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Abstract 

Graph data models are essential for the development of smart cities, where interconnected systems such as utility networks, 
transportation, and IoT devices must function cohesively. The complexity of smart city infrastructure necessitates 3D data structures 
capable of managing intricate relationships, dynamic environments, and high connectivity across diverse systems. Graph data models 
are particularly suited for this purpose, as they offer an integrated 3D digital representation of urban complexity and interconnectivity. 
This study employs the Labelled Property Graph (LPG) framework to develop a 3D graph data model based on the Utility Network 
Application Domain Extension (ADE) of the CityGML standard. The proposed approach enhances utility network data management, 
enabling advanced analyses such as connectivity assessment and pathfinding. The developed graph data model is evaluated in terms 
of constraint preservation, information integrity, and connection realism. Results demonstrate that the model accurately represents real-
world utility network structures while preventing data loss and duplication. 

 
1. Introduction 

1.1 Challenges of Managing Utility Networks in Smart 
Cities 

Utility networks, such as electricity, gas, oil, water, and 
sewerage, are typically hidden beneath layers of soil and urban 
infrastructure (Yani Lai, 2023). This creates significant 
challenges, particularly in smart city environments, where 
accurate and real-time infrastructure management is critical 
(Farid, 2024). Construction projects often encounter difficulties 
due to limited, outdated, or fragmented information about the 
precise location of utility networks (Saeidian et al., 2024).  
 
Excavation and drilling without accurate knowledge frequently 
result in unintended damage, disrupting essential services such as 
water, gas, and electricity, potentially cutting off entire 
neighbourhoods. These incidents lead to costly repairs and 
operational challenges for utility providers while also causing 
significant delays in construction timelines (Yong-Kang Qiao, 
2022). In a smart city context, such disruptions not only impact 
immediate services but also hinder long-term infrastructure 
planning and management (Rathore et al., 2021). Consequently, 
integrated utility network management is essential for 
minimising accidents and ensuring smoother, safer operations in 
both construction projects and ongoing urban infrastructure 
management (Den Duijn et al., 2018). 
 
1.2 Graph Data Models for Utility network Management 

In recent years, several 3D spatial data models have been 
developed to address the challenges of modelling utility 
networks. One of the most widely used 3D spatial data models 
for smart cities is CityGML, an international standard recognised 
by the Open Geospatial Consortium (OGC) 
(OpenGeospatialConsortium, 2021). An Application Domain 
Extension (ADE) of CityGML has been developed to provide a 
foundation for 3D digital management and representation of 
utility networks, enabling advanced 3D data analysis, simulation, 
and visualisation (Saeidian et al., 2024). 
 

However, CityGML’s data model, traditionally structured as a 
relational data model, faces significant limitations in managing 
the highly connected and dynamic nature of utility networks (Hor 
et al., 2018). Relational data models rely on rigid tabular 
structures and require costly join operations to manage 
relationships, leading to inefficiencies when dealing with large-
scale urban environments and complex networks such as utility 
networks (Ilonen, 2023) . These inefficiencies become 
particularly evident in scenarios requiring real-time queries and 
continuous updates to both underground and above-ground 
infrastructure, where performance degradation in relational 
databases is a common issue (Rathore et al., 2021). 
 
To address the limitations of relational data models, graph data 
models offer a compelling alternative. Unlike relational models, 
graph data models are inherently designed to manage complex, 
interconnected data by representing entities as nodes and 
relationships as edges (Kankanamge et al., 2017). This structure 
enables faster querying and traversal of relationships without the 
need for expensive table joins (Ji, 2020). When implemented in 
graph databases, graph data models excel at handling the intricate 
structures and topologies of utility networks, efficiently 
managing the dynamic relationships between underground 
components and above-ground infrastructure (Jamkhedkar et al., 
2018). Furthermore, graph data models are particularly well-
suited for smart cities, where real-time data access, scalability, 
and efficient infrastructure management are crucial for urban 
planning, monitoring, and operations. 
 
