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Abstract 
 
RINX (Raster INformation eXtraction) 2.0 is an advanced solution for efficiently extracting climate data from large raster datasets in 
a cloud computing environment. Building upon the original RINX 1.0, which utilized high-performance computing clusters, RINX 
2.0 leverages cloud technologies such as OpenShift and PostGIS to handle massive datasets and automate the extraction process. The 
system supports large-scale spatiotemporal raster extractions, processing over 158 million data points from the 15TB PRISM climate 
dataset. Here, we describe the architecture, methods, and tools used in RINX 2.0, including containerized environments, automated 
data pipelines, and integration with the New England Research Cloud. The system was deployed for the Environmental influences on 
Child Health Outcomes (ECHO) project, providing valuable insights into environmental health research. We present performance 
statistics, data management strategies, and the development of a user interface for real-time querying and visualization of results. 
 

1. Introduction 

RINX (Raster INformation eXtraction) is an end-to-end solution 
developed by the authors for automatic extraction of 
information from large raster datasets. RINX 1.0 utilized 
PostGIS in a high-performance compute cluster environment, 
(Kakkar et al., 2022) and now we present RINX 2.0 which 
utilizes open-source technologies in a cloud computing 
environment. The input for RINX is a set of geo-referenced 
raster datasets and a set of point locations from which the 
information is to be extracted. The output for RINX is a 
structured representation of extracted information from the 
raster datasets for each data point in CSV text format. The 
loading and processing of the input datasets to RINX 2.0 is 
accomplished using a combination of Bash and SQL scripts 
deployed in a containerized environment optimized for efficient 
automation. This environment uses the open technologies 
OpenShift and Crunchy Data to feed the input raster and point 
location data into the spatial database PostGIS for extraction. 
RINX 2.0 was created to aid the study of environmental 
conditions and how they affect the health of people over their 
lifespans for the Environmental influences on Child Health 
Outcomes (ECHO) (National Institute of Health. n.d.) project. 
 

2. Use-Case 

2.1 Overview of Existing Methods 

Given the sheer size of the available swaths of remotely sensed 
data, raster value extraction using a vector point location input 
is becoming increasingly common among Geographic 
Information System software applications for performing 
analysis on areal subsets to improve computational efficiency 
(Spangler et al., 2019, Jung, 2013, Lee et al., 2021, Wang et al., 
1954, Reddy, 2018, Goodchild et al., 1997, Laney, 2001). Even 
with the recent surge of niche spatio-temporal data analytics 
systems, there are limited case studies of architectures specific 
to raster value extraction using vector point location input 
despite the plethora of relevant software packages (Alam et al., 
2022).  The RINX 1.0 solution for extraction of spatio-temporal 

big raster data is the first large-scale, cluster-based solution for 
locally stored raster information extraction (Kakkar et al., 
2022). 
 
Even with the recent surge of niche spatio-temporal data 
analytics systems, there are limited case studies of architectures 
specific to raster value extraction using vector point location 
input despite the plethora of relevant software packages (Alam 
et al., 2022). The RINX 1.0 solution for extraction of 
spatio-temporal big raster data is the first large-scale, 
cluster-based solution for locally stored raster information 
extraction (Kakkar et al., 2022). Its architecture utilizes BASH 
scripting, SQL scripting, and PostGIS functionality to extract 
climate raster information scaled on High Performance 
Compute Clusters and proved to perform 70,160,615 extractions 
on 4.5TB of disk-stored raster data in five days. RINX 2.0 was 
developed to improve the efficiency of RINX 1.0 by moving it 
to a cloud-based environment. 
 
Cloud environments prove to be incredibly beneficial when it 
comes to increased scalability, flexibility, collaboration, and 
data processing (Kumar et al., 2015). Various case studies have 
shown the increased efficiency of raster handling and analysis 
through cloud-based solutions as well (Li et al., 2020, Xiao et 
al., 2023, Enescu et al., 2021, Xie, 2016). Examples of using a 
cloud-based architecture to improve upon raster value extraction 
using vector point location input specifically has shown 
significant advancements in processing speed in this realm as 
well (Crego et al., 2021). Despite these advancements in cloud 
architecture development, there is limited literature on cloud 
solutions for raster value extraction using point location input 
that are compatible with disk-based data rather than 
server-based, open-source data catalogs. 
 
