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Abstract

The rapid advancement of the metaverse, digital twins, and robotics underscores the demand of low-cost, portable
mapping systems for reality capture. Current mobile solutions, such as the Leica BLK2Go and lidar-equipped
smartphones, either come at a high cost or are limited in range and accuracy. Leveraging the proliferation and
technological evolution of mobile devices alongside recent advancements in lidar technology, we introduce a novel,
low-cost, portable mobile mapping system. Our system integrates a lidar unit, an Android smartphone, and a GNSS-
RTK stick. Running on the Android platform, it features lidar-inertial odometry built with the NDK, and logs data
from the lidar, wide-angle camera, IMU, and GNSS. With a total bill of materials (BOM) cost under $2,000 and a
weight of about 1 kilogram, the system achieves a good balance between affordability and portability. We detail the
system’s design, multisensor calibration, synchronization, and evaluate its performance for 3D reconstruction, focusing
on tracking and mapping accuracy. To further contribute to the community, the system’s design and software will be
made open source.

1. Introduction

Service robots, immersive games, and digital twins all re-
quire rapid and accurate modeling of real-world scenes.
Mobile mapping has grown in importance, especially
in applications like automated construction, where it
has proven highly valuable. With decreasing costs and
shrinking form factors of lidars, many portable map-
ping systems have emerged, such as Hovermap and Leica
BLK2GO. However, these systems often face limitations
in terms of size, weight, and power (SWaP), and costs.

One major reason for the high costs of these devices
is their reliance on customized displays and computing
units. In contrast, Android phones serve as an ideal ex-
ample of mobile computing, dominating a large share of
the mobile device market. Driven by strong consumer de-
mand, Android phones continually advance, introducing
features such as wireless debugging, Ethernet tethering,
high-resolution touchscreens, built-in batteries, wireless
connectivity, and wide-angle cameras (≥90◦). Addition-
ally, rapid technological advancements have led to signi-
ficant e-waste, as many used phones are discarded. We
believe that developing a mobile mapping system on an
Android phone can not only reduce the bill of materials
(BOM) but also offer an environmentally friendly solu-
tion.

With this goal in mind, we develop a mobile mapping
system based on the Android platform. Our proto-
type (Fig. 1) integrates a low-cost lidar with a medium-
∗ Corresponding author

cost Android phone and includes a GNSS-RTK mod-
ule for accurate georeferencing. Leveraging the Android
phone’s built-in capabilities—computing power, touch-
screen, camera, and wireless communications (Bluetooth
and 4G), the system offers a compact design with a cost
below $2000, weighing approximately 1 kg, making it
suitable for handheld operation of extended periods. To
our knowledge, this is the first kind of mobile mapping
system based on a smartphone with a long range lidar.

On the software side, our system features a logging mod-
ule that records data from the camera, IMU, GNSS-RTK,
and lidar, as well as a lidar-inertial odometry (LIO) mod-
ule for real-time pose tracking and mapping. The system
is developed in Java using the Android API and Java
native interface (JNI). For performance, message passing
and LIO are implemented in C++ using ROS1 packages,
compiled with the native development kit (NDK).

To show the usefulness of the system, we design a calib-
ration procedure to synchronize and calibrate the multi-
sensor system. By experiments, we evaluate the calib-
ration quality, computation efficiency, and the tracking
and mapping accuracy with the captured data online and
offline.

The following sections are organized as follows. Section 2
reviews related portable mobile mapping systems. Sec-
tion 3 details the system design, implementation, and
calibration procedures. In Section 4, we present the cal-
ibration evaluation and quantitative results for tracking
and mapping. Finally, Section 5 summarizes our find-
ings.
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Figure 1. The CAD model (left) and prototype (right) of
the Livox-Phone mobile mapping system.

2. Related Work

In this section, we briefly overview existing mobile map-
ping systems utilized for 3D reconstruction and mapping
purposes. These systems leverage a variety of sensor
technologies, including laser scanning, visual odometry
and integrated GNSS/IMU solutions. Table 1 present
comparative analysis of representative mobile mapping
systems alongside our proposed system.