1.3 Objective and Scope of the Paper 

In this paper, we propose a 3D graph data model based on the 
Utility Network ADE in CityGML. Translating the data elements 
from the Utility Network ADE into a graph data model requires 
redefining certain elements to align with the graph data 
modelling paradigm. Specifically, entities in the relational model 
are mapped to nodes, while their attributes are represented as 
properties within the graph. However, in cases where attributes 
encapsulate significant relationships or complexity, they are 
transformed into nodes rather than simple properties. This allows 
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for more expressive queries and a more efficient representation 
of interconnected data.  
 
By converting the Utility Network ADE features into nodes, 
edges, and properties within a Labelled Property Graph (LPG), 
the inherent advantages of graph structures can be leveraged for 
enhanced utility network data management. This approach also 
aligns with the broader objectives of smart city infrastructure by 
facilitating advanced analyses, such as connectivity assessment 
and pathfinding 
 

2. Literature Review 

2.1 Graph Theory in Smart City 

Smart cities represent the transformation of urban environments 
through the integration of advanced technologies (Lim et al., 
2024). At the core of a smart city is the interconnection of various 
systems, such as transportation, energy grids, utility networks, 
public services, and environmental monitoring (Spicer et al., 
2023). These interconnected systems, with their many 
subsystems, inherently lend themselves to graph theory 
applications. Graph theory excels in managing dynamic models 
and highly connected systems, where relationships between 
entities continuously evolve over time  (Pierfrancesco Bellini, 
2018). 
 
In mathematical terms, a graph consists of vertices (or nodes) and 
edges, which represent the relationships between these entities. 
Formally, a graph is defined as  

𝐺	 = 	 (𝑉, 𝐸)	 
where: 
𝑉: denotes a set of vertices, representing individual entities. 
𝐸: represents the set of edges, defining the connectivity 
relationships between these vertices. 
 
In a smart city, infrastructure can be conceptualized as a graph, 
where nodes represent entities such as sensors, devices, or 
infrastructure components, and edges represent relationships or 
interactions, such as data flow, physical connections, or service 
dependencies (Gorawski and Grochla, 2019). Among the graph 
models commonly employed in smart city applications are 
Resource Description Framework (RDF) graphs and LPGs. 
 
2.2 RDF Graphs in Smart City 

RDF is a data model that represents information as triples: 
subject, predicate, and object. This structure allows RDF to form 
a graph of interconnected data points, where relationships 
between entities are explicitly defined. RDF is widely used to 
establish semantic relationships across diverse datasets, which is 
particularly valuable in scenarios where data interoperability is 
essential (Wu et al., 2024). In the context of smart city 
applications, RDF offers a standardised approach to describing 
and linking data from various systems, such as Internet of Things 
(IoT) networks, transportation, and utilities. Its semantic nature 
facilitates the integration of data across different platforms, 
making it more efficient to manage and analyse the relationships 
between various city infrastructures (Bellini et al., 2015). 
Additionally, RDF’s compliance with web standards ensures its 
effective application in global, interconnected systems (Wu et al., 
2024). 
 
RDF's structured format is particularly advantageous for 
applications that require interoperability between diverse 
datasets, especially in smart city environments where multiple 
systems must work in coordinate. Several studies have explored 

the use of RDF for enhancing smart city data management, each 
contributing to a more integrated approach to handling complex 
urban systems. One notable study translates CityGML into RDF, 
which allows for more sophisticated queries over CityGML data 
and supports real-time analysis by facilitating the integration of 
external data sources such as OpenStreetMap. This methodology 
significantly improves the ability to manage the hierarchical and 
semantic complexities inherent in urban datasets (Ding et al., 
2024).  
 
