we developed a method to enhance the texture 
quality of LOD2 building models from aerial photographs by 
applying SR techniques to upscale HR images. Several cases 
were investigated regarding the creation of SR training data and 
training conditions, with a focus on achieving effective SR even 
with limited training data. Additionally, 3D building models 
were generated using SR images, and the quality of the building 
textures was evaluated. 
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2. METHODOLOGY 

2.1 Selection of the SR Method 

Single image SR is a technique for reconstructing HR images 
from a single HR image and is considered a classical problem in 
computer vision and image processing. As a fundamental issue 
in image restoration, SR has been applied to various scenarios. 
 
The first SR method using deep learning was SRCNN (Dong et 
al., 2014) and (Dong et al., 2016), which employed CNNs for 
feature extraction while learning to minimize the mean squared 
error between the generated images and the ground truth. This 
method, however, struggled to restore fine details and often 
produced blurred images. Subsequently, SRGAN was 
introduced, achieving 4x SR of input images and generating 
more photorealistic images through the use of GANs (Ledig et 
al., 2017). However, one limitation of SRGAN was the 
appearance of unwanted artifacts when there was a significant 
difference between the training and testing data. 
 
ESRGAN was proposed by Wang et al. (2018) to address the 
challenges of SRCNN and SRGAN. This approach improves 
upon the key components of SRGAN, particularly the network 
architecture and perceptual loss function. ESRGAN's network 
introduces the Residual in Residual Dense Block (RRDB) as its 
fundamental building block. The RRDB is deeper and more 
complex than SRGAN's residual blocks, based on experimental 
evidence that increasing layers and connections enhances 
performance. 
 
SwinIR is an image restoration method based on the Swin 
Transformer architecture (Liang et al., 2021). The architecture 
of SwinIR is composed of the following three stages: 

i) Shallow Feature Extraction: In the first stage, the 
features of the LR image are extracted using a simple 
convolutional layer (shallow network). 

ii) Deep Feature Extraction with RSTB: The core of 
SwinIR's architecture lies in the deep feature extraction 
phase, which uses Residual Swin Transformer Blocks 
(RSTB). The features extracted in step i) are processed 
through multiple RSTBs, which consist of Swin 
Transformer layers augmented with residual 
connections. Each Swin Transformer layer uses shifted 
windows to perform self-attention, which allows 
capturing both local and long-range dependencies. 

iii) Image Reconstruction: After deep feature extraction, 
SwinIR reconstructs the high-quality output image. A 
reconstruction layer, typically a series of convolution 
layers, is applied to the deep features to generate the 
restored image. This reconstruction layer uses the 
extracted and processed features from the RSTBs to 
produce the final output. 

 
Compared to traditional CNN-based methods, SwinIR excels by 
leveraging local attention and long-range dependencies through 
shifted windows, enabling it to restore high-quality images with 
fewer parameters and enhanced efficiency. 
 
While SwinIR demonstrated strong performance in image 
restoration tasks, its architecture was limited by the window-
based self-attention mechanism, which primarily focused on 
local dependencies. As a result, it struggled to effectively 
capture long-range dependencies, which are crucial for 
comprehensive image restoration in HR tasks. 
 

To address the limitations of SwinIR, Hybrid Attention 
Transformer (HAT) introduces a hybrid attention mechanism 
that combines channel attention and window-based self-
attention (Chen et al., 2023). Additionally, it incorporates an 
overlapping cross-attention module to enhance the interaction 
between neighboring window features. This design enables the 
activation of more pixel information and allows the model to 
capture long-range dependencies more effectively. Furthermore, 
HAT leverages a same-task pre-training strategy to improve 
training efficiency. As a result, HAT outperforms SwinIR, 
particularly in HR tasks like SR and noise reduction, by 
utilizing a broader range of pixel information and producing 
higher-quality restoration results. 
 