A variety of platforms have been researched over the
years. Wildcat (Ramezani et al., 2022) introduced a 3D
lidar-inertial SLAM system featuring a rotating 3D lidar
on a motor. The system later evolves into the commercial
product Hovermap STX 1 for accurate mapping. OR-
LIM (Cong et al., 2024) presents a rotating lidar-based
mapping system, incorporating a lidar-inertial odometry
(LIO) module with an efficient surfel-map smoothing
(SMS) module. In contrast, Cui et al. (2024) intro-
duced a 3D mapping system in which both the LiDAR
and IMU are mounted on a motor, rotating together as
a unit. Meanwhile, Hamesse et al. (2024) proposed a
helmet-mounted mobile mapping system with a Livox
Mid360 lidar. Additionally, the iPad mapper (Teo and
Yang, 2023) utilizes the iPad Pro’s lidar sensor to collect
data under various scanning conditions, and assesses the
sensor’s accuracy and potential for generating 3D BIM
models.

Other studies, such as De Geyter et al. (2022), have com-
pared various data acquisition techniques within laser
scanning processes, with a particular emphasis on their
semantic segmentation capabilities for BIM modeling.
In Hu et al. (2023), a novel robot-assisted mobile laser
scanning approach is introduced, integrating SLAM al-
gorithms with legged robot motion control and pathfind-
ing for automated 3D reconstruction and point cloud se-
mantic segmentation. Luo et al. (2023) proposes an auto-
mated and efficient indoor mapping method that util-
izes low-cost mobile laser scanner (MLS) point clouds,
enhanced by architectural skeleton constraints. Mean-
while, Pantoja-Rosero et al. (2023) employs five syn-
chronized cameras in an image-based pipeline for cre-
1 https://emesent.com/emesent-product/hovermap-series/

ating geometrical digital twins (GDTs) of stone ma-
sonry elements. Lastly, Wang et al. (2023) introduces a
fast image processing software designed for single-board
computers (SBCs), utilizing a low-cost laser rangefinder,
camera, and Raspberry Pi for civil structural health mon-
itoring.

In addition to systems developed for research, there
are many consumer-grade, assembled mobile mapping
systems available (Fig. 2). For instance, the Leica
BLK2GO2 is a handheld imaging laser scanner that cre-
ates a 3D digital twin as users walk through an area. The
CHCNAV RS103 integrates GNSS-RTK, laser scanning,
and visual SLAM into a single platform that enhances
the efficiency and accuracy of indoor and outdoor 3D
scanning and surveying. The Share SLAM S104 features
a 20-degree tilted lidar setup, dual cameras with a 135◦

field of view (FOV), and an RTK positioning module.
Also, this system enables real-time previewing of point
clouds on smartphones.

To our knowledge, these products are often too costly
to average mapping users, limiting their availability.
Moreover, unlike the above systems, our design lever-
ages the smartphone for data processing and visualiza-
tion, thereby reducing the material cost.

Figure 2. Hardware designs of related portable mobile
mapping systems.

3. Livox Phone for Mobile Mapping

This section describes our system design, implementa-
tion, and the calibration and synchronization procedures.

3.1 Hardware

The proposed mobile mapping system comprises a casing,
an Android phone, a Livox Mid360 lidar, a GNSS-RTK
stick, and a tripod. The casing houses the lidar battery,
connectors, and a switch. The Android phone is chosen
to be a mid-range model for a good balance between
2 https://shop.leica-geosystems.com/leica-blk/blk2go
3 https://www.chcnav.com/product-detail/rs10
4 https://www.shareuavtec.com/S10

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-375-2025 | © Author(s) 2025. CC BY 4.0 License.

 
376



Product Year Lidar type Camera type Cost Weight Display GNSS-RTK
Leica BLK2GO 2019 Laser scanner 3 cameras $55635 775 g Desktop
Wildcat 2022 Velodyne VLP16 4 cameras >$4000 - Desktop
iPad mapper 2023 Flash lidar sensor 1 camera $1299 685 g iPad
OR-LIM 2024 Velodyne VLP16 1 fisheye >$4000 - Desktop
3D Helmet 2024 Mid360 2 OAK-D Pro W >$2000 - Desktop
Chcnav RS10 2024 Pandar XT16 alike 3 cameras $14000 1.9 kg Desktop ✓

Share SLAM S10 2024 Mid360 2 wide-angle $8000 1.01 kg Phone ✓

Ours 2024 Mid360 1 wide-angle $2000 1 kg Phone ✓

Table 1. A summary of some related mobile mapping systems.

computing power and cost. The GNSS-RTK stick, sold
by Woncan in Wuhan, China, connects to the phone via
Bluetooth. The lidar is linked to the phone through an
RJ45-to-Type-C converter. All components are securely
attached with standard screws as needed.