Building on this, another approach extends the use of RDF by 
converting Industry Foundation Classes (IFC) into CityGML 
using RDF graphs. This approach not only enhances smart city 
data management but also enables more advanced querying 
capabilities and fosters seamless interaction between various city 
systems. In increasingly interconnected urban environments, 
RDF provides the semantic framework necessary to unify these 
diverse data sources. Such integration is especially critical for 
managing the relationships between underground utility 
networks and above-ground infrastructure (Lam et al., 2024). 
 
Moreover, RDF has been applied to create dynamic geospatial 
knowledge graphs. For example, CityGML data has been 
transformed into RDF to construct a Semantic 3D City Database, 
which facilitates flexible and dynamic interactions with large-
scale urban datasets. This application further demonstrates 
RDF’s capacity to enable efficient management of the 
complexities of modern urban environments (Chadzynski et al., 
2023) 
 
2.3 LPGs in Smart City 

LPGs offer a flexible and efficient data model for managing 
complex, interconnected systems, making them particularly 
suitable for smart city applications (Ning et al., 2024). In an LPG, 
nodes represent entities, while edges represent the relationships 
between them, both of which can store multiple properties. This 
allows LPGs to handle rich metadata and facilitate real-time 
querying, a critical requirement in smart cities where 
infrastructure systems, utilities, and IoT networks must 
constantly interact and be analysed (Ferilli et al., 2022). 
 
While research on the direct conversion of CityGML into LPGs 
is still developing, the approach demonstrates significant promise 
for managing 3D spatial data, largely due to its scalability and 
capacity to handle complex, multi-dimensional relationships. A 
notable methodology involves first converting both IFC and 
CityGML into RDF, which is then transformed into an LPG 
database. This process enhances data integration and enables 
advanced analyses in urban planning, mobility, and infrastructure 
management within smart cities (Hor et al., 2018a). In parallel, 
more attention has been devoted to converting IFC data into 
LPGs, particularly in Building Information Model (BIM) and 
smart city infrastructure applications. Several graph-based 
approaches have been proposed to transform IFC models into 
LPGs, integrating real-time sensor data to improve data 
management and analysis, which is especially beneficial for 
monitoring systems within smart cities (Gradišar and Dolenc, 
2021). Furthermore, a model-driven approach has been 
developed to fully convert IFC data into LPGs, significantly 
improving accessibility and query efficiency for building 
information. This conversion not only simplifies the discovery of 
hidden relationships within building data but also eliminates the 
need for specialised IFC parsers, further streamlining data 
management (Zhu et al., 2023). 
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Compared to traditional relational databases, LPGs provide a 
more intuitive representation of the complex relationships within 
IFC data. By using LPGs, critical information is preserved, and 
entities are accurately associated, making it an ideal solution for 
managing building data in complex construction projects. LPGs 
also capture intricate relationships between IFC entities with 
greater efficiency, supporting more effective data analysis and 
visualisation (Zhao et al., 2020). 
 
Although numerous studies have explored the application of 
RDF in smart cities, several limitations obstruct its suitability for 
managing the complex and dynamic data in these environments. 
RDF, as a semantic web standard, is primarily designed for 
machine interpretation through ontologies and structured data 
(Pauwels et al., 2017). While RDF excels in semantic data 
integration, it often reduces human readability and usability, 
especially when dealing with the complex data structures of city 
infrastructure. 
 
One of RDF’s main limitations lies in its triple-based structure, 
which can restrict its efficiency when managing rich properties 
directly on nodes and edges, as required for CityGML’s multi-
dimensional city data (Zhu et al., 2023). Furthermore, RDF’s 
query language, SPARQL, though highly expressive, is notably 
more complex and less intuitive than Cypher, which is commonly 
used in LPGs. This added complexity can slow down real-time 
querying, particularly in large-scale smart city environments 
where fast data access is essential (Angles et al., 2019).  
 
Another drawback of RDF is its reliance on proprietary tools or 
third-party solutions to improve performance. While these tools 
can enhance RDF’s efficiency, they are often not fully optimised 
or scalable for the real-time data demands typically generated in 
smart city infrastructures. As a result, RDF struggles to meet the 
needs of smart cities that require continuous data updates and 
real-time analytics across interconnected systems such as 
transportation, utilities, and IoT networks (Alocci et al., 2015). 
 