Diffusion models were first proposed in 2015, with a refined 
version introduced in 2020. SR techniques based on diffusion 
models reconstruct HR images through a denoising process, 
where noise is incrementally added to HR images and then 
removed in reverse to recover fine details. Since 2022, 
specialized methods utilizing diffusion models for SR tasks 
have emerged.  
Notable methods include: Super-Resolution via Repeated 
Refinements (SR3, Saharia et al., 2022), Latent Diffusion 
Models (LDMs, Rombach et al., 2022), and DifferIR (Li et al., 
2023). Compared to GAN-based techniques, these models have 
the capability to reduce artifacts and avoid issues such as mode 
collapse, which are common in GAN-based approaches. 
 
In this study, SwinIR was adopted due to its excellent balance 
between computational efficiency and performance, making it 
widely used in industrial applications and various research 
fields. SwinIR is characterized by its ability to produce high-
quality images with fewer artifacts compared to CNN-based 
methods. Additionally, compared to state-of-the-art approaches 
such as HAT and diffusion model-based SR, SwinIR offers 
higher computational efficiency, making it a more practical 
solution 
 
2.2 Framework of the SR method for LOD2 building 
textures 

Figure 2 illustrates the data flow for aerial image SR and LOD2 
building model generation. For SR training, pairs of HR aerial 
images and their corresponding LR counterparts, obtained by 
downsampling the HR images by a factor of four, are used to 
train a SR model. 
 
Next, HR aerial images captured for LOD2 building models are 
converted into SR images using the trained model. The SR 
images, along with DSM, building footprints, and 
interior/exterior orientation parameters, are input into the 
Automatic LOD2 Building Model Generation Tool to generate 
textured LOD2 building models. 
 
This system consists of five functions: i) data input functionality, 
ii) model element generation, iii) topological consistency check 
and correction, iv) texture image mapping: the function of 
pasting aerial photographs to LOD2 building models, and v) 
CityGML output functionality. Each function operates 
independently, and the input data is processed sequentially from 
i) to v). The input data for this tool includes aerial photographs 
(central projection), interior orientation parameters, exterior 
orientation parameters, DSM, and building footprint from 
LOD1 CityGML. It is assumed that the DSM is pre-generated 
from aerial photographs using SfM/MVS software. The tool 
requires aerial photographs with the following specifications: a 
ground sampling distance (GSD) of 25 cm, overlap rate of 
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≥60%, and side-lap rate of ≥30%. These imaging conditions are 
typically used by local governments for urban planning surveys. 
The source code is publicly available on GitHub (PLATEAU, 
2022). 
 

 
Figure 2. Framework of the SR method for LOD2 building 
textures. 
 

3. EXPERIMENTS 

3.1 Datasets and Preparation 

The data used in the experiment consists of aerial photographs 
taken in six regions within Japan shown in Table 1. In the 
experiments described in the following Sections 4.1 and 4.2, 
datasets D1 and D2 were used for SR training, while datasets 
D1 through D4 were used for training in the LOD2 modeling 
visibility verification task described in Section 4.3. Data D1 to 
D4 are for training and validation, while D5 and D6 are for 
testing. One of the test datasets, D5 (Kawasaki region), has the 
best image quality (Figure 5a). On the other hand, the other test 
dataset, D6 (Mitaka B region), has relatively poor quality due to 
atmospheric conditions with high water vapor (Figure 5g).  
 

# Train/Val 
/Test Region GSD 

(cm) 
Number 

of imeges 
D1 Train/Val Mitaka A 7.5 16,928 
D2 Train/Val Nara 7.5 16,928 
D3 Train/Val Itabashi  5.0 7,084 
D4 Train/Val Saitama 5.0 4,476 
D5 Test Kasawaki 25.0 33,793 
D6 Test Mitaka B 25.0 1,190 

Table 1. Overview of the datasets used in the experiment 
 
In general, training for SR requires HR images and 
corresponding HR images downsampled from the HR images 
by a factor of four. In this study, we downsampled aerial photos 
with a resolution of 5.0–7.5 cm by a factor of four to create LR 
images. The size of the LR images was 120 x 120 pixels, while 
the HR images were 480 x 480 pixels. 
 