2.2 Data 

The Environmental influences on Child Health Outcomes 
(ECHO) (National Institute of Health. n.d.) program is a 
nation-wide project in the United States funded by the National 
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Institutes of Health. ECHO includes over 60 cohorts of children 
and their mothers, and is aimed to help better understand effects 
of environmental exposures on child health and development. 
Daily meteorological and long term climate conditions have 
been shown to have an adverse effect on health (Bell et al., 
2018, Greenough et al., 2001, Rice et al., 2019, Sprangler et al., 
2019, Zscheischler et al., 2014) and are thus one of the 
environmental exposures of interest to the investigators in the 
ECHO program. One of the ECHO cohorts is Project Viva, 
(Oken, et. al., 2014; Harvard Medical School. n.d.) a Boston, 
MA based longitudinal study including a cohort of some 2,000 
mothers and children. For this project, the 800-meter resolution 
daily PRISM (PRISM n.d.) dataset was used to assign climate 
exposures to member address locations for the Project Viva 
cohort. The PRISM dataset spans the contiguous 48 United 
States, and contains daily observations from 1981 to present for 
seven climate variables: minimum, maximum, mean, and 
dewpoint temperature; precipitation; and minimum and 
maximum vapor pressure deficit. Each daily dataset is 
geo-referenced and published in raster “.bil” format. The full 
dataset (1981-2023) contains 15,695 rasters, each at a size of 
85MB, presenting a total dataset size of around 15 Terabytes 
(TB). 
 

 
Figure 1.  Mean temperature map for January 1, 1981, using 

800m PRISM climate data 

 

2.3 Methodology 

For this particular use case we had 5,219 address locations 
spanning variable time periods from 1999 - 2023 producing a 
total of 18,131,095 extractions needed from the 15TB PRISM 
database. This magnitude of data necessitated substantial disk 
space and processing power, surpassing the capabilities of 
standard workstations or servers. To fulfill these 
high-performance computing requirements, we opted for an 
advanced cloud computing solution utilizing the technologies 
OpenShift, Crunchy Data, and PostGIS on the New England 
Research Cloud (NERC). NERC is a professionally operated 
regional resource that provides on-premises cloud service, 
including self-service Software-as-a-Service, (SaaS) automated 
Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service 
(IaaS) which catalyzes hardware acceleration. NERC is 
commonly used by researchers in the Boston area to facilitate 
quality research using more-efficient computational 
environments (NERC. n.d., MOC. n.d.). NERC offers 
OpenShift technology - a comprehensive container platform that 
solves many challenges associated with deploying and 
managing containerized applications, offering a feature-rich and 

flexible solution for modern IT infrastructures. For RINX 2.0, 
each OpenShift pod was equipped with 300 GB of RAM and 8 
virtual CPUs.  For spatial data extractions, we utilized PostGIS 
software in a cloud environment with Crunchy Data support, 
which provides services such as automated failover, recovery, 
and alerting which are crucial for cloud environment 
maintenance (Crunchy Data. n.d., PostGIS. n.d.). 
 
The default data security level on NERC is Level 3, which was 
determined sufficient to allow for storing the PRISM dataset. 
The other dataset needed for the extraction was Project Viva 
cohort address locations in latitude, longitude format. This data 
was determined to be security Level 3 (IRB protocol #951581, 
Data Use Agreement DAT22-0250 – ECHO, expires 
8/20/2024). This determination required the data to be 
de-identified based on the Health Insurance Portability and 
Accountability Act (HIPPA) guidelines to allow for processing 
on the NERC. This de-identification for each cohort was 
performed on local computing systems, complying to the 
HIPPA “Safe Harbor” (HIPPA, n.d.) guidelines. The 
de-identified data containing latitude, longitude locations in 
CSV format was loaded onto the NERC for processing with the 
PRISM rasters, which were also loaded to NERC from a local 
workstation.  
 
RINX 2.0 calculated climate exposure data for 5,000 patient 
addresses spanning different durations within a 26-year period, 
1998 - 2023. The total patient days represented are equal to 
17.5M, and with 7 observations per day this totals 123M total 
extractions. Additionally, relative humidity (rh) and absolute 
humidity (ah) were calculated, bringing the total observations to 
158 million total variables calculated. The full dataset 
(1981-2023) contains 15,695 rasters for each variable, totaling 
109,935 rasters, each at a size of 85MB, presenting a total 
dataset size of around 15 TB of data. This magnitude of data 
necessitated substantial disk space and processing power, 
surpassing the capabilities of standard workstations or servers. 
To fulfill these high-performance computing requirements, we 
opted for an advanced cloud computing solution utilizing 
OpenShift pods on NERC (NERC. n.d., Kubernetes. n.d., Red 
Hat. n.d.). Each pod was equipped with significant resources, 
consisting of 300 GB of RAM and 8 virtual CPUs (vCPUs). The 
cost of this processing system is estimated to be about 
$700/month on New England Research Cloud. This setup not 
only provided the requisite computational power but also 
offered the flexibility needed to efficiently process the 
large-scale data. In our approach, we seamlessly integrated 
PostGIS within a CrunchyData database environment to 
leverage its robust object-relational database system capabilities 
as shown in Figure 2 below. PostGIS, renowned for its 
extensive suite of over 500 spatial data processing tools and 
advanced raster processing features, played a pivotal role in 
managing and analyzing the vast PRISM dataset. 
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Figure 2.  RINX2.0 system installed on NERC’s OpenShift 
Platform based on Crunchy PostGIS 