In contrast, LPGs offer a more flexible and intuitive structure for 
managing the complex relationships inherent in CityGML. LPGs 
allow both nodes and edges to carry multiple properties, which 
provides a more natural representation of interconnected city 
systems. This makes LPGs better suited for real-time querying 
and handling rich metadata, enabling faster performance when 
processing large-scale, dynamic datasets (Zhu et al., 2023). 
 
LPGs are also more suited for graph traversal and pathfinding 
operations, which are critical for smart city applications like 
urban planning, infrastructure monitoring, and mobility 
management (Jamkhedkar et al., 2018).  
 
The inherent scalability and high performance of LPGs make 
them a more practical solution for converting CityGML into 
graph data models. LPGs offer a more efficient way to represent 
spatial relationships and support faster, more effective querying, 
positioning them as the preferred choice for managing 3D city 
models in smart city infrastructures. 
 

3. Methodology 

In this study, we propose the conversion of the relational data 
model of the Utility Network ADE in CityGML into a graph data 
model using the LPG framework. An LPG consists of three core 
components: nodes (entities), edges (relationships), and 
properties (attributes), which together represent the data structure 
in a highly connected network. Each node and edge can have a 

label that defines its role or type, while properties store additional 
information that describes the nodes and edges in more detail. 
 
3.1 Nodes 

In graph data models, nodes represent entities or objects within a 
utility network, and they can be derived from two sources in the 
Utility Network ADE: Directed Nodes and Undirected Nodes. 
 
3.1.1 Directed Nodes: Directed nodes originate from 
FeatureTypes in the Utility Network ADE, which represent key 
components within the utility network, such as Network, 
AbstractNetworkFeature, or NetworkGraph. In converting the 
data to a graph model, each FeatureType becomes a node, with 
the node’s label reflecting the name of the FeatureType (e.g., 
"Network"). This label categorises the nodes and defines their 
function in the utility network. Directed nodes act as the core 
entities within the graph, representing the fundamental structure 
of the utility network. 
 
3.1.2 Undirected Nodes: Undirected nodes are derived from 
properties within a FeatureType that reference other DataTypes 
or FeatureTypes. In the relational data model, certain properties 
of a FeatureType may be linked to external entities with their own 
attributes and relationships. When converting this structure into 
a graph data model, these referenced entities are treated as 
separate nodes to maintain the integrity of the relationships. 
 
As shown in Figure 1, within the Network entity, the property 
relatedParty is connected to the RelatedParty data type. This 
entity, in turn, includes a property named party, which is linked 
to another FeatureType, Party. Additionally, within the Party 
FeatureType, the property pointOfContact refers to the 
ContactType data type. This example illustrates how a single 
property, relatedParty, in the Network entity results in the 
creation of multiple nodes (RelatedParty, Party, and 
ContactType). 
 

 
Figure 1. Directed and undirected nodes in the Network entity 

3.2 Edges 

In the graph data model, edges represent the relationships 
between nodes (both directed and undirected). When translating 
the relational data model from the Utility Network ADE 
CityGML to a graph data model, existing relationships are 
transformed into edges with distinct labels and attributes.  
Depending on the nature of the relationship in CityGML, the 
edge can either be directed or self-Loop. 
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3.2.1 Directed Relationships: Directed relationships 
represent connections where one entity is superior or related 
hierarchically to another, such as composition, inheritance, or 
associations. In these cases, the edge is directed from the 
superordinate node (the parent entity) to the subordinate node 
(the child entity). The edge is labelled according to the type of 
relationship (e.g., inheritance, composition) as defined in the 
Utility Network ADE, with its properties capturing the specifics 
of that relationship.  
 