In certain cases, such as the data from D6 (Mitaka B region), 
aerial photographs captured during periods of high atmospheric 

water vapor can result in blurred or smeared images. To address 
degraded image quality, we also prepared datasets with 
simulated blurring and noise effects. 
 
The LR dataset consists of the following types of images: 
 Downsampled images: HR images (Figure 3a) were 

downsampled by a factor of four to generate LR images 
(Figure 3b). 

 Blurred images: HR images were first downsampled 
by a factor of 5-6 and then upsampled back to the 
original 4x scale. For example, an HR image with a 
resolution of 7.5 cm was first downsampled to 40 cm 
and then upsampled to 30 cm, creating a blurred effect 
(Figure 3c). 

 Blurred and noise-added images: In addition to 
blurring, Gaussian noise was added. Two versions of the 
images were created with σ = 1.0 and σ = 1.5 noise 
levels in pixel count, and these were randomly selected 
for the dataset (Figure 3d). 
 
(a) HR image (b) LR image 

  
(c) LR image (blur) (d) LR image (Nosise) 

  
Figure 3. Example of training image: (a) HR image, (b) LR 
image with only downsampling processing, (c) LR image with 
blur processing, (d) LR image with blur and noise addition 
processing 
 
3.2 Training Cases and Conditions 

The HR images were paired with the LR images created in 
Section 3.1, and training was conducted using SwinIR. The 
training was performed with a batch size of 32, 32 workers, and 
200,000 iterations. The Adam optimization algorithm was 
employed. 
Data augmentation included paired random cropping, random 
horizontal and vertical flips, random transposition, and random 
color transformation, which were applied to all cases. As 
optional augmentations, random noise addition and random 
rotation were applied. The random color transformations were 
applied randomly to adjust brightness, saturation, hue, and 
gamma correction. Gaussian noise (σ=15) was used for random 
noise addition. Table 2 shows the five training cases conducted 
for comparison. 

# 
LR image 
processing Data augmentation 

Blur Noise 
addition 

Random 
noise 

Random 
rotation 

Case 1 - - ✓ ✓ 
Case 2 ✓ - ✓ ✓ 
Case 3 ✓ ✓ ✓ ✓ 
Case 4 ✓ ✓ ✓ - 
Case 5 ✓ ✓ - ✓ 

Table 2. Training cases 

HR images Train dataset 
LR Images 

SR model 
aerial photographs  

LR Images 

aerial photographs  
SR Images 

DSM,  
Building footprint,  

Interior/exterior orientation 
 parameters 

Automatic LOD2 Building 
Model Generation Tool 

Downsampling  
with blur and noise 
additon processing 

SR-LOD2  
building model 

Train dataset 
HR Images 

Data Flow in SR Training 

Data Flow  
in LOD2 Building  
Model Generation 
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3.3 Evaluation Method 

The model's performance was evaluated both quantitatively and 
qualitatively with D5 (Kawasaki region) and D6 (Mitaka B 
region) in Table 1. For the quantitative evaluation, we used two 
widely adopted metrics in SR research: Peak Signal-to-Noise 
Ratio (PSNR) and Structural Similarity Index (SSIM, Wang et 
al., 2004), to assess image quality. PSNR measures the ratio 
between the maximum possible power of a signal and the noise 
that causes degradation. SSIM assumes that the similarity of 
image structures plays a significant role in how humans 
perceive image quality degradation. SSIM compares the 
luminance, contrast, and structure of the original and decoded 
images, resulting in a value between 0 and 1, with values closer 
to 1 indicating higher similarity. 
 
For the qualitative evaluation, we assessed the clarity and 
resolution of the images, focusing on whether the images were 
enhanced, and whether the edges of building outlines and ridges 
were sharpened or distorted. Additionally, we evaluated the 
quality of the texture images of the LOD2 building models 
created from SR images (see Section 4.2) based on whether the 
edges were sharpened and free of distortion. The evaluation was 
conducted through human assessment using a three-tier ranking 
system: Rank A (improvement), Rank B (no improvement), and 
Rank C (deterioration). 
 