The Mid360 lidar was selected for its RJ45 connector,
ability to modify its static IP address to a specific sub-
net, and open-source driver, making it compatible with
Android via NDK. An alternative lidar model with sim-
ilar features, like the Ouster OS2, can also be integrated,
since it has the RJ45 connector and an open-source driver
(so we can port it to Android easily). The Mid360 in-
cludes an internal IMU, which we use in subsequent tests.
Alternatively, the smartphone’s internal IMU can serve
as a backup when the lidar does not have a built-in IMU.

In our design, the Mid360 lidar of 360◦×59◦ FOV is
angled downward to increase its overlap with the smart-
phone’s rear camera. The smartphone is also slightly
tilted to capture more of the floor area. For reference,
the Redmi K60 Pro’s rear camera has a FOV of 72◦×45◦,
while the Samsung Galaxy S22+ offers a wider FOV of
102◦×70◦.

3.2 Software

The system’s software consists of several core modules
that support an Android app. These modules include
lidar-inertial odometry, a multisensor logger, ROSJava
for message passing, and screen display. For real-time
motion tracking, we use Faster-LIO (Bai et al., 2022)
due to its efficiency (see Section 4). ROSJava facilitates
message passing, ensuring easy message handling and ex-
tensibility.

The multisensor logging module captures data from all
sensors, including the GNSS-RTK, camera, lidar, and
IMUs. Camera images at a resolution of 1280×720 are
recorded at 30 Hz, while the phone’s IMU data are logged
at 200 Hz. The Mid360 IMU data are also recorded at
200 Hz, with lidar data logged at 10 Hz.

All logged data are timestamped with both host times
and sensor times. Camera and phone IMU data are ori-
ginally timestamped with system boot times (Huai et al.,
2019). The intervals between consecutive camera and
phone IMU system boot timestamps are remarkably reg-
ular, thus they can be considered sensor times. Addi-
tionally, we record the Unix timestamps at the moment
these data are received. By retouching the Livox ROS

driver2, we log both the unix time (host time) and sensor
time for the Mid360 laser and IMU data. With jittering
host times and regular sensor times, we can use the con-
vex hull algorithm (Zhang et al., 2002) to smooth out
timestamp jitter in the local host time, either in a causal
manner or in batch processing.

The app was developed in Java on Android 11. C++
code for lidar data reading, recording, and processing
is handled with ROS1 packages, built with NDK and
accessed via ROSJava in Android. Image and point cloud
display use the OpenGL-based renderers.

3.3 Multisensor Calibration

The calibration process consists of multiple steps: cal-
ibrating the smartphone’s wide-angle camera, spatio-
temporal calibration between the rolling shutter (RS)
camera and the IMU, temporal calibration between the
LiDAR and the IMU, and spatial calibration between the
LiDAR and the camera.

Wide-angle camera calibration requires holding the
device to capture images at a number of stationary poses
(50 in our tests) in front of a calibration board, such as
an AprilGrid. Static frames are then extracted from the
recorded video by analyzing framewise optical flow. The
Kalibr toolkit (Maye et al., 2016) then processes these
static frames to estimate the camera’s intrinsic paramet-
ers. By default, our app locks the camera focus at infin-
ity, resulting in a fixed focal length.

To calibrate the RS camera and the IMU, we use the
RS variant of Kalibr (Huai et al., 2022) to estimate both
the extrinsic parameters and time offset between the two
sensors. This approach uses continuous-time B-splines
with 50 Hz pose knots to represent the trajectory, op-
timizing it along with the calibration parameters based
on calibration board observations and IMU data. Sev-
eral in-motion sequences, each lasting about 60 seconds,
are recorded indoors by moving the device in front of the
calibration board. Exposure time is locked at 5 ms to
minimize motion blur.

For lidar-IMU calibration, we use the same data se-
quences as for the RS camera-IMU calibration and pro-
cess the lidar data with KISS-ICP (Vizzo et al., 2023).
Then, we estimate the time offset and relative rotation
using a correlation-based method. This method first es-
timates the time offset by correlating the norms of the
IMU’s angular rates with those computed from the lidar
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odometry, then solves for the relative orientation using a
truncated least squares approach.