For instance, the AbstractLink entity has an association 
relationship with the Node FeatureType. In the relational data 
model, this association is represented by a property called 
startNode. When converting this into the graph data model, an 
edge is created from the AbstractLink node to the Node node. 
This edge is labelled "Association Relationship," and the 
property startNode is retained to preserve the original 
relationship’s definition (Figure 2). 
 

 
Figure 2. Association Relationships with property StartNode 

3.2.2 Self-Loop Relationships: In some instances, an entity 
may have a relationship with itself, represented as a self-loop in 
the graph data model. For example, in the Utility Network ADE, 
a subnetwork has an aggregation relationship with the Network 
FeatureType. This relationship is depicted by an edge that starts 
and ends at the same Network node, forming a self-loop. In this 
case, the edge is labelled "Self-Loop Relationship," and its 
properties capture the aggregation type as defined by the Utility 
Network ADE. 
 
3.3 Properties (Attributes) 

In the Utility Network ADE, each entity (FeatureType) is 
associated with a set of attributes that describe its characteristics 
and details. When converting the relational data model to a graph 
data model, these attributes are translated into properties for the 
corresponding nodes and edges in the graph. Properties provide 
additional descriptive information that is crucial for managing 
and querying the network effectively. 
 
For each node, the properties derived from the original attributes 
in Utility Network ADE are attached to the node as key-value 
pairs. These properties can include specific details such as 
dimensions, material types, operational status, and other relevant 
metadata. Similarly, properties can be applied to edges to 
describe the nature of the relationship between nodes, such as 
start and end points, capacity, or directional flow. 

 
If additional properties are required for specific project needs or 
dataset requirements, the graph data model offers flexibility in 
defining new properties. It is important, however, to carefully 
specify the data type, value range, and whether these attributes 
should be represented as an enumeration, a code list, or a single 
value. This careful definition ensures consistency and clarity 
throughout the data model.  
 

4. Result 

In this section, we demonstrate the conversion of Utility Network 
ADE models from CityGML into a graph data model, specifically 
using LPGs. To evaluate the feasibility and effectiveness of this 
approach, we selected several reference utility network models 
from the Utility Network ADE study (Becker et al., 2011) to 
illustrate how these networks can be represented as graphs.  
 
To avoid making the graph data models overly complex, certain 
unnecessary properties and some geometry nodes are excluded 
for simplicity. However, the full model includes all the required 
properties, nodes, and relationships. This approach helps 
maintain readability while still preserving all essential 
relationships and constraints. 
 
4.1 Exterior and Interior Nodes in LPGs 

We provide a sample utility network extracted from study on the 
Utility Network ADE (Figure 3) (Becker et al., 2011).  Figure 3 
represents a network of pipes located within the same 
FeatureGraph and connected through an InteriorFeatureLink. 
The sample highlights an important challenge of two distinct 
types of nodes (exterior and interior) within a single 
FeatureGraph. 
 
The exterior nodes (represented as red circles) denote the 
endpoints of the pipes, while the interior nodes (represented as 
green diamonds) signify connection points where multiple pipes 
converge within the FeatureGraph. Managing the interaction 
between these different node types is essential for accurately 
modelling the flow and connectivity of the utility network in a 
graph database built on the proposed graph data model. 
 

 
Figure 3. FeatureGraph sample including exterior and interior 
nodes 

Figure 4 represents the result of translating the FeatureGraph in 
Figure 3 into a graph data model. In the graph data model (Figure 
4): 

• The yellow nodes represent the pipe from start point A 
to end point B. 

• The blue nodes represent the pipe from start point B to 
end point C. 

• The purple nodes represent the link from start point B 
to end point D. 

 
In Figure 3, the three InteriorFeatureLinks are part of the same 
FeatureGraph. This constraint is respected in the graph data 
model (Figure 4), where all three InteriorFeatureLinks (yellow, 
blue, purple) originate from a single FeatureGraph node.  
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All InteriorFeatureLinks are connected to an AbstractLink in the 
graph model, representing the direction of each pipe. The 
GM_Curve node stores the geometry of each 
InteriorFeatureLink, ensuring that the spatial and topological 
information is preserved within the graph. 
 