The characteristics related to the fineness and sharpness of the 
edges in the texture of building models could be described as 
roughness. However, in this study, it refers to a different 
concept from that defined in ISO 25178, which mainly concerns 
to the three-dimensional evaluation of physical surface 
roughness. The assessment was conducted through subjective 
evaluation. 
 

4. RESULTS AND DISCUSSION 

4.1 Quantitative evaluation 

The results of the quantitative evaluation are shown in Table 3. 
The highest PSNR was observed in Case 5, while the highest 
SSIM was achieved in Case 1. The SR images of the validation 
data showed good HR reconstruction across all cases, with no 
significant differences in quality between them (Figure 4). 
Focusing on the buildings, the SR image quality of Case 1, 2, 
and 3 is satisfactory, whereas Case 4 shows edge distortions, 
and Case 5 exhibits artificial noise. These observations are not 
entirely consistent with the PSNR and SSIM results. The 
quantitative evaluation metrics used in this study are primarily 
designed to assess pixel-level similarity in images and do not 
fully reflect human visual perception. As a result, discrepancies 
between the quantitative evaluations and visual differences, 
such as edge distortions and texture details, are observed in the 
sample images. 
 

# PSNR SSIM 
Case 1 21.820  0.691  
Case 2 22.118  0.603  
Case 3 21.364  0.568  
Case 4 21.488  0.586  
Case 5 23.716  0.597  
Table 3. Quantitative evaluation 

 
 
 
 
 
 

(a) HR image (b) Case1 (c) Case2 

   
(d) Case3 (e) Case4 (f) Case5 

   
Figure 4. SR results of the validation images 

 
4.2 Quality evaluation 

4.2.1 Comparison of Results Based on Input Image 
Quality 
 
The SR results for the test images are shown in Figure 5. Figure 
5a to 4f represent the results for the D5 (Kawasaki region), 
where the input image quality is high, while Figure 5g to 4l 
represent D6 (Mitaka B region), where the input image quality 
is lower. In D5 (Kawasaki region), Case 1 shows successful SR 
(Figure 5b), and in Cases 2 and 3, the building ridgelines and 
other edges are sharper than in Case 1 (Figure 5c, d). Although 
the edges in Cases 4 and D5 are slightly blurred, SR was still 
achieved (Figure 5e, f). It was observed that when the input 
image quality is high, the variations in results attributable to 
different training conditions are minimal. 
 
4.2.2 Comparison of Results Based on Training 
Conditions for Low-Quality Images 
 
The results based on different training conditions for low-
quality images were compared. First, the impact of different 
methods of creating LR data was examined. In Case 1, the SR 
image showed only a slight change in brightness, with the 
overall image remaining blurred and not adequately super-
resolved (Figure 5h). In Case 2, where blurring was applied to 
the LR image, the SR result showed sharper edges (Figure 5i). 
In Case 3, where both blurring and noise were applied to the LR 
image, the edges became even sharper, and distortions were 
minimized (Figure 5j). These results suggest that when the input 
image is blurred, applying blurring and noise to the LR image 
can lead to better SR outcomes, with Case 3, which included 
noise, yielding the best results. 
 
The results based on different data augmentation techniques 
were compared. In Case 4, where random rotation was not 
applied as part of the data augmentation, the building edges 
showed significant distortion, with artificial noise appearing 
(Figure 5k). Edge distortion tends to occur when the main 
ridgeline direction of the building does not align with the pixel 
direction of the image (Figure 6). Figure 6a shows edge 
distortion in Case 4 ranked in three levels: A, B, and C. Regions 
where the building roof edges align with the pixel direction (the 
upper area of Figure 6a, Figure 6b) received higher evaluations, 
while regions with an angular offset between the pixel direction 
and roof edges (the lower area of Figure 6a, Figure 6c) received 
lower evaluations. This can be attributed to insufficient 
variation in the training data with respect to the orientation of  
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Figure 5. SR results of the test images 