For LiDAR-camera extrinsic calibration, we collect mul-
tiple stationary sequences with the device on a tri-
pod positioned in environments rich in linear features.
From each sequence, two seconds of LiDAR data are
aggregated and paired with a corresponding image.
These scan-image pairs are then processed using the
livox camera calib tool (Yuan et al., 2021) to estimate
the LiDAR-camera extrinsic parameters.

4. Experiments

This section evaluates our system’s calibration qual-
ity, tracking performance, and mapping accuracy. For
our prototypes, we used two pre-owned smartphones: a
Redmi K60 Pro (released in 2023) and a Samsung Galaxy
S22+ (released in 2022).

4.1 Calibration Evaluation

We ran the calibration procedure described in Section 3.3
and evaluated the calibration accuracy of parameters
between sensors.

Five in-motion sequences were captured for each phone.
To minimize sequence correlation, the app was termin-
ated and restarted before each recording. To assess the
repeatability of calibration, we collected two datasets for
the S22+ device in January 2025 and February 2025. We
calculated the sample standard deviations of the estim-
ated camera rotation relative to the Livox IMU, RIC ;
the camera position relative to the IMU, pIC ; and the
lidar rotation relative to the IMU, RIL. These results
are listed in Table 2.

As shown in the table, the nonlinear optimization-based
RS camera-IMU calibration produced very consistent
results. Time offsets between the phone camera and
Livox IMU showed good repeatability across different
app runs. The correlation-based approach also yielded
reliable rotation estimates. However, the time offsets
between the Livox lidar and IMU exhibited slightly lar-
ger variations, though within 5 ms. Optimization-based
calibration methods could further improve these results.
Despite our efforts to tune the lidar-IMU calibration tool
lidar IMU init (Zhu et al., 2022), it consistently abor-
ted before completing extrinsic initialization on our se-
quences.

The mean time offsets between the camera and the Livox
IMU, as well as between the lidar and the Livox IMU,
computed from these motion sequences, are listed in
Table 3. These offsets up to 20 milliseconds, show the
necessity of temporal calibration for achieving accurate
mapping.

To quantitatively assess the lidar-camera extrinsic cal-
ibration, we project an aggregated stationary lidar scan
onto the corresponding image. As shown in Fig. 3 for
the S22+, the color of the lidar points (which encodes
depth) changes distinctly at depth discontinuities, indic-
ating accurate extrinsic calibration between the camera
and the lidar.

Table 2. Sample standard deviations for the camera-IMU
and lidar-IMU extrinsic calibrations. Here, p and R

represent the relative position and rotation, respectively;
td denotes the time offset, and d indicates the rolling

shutter line delay.

camera-
IMU

σ(pIC)
(mm) σ(RIC)(◦) σ(td)(µs) σ(d)

(µs)
K60Pro 7.94 0.12 675.53 2.15

S22+ Jan 1.16 0.05 603.87 0.27
S22+ Feb 0.51 0.02 445.57 0.38
lidar-IMU σ(RIL)(◦) σ(td)(µs)
K60Pro 0.44 2624

S22+ Jan 0.49 3108
S22+ Feb 0.85 2265

Table 3. Mean time offsets in milliseconds of the phone
camera and Livox lidar relative to the Livox IMU for the
K60Pro and S22Plus devices. The time offset is defined
as the correction applied to the camera or lidar message

timestamps.

K60Pro S22+ Jan S22+ Feb
camera lidar camera lidar camera lidar

9.59 -9.04 20.40 -8.81 19.60 -11.13

Figure 3. Two seconds of stationary LiDAR scans are
projected onto the corresponding S22+ phone image.
The LiDAR point colors, derived from depth, exhibit

distinct changes that align well with image edges,
indicating precise camera-LiDAR calibration.
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4.2 Dataset and Reference

To evaluate tracking and mapping accuracy, we collected
two sequences in a basement parking lot and two outdoor
sequences around the Xinghu building using the S22+
device, and a corridor sequence using the K60Pro device.
For the outdoor sequences, GNSS-RTK positions with
unix times, solved with RTCM data, were recorded from
the GNSS stick.