Each InteriorFeatureLink via an AbstractLink includes two 
nodes, one for the start and one for the end. The type of each node 
(whether it is exterior or interior) is stored as a property on the 
nodes. This provides detailed information about the role of each 
node in the network. 

 
Figure 4. Graph data model from single FeatureGraph including exterior and interior nodes 

 
To avoid duplication, the graph data model ensures that point B, 
which connects to point A, point C, and point D in Figure 3, is 
represented as a single node (B). This common node retains its 
connections to all three points, preserving the network structure. 
 
Finally, for each node, the geometry is stored in a separate 
GM_Point. This separation allows for efficient querying and 
management of spatial data while preserving the integrity of the 
original utility network structure. 
 
4.2 InterFeatureLink in LPGs 

In this section, we provide another important sample from the 
Utility Network ADE study (Becker et al., 2011). The diagram in 
Figure 5 represents the connection between two FeatureGraphs 
within the same NetworkGraph. This complexity arises when 
multiple FeatureGraphs coexist in a single network, and their 
interactions need to be modelled while preserving all 
relationships and constraints. 
 
The graph data model (Figure 6) allows us to accurately represent 
this connection between FeatureGraphs through a combination of 
InteriorFeatureLinks and InterFeatureLinks. 
In Figure 6 graph data model: 

• The purple nodes represent FeatureGraph 1. 
• The blue nodes represent FeatureGraph 2. 
• The orange nodes represent the InterFeatureLink 

connecting FeatureGraph 1 and FeatureGraph 2. 
 

 
Figure 5. NetworkGraph sample including InteriorFeatureLink 

and InterFeatureLink 

Both FeatureGraphs are part of the same NetworkGraph, as 
illustrated in Figure 5. The graph data model in Figure 6 captures 
two distinct FeatureGraphs originating from the same 
NetworkGraph.  
 
FeatureGraph 1 follows the same structure as in the previous 
graph model (Figure 4), consisting of both interior and exterior 
nodes connected by three InteriorFeatureLinks. 
FeatureGraph 2 is simpler than FeatureGraph 1, containing only 
two exterior nodes without any interior nodes, connected by a 
single InteriorFeatureLink. 
 
The key complexity in this model lies in the presence of the 
InterFeatureLink, represented by the orange nodes, which 
signifies the connection between the two FeatureGraphs. The 
InterFeatureLink connects node C in purple (FeatureGraph 1) 
with node E in blue (FeatureGraph 2). Both nodes are connected 
to the InterFeatureLink via an AbstractLink, ensuring that the 
direction and flow of the connection are maintained, along with 
the geometry of the InterFeatureLink line. 
 

FeatureGraph 1

A B C

D Legend

Node (Type: exterior)

Node (Type: Interior)

InteriorFeatureLink

InterFeatureLink

E F

NetworkFeatureFeatureGraph 2

NetworkGraph
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5. Evaluation and Discussion 

The evaluation of the proposed graph data model is divided into 
three key areas: constraint preservation, information integrity, 
and connection realism. These aspects ensure that the graph 
model aligns with the structure and rules defined in the CityGML 
Utility Network ADE while maintaining the completeness and 
accuracy of the data. By verifying the predefined constraints, 
checking for missing or duplicated information, and assessing 
whether the graph accurately reflects real-world relationships, 
this evaluation aims to confirm the feasibility and effectiveness 
of the graph data model in managing utility networks within 
smart city infrastructures. 
 
5.1 constraint preservation 

In any data model translation process, especially one involving 
complex systems like the CityGML Utility Network ADE, it is 
essential to ensure that the integrity of the original model’s 
constraints is preserved. These constraints serve a critical 
function in maintaining the logical relationships and hierarchical 
structures between various network components, such as nodes, 
and links. The preservation of constraints is particularly 
important for maintaining the accuracy of real-world 
representations, especially in utility networks where 
misrepresentation of connections or mismanagement of node 
properties could lead to errors in network analysis or operational 
inefficiencies. 