building contours and ridgelines. In contrast, Case 3, which 
included data augmentation with random rotation, showed 
improved performance, highlighting the importance of 
incorporating rotation in data augmentation to cover a wide 
distribution of orientations. 
In Case 5, where random noise data augmentation was not 
applied, significant distortion of the building edges occurred, 
and artificial noise became more pronounced compared to Case 
4 (Figure 5l). It was found that incorporating random noise in 
data augmentation was highly effective in suppressing noise. 
 

(a) (b) 

 

 
(c) 

 
Figure 6. SR results and evaluation of Case 4 (D6): (a) Building 
edge quality assessment results, (b) Results without edge 
distortion (left:input, right:SR image), (c) Results with distorted 
edges (left:input, right:SR image) 
 

4.3 Quality Evaluation of Roof Textures in LOD2 Building 
Models 

LOD2 building models were created using SR images, and the 
texture quality of the building roofs was evaluated. The 3D 
models were generated using the Automatic LOD2 Building 
Model Generation Tool. Case 3, which produced the sharpest 
edges with minimal distortion, was adopted for training. The 
evaluation was conducted using two test datasets: D5 (Kawasaki 
region) with higher image quality, and D6 (Mitaka B region) 
with lower image quality. The number of buildings evaluated 
was 544 in D5 and 1133 in D6. Figure 7 shows the models from 
the D5 (Kawasaki region) validation region, while Figure 8 
presents examples of the LOD2 models generated from the 
original images and the SR images. Compared to LR-LOD2 
building models, SR-LOD2 building models demonstrated 
improved visibility of rooftop features and sharper edges. 

 
Figure 7. Overview of LOD2 Building Models in D5 (Kawasaki 

region) 
 

rank A
rank C

rank B

(a) (b) (c) (d) (e) (f) 

(g) (h) (i) (j) (k) (l) 
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Figure 8. Example of LOD2 building model with SR textures 
(left: LR-LOD2 building models, right: SR-LOD2 building 
models) 
 
As a result of the evaluation (Figure 9) with heigher image 
quality, 87% of the buildings were ranked as A. In D6 (Mitaka 
B region) with lower image quality, 78% were ranked as A. 
Although there is a 9-point difference between the two, high-
quality SR images with sharp, distortion-free edges were 
generated at a high rate, regardless of the image quality. 
Focusing on Rank C, less than 1% of images in D5 (Kawasaki 
region) fell into this category, compared to 2% in D6 (Mitaka B 
region). In D6 (Mitaka B region), edge distortions were 
observed in some buildings. 
 

 
Figure 9. Quality evaluation results of LOD2 building model 
with SR textures 
 

5. CONCLUSION 

In this study, a SR model using SwinIR, specialized for aerial 
images, was developed to enhance the texture quality of LOD2 
building models. We successfully achieved satisfactory SR 
results, even for low-quality datasets. To accomplish this 
achievement, we examined different methods for creating LR 
images used for training and explored various data 
augmentation techniques, comparing the results. It was 
observed that applying blurring and noise after downsampling 
HR images by a factor of four led to sharper results in SR 
images. Among the data augmentation methods, both random 

rotation and random noise were found to be particularly 
effective. 
This study successfully improved texture quality through the 
use of SR images. This study primarily focused on qualitative 
assessments of image quality. Future work should examine the 
contribution of SR images to the performance of automatic 
roofline extraction for creating LOD2 building models. To 
confirm the generalization capability of the SwinIR model, 
aerial images from a broader range of regions and images 
captured under different shooting conditions should be used for 
validation. In this study, a direct comparison with other 
advanced SR techniques, such as diffusion-based models, was 
not conducted. Future research will address this by evaluating 
the performance and computational efficiency of SwinIR 
against state-of-the-art methods. 
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