To create a ground truth map, we collected several scans
with the Leica RTC360 terrestrial laser scanner (TLS) at
both test sites: the parking lot and the road surrounding
the building. The TLS scans were registered using the
Cyclone software, and the relative poses were further re-
fined with classic point-to-plane ICP (Zhou et al., 2018)
and checked by visual inspection.

To generate the reference odometry solution (i.e., the
lidar poses in the TLS frame), we employed the Fast-
LIO2 (Xu et al., 2022) odometry method in localization
mode, using the TLS map for localization and disabling
its incremental mapping. To initialize Fast-LIO2 in loc-
alization mode, we obtained the starting pose for each
sequence by first creating a point cloud map from Fast-
LIO2, then aligning this odometry map manually to a
specific TLS scan in CloudCompare5.

4.3 Tracking Accuracy

To evaluate the tracking accuracy with the S22+ se-
quences, we compared several lidar-based odometry
methods, including the online Faster-LIO method run-
ning on the phone, the lidar-only odometry method
KISS-ICP (Vizzo et al., 2023), the lidar-inertial odo-
metry method Fast-LIO2 (Xu et al., 2022), and the lidar-
inertial-visual odometry method Fast-LIVO2 (Zheng et
al., 2025), against reference trajectories for both the base-
ment and building sequences.

The resulting trajectories were first aligned to the TLS
reference using an SE3 transformation computed with
the Umeyama algorithm. We then calculated the relative
pose errors (Zhang and Scaramuzza, 2018) in translation
and rotation across the sequences and computed the root
mean square errors in translation and rotation for each
sequence.

As shown in Tables 4 and 5, the online Faster-LIO
method achieves remarkable accuracy, nearly matching
the offline performance of Fast-LIO2. The lidar-only
method, KISS-ICP, shows slightly lower accuracy com-
pared to the lidar-inertial odometry methods. Notably,
the Fast-LIVO2 method performed worse than the LIO
methods across these sequences. We attribute this to
the rolling shutter effect in smartphone cameras, as Fast-
LIVO2 assumes a global shutter.

The trajectories including the GNSS-RTK trajectory,
lidar odometry results, and the reference trajectories are
plotted in Fig. 4 for basement-1 and building-2 sequences.
We were pleasantly surprised to find that Faster-LIO ex-
hibited minimal loop closure error, even while running
5 https://www.cloudcompare.org/doc/wiki/index.php/

Alignment_and_Registration

Table 4. Relative pose errors across four sequences
captured by the S22+ device for four odometry methods,

without loop closure.

Translation (%) Rotation (◦/m)
Faster-LIO 0.354 0.007
Fast-LIO2 0.261 0.006
KISS-ICP 1.029 0.026
Fast-LIVO2 0.807 0.023

Table 5. Root mean square errors in translation (cm) and
rotation (◦) across four S22+ sequences.

basement1 basement2 building1 building2
Faster 8.1, 0.63 10.6, 0.69 17.1, 0.41 23.4, 0.44
LIO2 6.3, 0.45 9.5, 0.59 22.0, 0.39 29.9, 0.45
KISS 14.8, 1.65 14.4, 1.75 18.2, 1.18 39.2, 1.33
LIVO2 10.0, 1.60 12.1, 1.47 22.6, 1.09 36.8, 1.27

on a resource-constrained smartphone. Overall, the data
collected with our device can lead to high odometry ac-
curacy.

Figure 4. The resulting trajectories for the basement1
sequence and the building2 sequence. Axes scales are not

equalized for clearer visualization.

4.4 Mapping Accuracy

Using the above LIO and LIVO approaches, we can get
a point cloud map of the test sites. We assess the map-
ping accuracy of each odometry method by comparing
the generated point cloud map to the TLS map.

For each odometry method, we first align the odometry
trajectory to the TLS reference trajectory with an SE3
transformation. Next, we undistort and save all scans
using the Fast-LIO2 method. With these undistorted
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scans and the transformed trajectory, we aggregate the
scans by transforming each scan with linearly interpol-
ated poses. Finally, we apply random downsampling to
reduce the point cloud map size to approximately 20 MB.
The TLS map is generated by aggregating registered TLS
scans and performing random downsampling.

We compare an odometry map with the TLS map in two
steps within the CloudCompare software. First, we ap-
ply a fine ICP registration to better align the two maps.
Second, we compute the cloud-to-cloud distance using
local least-squares plane modeling (radius of 0.3 m) with
a maximum distance threshold of 0.7 m. The mean dis-
tances for the basement and the building sequences are
presented in Table 6.