 
The major processing steps of RINX 2.0 are the same as RINX 
V1.0: Database creation, data loading and data extraction 
(Kakkar, D. et al., 2022). The main difference between RINX 
1.0 and 2.0 is that 2.0 is utilizing the cloud environment. This 
workflow for RINX 2.0 is presented in Figure 3 below. This 
method involved utilizing BASH scripts that 1) Loaded the 
PRISM rasters to the cloud and 2) Created the database on 
PostGIS in the cloud. Then,  SQL scripts running on PostGIS in 
the cloud perform the climate data extractions, looping through 
all days in each date range specified for each address location 
for all climate variables. Scripts and specific commands we 
developed for this solution can be found on the Harvard CGA 
GitHub repository (Harvard CGA GitHub. n.d.).    

 
 

Figure 3.  Workflow Diagram for RINX 2.0 on NERC 
OpenShift 

 
Upon completion of the calculations, it became important to 
equip researchers with a suitable tool for analyzing and 
visualizing the extensive results of 163 million observations. 
Therefore, we developed a user interface that enables near 
real-time querying of results based on space, time, and climate 
variables using Heavy.AI (HeavyAI. n.d.). Heavy.AI is a 
state-of-the-art analytics platform specifically designed for 
handling large-scale datasets. It employs a combination of GPU 
and CPU processing to deliver exceptional performance. Key 
features of Heavy.AI include its open-source SQL engine, 
HeavyDB, which facilitates efficient data management. 

Additionally, it provides HeavyRender for server-side rendering 
and Heavy Immerse for web-based data visualization, making it 
a comprehensive tool for in-depth data analysis. Figure 4 below 
displays a snapshot of our RINX UI, offering researchers a 
platform to analyze and visualize processed climate-related data 
results in real-time. This real-time data analysis enables 
researchers to make informed decisions based on the latest 
information. 
 

 
 

Figure 4.  Heavy.ai based UI for real-time analysis and 
visualization of RINX results 

 

2.4 Results 

For the Project Viva cohort we used RINX 2.0 to extract 7 daily 
climate variables from the PRISM data for 5,219 address 
locations spanning variable time periods between from 1999 - 
2023, for a total of 18,131,095 patient days. This produced a 
total of 126,917,665 climate observations, output into .csv 
format. This data is in the process of being combined with 
health outcome data, to analyze the effect climate may have on 
lung function and other systems. Further, the mean and dew 
point temperatures were used to calculate relative humidity and 
absolute humidity for each day, producing an additional 
36,262,190 observations for a total of 163,179,855 observations. 
The entire process took 2 hours to load the rasters, and 1.5 days 
to calculate the 163M observations. This is a significant 
improvement in performance over RINX 1.0 which took 24 
hours to load the data and 4 days to process the observations for 
70M observations. It is estimated that traditional methods such 
as ArcGIS, QGIS, and R would have taken 2 months or more to 
extract the same amount of observations, thus demonstrating 
that RINX 2.0 saves considerable time and cost. Further, 
Heavy.ai based UI offers researchers a platform to analyze and 
visualize the processed climate-related data results in real-time. 
This real-time data analysis enables researchers to make 
informed decisions based on the latest information. 
 

3. Conclusion 

Utilizing RINX 2.0 in the cloud using the OpenShift 
environment allowed for 163M climate variable extractions at 
5,219 individual locations, all calculated in less than two days. 
This architecture simplified the management and scaling of the 
RINX application and streamlined the development process by 
supporting continuous integration and continuous deployment. 
The platform easily supported scaling of our application, 
allowing for optimal resource allocation utilization. 
Additionally, this cloud-based system supported end-to-end 
application lifecycle management, from development and 
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testing to deployment and monitoring, ensuring a consistent and 
streamlined process. With RINX 2.0 it will now be possible to 
rapidly and efficiently enrich additional ECHO cohort address 
locations with climate exposure data. Additionally, by providing 
our open-source code and docker files for RINX v2.0 on 
GitHub, our solution can be deployed by others on a variety of 
computing environments to be used to extract point level data 
from any spatio-temporal raster datasets. 
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