 

 
Figure 6. NetworkGraph sample including InteriorFeatureLink 

and InterFeatureLink 

5.1.1 NetworkGraph Constraints 
 
The NetworkGraph entity in the CityGML Utility Network ADE 
imposes a constraint stating, "When the representation is defined, 
all start and end nodes of the related feature graphs and inter 
feature links must be part of the same schematic type." This 
ensures that the nodes and links maintain a consistent schematic 
representation within a network. 

 
In the graph data model of FeatureGraph with exterior and 
interior nodes (Figure 4), all the InteriorFeatureLinks originate 
from the same FeatureGraph, which is directly connected to the 
NetworkGraph. Therefore, all the InteriorFeatureLinks, along 
with their associated nodes, maintain a single, unified 
representation within the NetworkGraph, satisfying the 
constraint. 
 
In a more complex scenario involving two connected 
FeatureGraphs within a NetworkGraph (Figure 6), the 
InterFeatureLink connects two distinct FeatureGraphs. All three 
entities, the two FeatureGraphs and the InterFeatureLink, 
originate from the same NetworkGraph. As a result, the shared 
representation across the network ensures that the constraint is 
respected, maintaining consistency across the entire system. 
 
5.1.2 InteriorFeatureLink Constraints 
 
The InteriorFeatureLink entity in CityGML Utility Network 
ADE has a key constraint: "Both nodes must belong to the same 
FeatureGraph." This ensures that the start and end nodes of an 
InteriorFeatureLink are consistently placed within the same 
feature graph, maintaining the integrity of internal connections. 
 
When modelling one FeatureGraph containing both exterior and 
interior nodes (Figure 4), all start and end nodes of the 
InteriorFeatureLinks connect directly to the related 
FeatureGraph. In this case, the constraint is satisfied as all nodes 
involved in the links are part of the same FeatureGraph, ensuring 
a cohesive structure. 
 
In the case of two FeatureGraphs (Figure 6), FeatureGraph 1 
follows the same rule, maintaining the constraint that the nodes 
belong to the same graph. FeatureGraph 2 similarly connects its 
start and end nodes to its corresponding InteriorFeatureLink, 
which adheres to the same FeatureGraph.  
 
5.1.3 InterFeatueLink Constraints 
 
The InterFeatureLink entity in CityGML Utility Network ADE 
imposes several constraints to ensure proper connections 
between different FeatureGraphs. The constraints state: 

1. Each Node must belong to a different FeatureGraph. 
2. Each Node type must be exterior. 
3. The connectionSignature of both Nodes must be 

compatible. 
4. Both Nodes must either belong to the same Network or 

to two Networks of the same commodity and hierarchy 
level. 

 
The presence of the InterFeatureLink is crucial in cases where 
two FeatureGraphs are involved. As illustrated in Figure 6, the 
start node originates from FeatureGraph 1 (represented in 
purple), while the end node comes from FeatureGraph 2 
(represented in blue). Both nodes are of exterior type, satisfying 
the first and second constraints. 
 
Furthermore, the connectionSignature of both nodes is 
compatible, which can be reflected in the connectionSignature 
property of the graph data model, ensuring the third constraint is 
met. Additionally, both nodes are part of the same 
NetworkGraph, ensuring that the nodes either belong to the same 
network or have compatible hierarchy, satisfying the fourth 
constraint (Figure 6). 
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5.2 Information Integrity 

Ensuring information integrity during the translation from the 
Utility Network ADE to the graph data model is crucial for 
maintaining the original structure and meaning of the network 
data. In the graph data model, all entities from the Utility 
Network ADE are preserved. Also, certain properties are 
translated into nodes to facilitate easier querying and retrieval of 
interconnected information (Figure 1). This translation does not 
lead to information duplication but rather enhances accessibility 
by converting properties into nodes, making it simpler to manage 
and query complex relational data. All attributes are carefully 
preserved and assigned to their corresponding properties, 
ensuring no data is lost during the translation. Additionally, the 
types of relationships between entities are maintained by 
labelling them appropriately in the graph model. 
 