Table 6. Mean distances between the point cloud map
aggregated from odometry poses and the TLS reference
map, calculated using the cloud-to-cloud distance tool in

CloudCompare.

Dist. (cm) Faster LIO2 KISS LIVO2
basement1 27.4 27.2 28.7 32.1
basement2 25.0 24.8 25.3 25.6
building1 15.7 15.7 16.5 16.5
building2 16.7 17.9 22.3 21.2

The mean distances between point clouds are often as
large as 20 cm, indicating that further mapping improve-
ments are needed. Through visual inspection of the base-
ment and building mapping results, we observed that
wall thickness is generally no more than 5 cm (Fig. 5).
However, noticeable point cloud mismatches occur at re-
visited locations, particularly around features like lamp-
posts. To address these discrepancies, an immediate re-
finement would be to apply an offline mapping optim-
ization tool with loop closure, such as BALM2 (Liu et
al., 2023). Another observed effect is the increased wall
thickness in far and/or tall buildings. We attribute this
to the decreasing distance accuracy of the Mid360 as
range increases. This suggests that the Mid360 may not
be well-suited for mapping large areas containing numer-
ous objects at distances exceeding 40 meters. To address
this limitation, integrating a long-range sensor such as
the Ouster OS2 with the phone is viable.

Figure 5. Qualitative evaluation of wall thickness in point
cloud maps generated by Fast-LIO2 for the K60Pro
corridor sequence (top) and the S22+ basement-1

sequence (bottom). The scale legend in the bottom right
of each image indicates that the wall thickness is

generally less than 5 cm.

For qualitative evaluation, Fig. 6 presents the colored

point clouds generated by Fast-LIVO2 for the K60 Pro
corridor sequence and the S22+ building-2 sequence.
In both cases, Fast-LIVO2 produced visually consistent
maps, except at the revisited location. While minor,
some color leakage is observed on certain points. Prop-
erly addressing the rolling shutter effect should help mit-
igate this.

Figure 6. Colored point clouds generated by Fast-LIVO2
for the corridor sequence (top) and the building-2

sequence (bottom). Note that the zoomed-in view of the
building map has a different perspective from the full

view. Also, the building map exhibits noticeable
distortion in the top right corner, where a revisit occurs,
due to odometry drift. Minimal color leakage can be seen

within the dashed yellow boxes.

4.5 Runtime Analysis

We evaluated the runtime performance of Faster-LIO on
three smartphone platforms: the K40 Pro (released in
2021), the K60 Pro, and the S22+. The results, presen-
ted in Table 7, show that Faster-LIO achieves real-time
performance on these devices. In contrast, Fast-LIO was
tested but proved to be at least twice as slow, processing
frames at a rate of less than 10 Hz. Additionally, the log-
ging module operates with minimal computational over-
head. For example, on the K60 Pro, saving a LiDAR
scan takes only 0.43 ms.

Table 7. Runtime costs of major components of
Faster-LIO on smartphones. The frame processing entry

is the average processing time for a frame in LIO.

Times
(ms)

Point cloud
downsample

IEKF
update

Frame
proc.

K40Pro 32.80 14.25 66.54
K60Pro 13.67 24.91 64.46
S22+ 19.79 9.20 40.56

4.6 Limitations

Our device requires knowledge of the Livox lidar’s IP
address each time it reboots. The phone’s Ethernet IP
address changes upon reboot, necessitating the use of
the Livox Viewer to reset the lidar’s IP address to match
that of the smartphone. Moreover, battery consumption
is noticeably higher when the phone is connected to the
GNSS-RTK stick via Bluetooth.
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5. Conclusions

To address the demand for low-cost, ubiquitous map-
ping, we developed an Android-based mobile mapping
system integrating a Livox lidar and a GNSS-RTK stick.
The system is built using ROSJava for message dispatch-
ing and the NDK for compiling C++-based ROS pack-
ages. It supports a real-time LIO module, a data log-
ging module, and an interactive user interface. With the
proposed procedures, we demonstrate consistent calibra-
tion and repeatable time offsets. By processing the col-
lected lidar-inertial-visual data using recent lidar-based
odometry and mapping methods, we showcase the poten-
tial of this device for medium-scale mapping applications.
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