This avoidance of duplication and preservation of all information 
is mirrored in the results as well. For instance, in the case of node 
B (Figure 4), which connects to three InteriorFeatureLinks (AB, 
BC, and BD), the graph model ensures that node B is not 
duplicated but is referenced by each of the other nodes and links. 
 
5.3 Connection Realism 

In this section, we assess the realism of connections by 
comparing the structures in Figure 3 and Figure 5 with their 
corresponding graph data models in Figure 4 and Figure 6. The 
degree of a node in the graph data model reflects the number of 
connections in the real-world utility network. Since Figure 3 is 
part of the larger structure shown in Figure 5Errore. L'origine 
riferimento non è stata trovata., we focus on Figure 5 for a 
comprehensive assessment. 
 

Node Real-world 
connections Node degree 

A 1 1 

B 3 3 

C 2 2 

D 1 1 

E 2 2 

F 1 1 

Table 1. Noce connections comparison 

The degree of connectivity in the graph data model matches the 
real-world utility network structure, confirming that the model 
accurately captures the relationships in the data. 
 

6. Conclusion and Future Works 

In this paper, we demonstrated that a graph data model based on 
CityGML can be used to represent utility networks. Graph data 
models offer significant advantages for smart cities by enhancing 
connectivity, and pathfinding. Graph data models have capability 
to represent complex relationships and connections between 
various city infrastructure components. In addition, for 
pathfinding and route optimization, graph data models prove 
especially effective, particularly for tasks such as routing 
maintenance within the utility networks. Also, it has ability to 
map complex relationships between nodes and dynamic route 
planning. 
 

Traditional relational data models require separate conceptual, 
logical, and physical phases. In contrast, graph data models 
improve this process by combining the conceptual and logical 
layers, allowing for direct implementation into graph databases 
once the data model is prepared. 
 
Transitioning from relational databases to graph databases for 
managing large volumes of highly connected, dynamic data is 
essential as smart cities develop. Graph databases are equipped 
to handle the complexities of modern city infrastructure 
compared to traditional, schema-bound relational databases.  
 
As cities become increasingly complex, the flexibility and 
scalability of graph databases will be essential for handling the 
growing data in smart city infrastructure. 
 
While the proposed graph data model successfully translates the 
CityGML Utility Network ADE into an LPG, there are several 
limitations to consider.  

• The model has been tested on specific utility networks 
and may require further validation to generalise across 
different types of urban infrastructures.  

• The performance of the graph model in handling large-
scale networks and real-time applications has not been 
extensively evaluated, particularly in scenarios with 
frequent updates and high query demands, which are 
common in smart city environments. 

• The representation of complex utility networks and 
their hierarchical models needs further investigation. It 
is essential to explore whether the graph data model 
accurately reflects the structure and relationships at 
various hierarchical levels within utility networks. 
 

Future research can build upon the foundation established in this 
paper. While our focus was on the core of Utility Network ADE, 
this ADE also contains several additional packages, including 
those for Material, Functional Characteristics, Network 
Components, Geometry of Network Components, Network 
Properties, and the Electrical Network package. These packages 
should also be translated into a graph data model and evaluated 
to assess the full functionality of the utility networks in a graph 
data model. 
 
After modelling the graph data model, further investigation is 
needed to implement it in graph databases. This will allow for an 
in-depth evaluation of the model’s feasibility through querying 
and analysis, providing clearer insights into its practical 
applications. 
 
Additionally, utility networks represent just one aspect of 
CityGML. Extending this approach to other CityGML modules 
or ADEs, such as buildings and roads, could further enhance the 
integration and management of infrastructures, advancing the 
development of smart cities. 
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