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Abstract 

 

Centralized energy systems are often limited by their dependence on large, centralized power plants and extensive transmission 

networks, making them vulnerable to single points of failure and less resilient to disruptions. Microgrids offer resilience, enhanced 

energy efficiency, and improved integration of renewable resources compared to centralized energy systems, enabling localized energy 

management and reduced reliance on fossil fuels. Deep Reinforcement Learning (DRL) has shown its potential for microgrid energy 

optimization by enabling intelligent, adaptive control over energy resources and energy exchange. By learning from interactions with 

the environment, the DRL agent dynamically adjusts the power outputs of distributed energy resources, manages energy storage 

systems, and balances energy exchange between microgrid elements and with the main grid, aiming to minimize costs and ensure 

reliable power availability. However, incorporating spatial relationships into DRL action space significantly increases computational 

demands. In line with this, we have introduced a novel method that integrates DRL, Graph Neural Network (GNN) and dynamic 

clustering to optimize microgrid operations. GNNs are specialized deep learning models that adapt to graphs of varying sizes and 

structures. This adaptability enables GNN-equipped DRL agents to effectively learn from and apply knowledge to a wide range of 

network topologies. The agent can be used for subsets, or sub-microgrids, taking into account the scalability and efficiency of the 

optimization process, enabling distance and routing optimization without an aggregated model. This approach addresses the 

computational challenges associated with large action spaces and varying topologies in microgrid management.  

 

1. Introduction 

1.1 Need for Resilient Energy Systems 

With the European Union (EU) raising its renewable target, set 

within the Renewable Energy Directive, to 42.5 percent by 2030 

and moving away from gas, the energy landscape in the 

Netherlands is undergoing significant changes toward 

sustainability and renewable energy integration. Part of the 

broader ‘Fit for 55’ package, the plan aims to significantly reduce 

the EU’s dependence on fossil fuels and enhance its overall cli- 

mate objectives (European Council, 2022). 

 

The Netherlands has set ambitious goals, including revisions to 

critical energy legislation, such as the Energy Performance of 

Buildings Directive and the Energy Efficiency Directive, to ad- 

opt a more vigorous approach towards renewable energy. The 

necessity of this shift is highlighted by the benefits of renewable 

energy being low-cost and domestically produced, which reduces 

dependency on external suppliers (European Commission, 2023). 

The transition requires the electrification of energy systems, but 

the Dutch electricity grid is currently ill-prepared for a scale-up 

of this magnitude. 

 

Recognizing the limitations of centralized power grids in meeting 

the nuanced energy demands of urban environments, this study 

proposes a new model to manage microgrids that perform 

independent and sustainable. The inherent intermittency and 

variability of renewable sources present considerable challenges 

to the existing grid infrastructure, necessitating the development 

of more flexible and efficient transmission systems to ensure 

consistent and reliable energy delivery (CBS Statline, 2023). 

Microgrids offer numerous benefits over conventional power 

grids, including enhanced reliability, reduced transmission 

losses, environmental benefits, and increased flexibility 

(Shahzad et al., 2023), (Ali et al., 2022). They allow for the 

integration of diverse and DERs, fostering a more resilient and 

sustainable energy infrastructure. 

 

1.2 Reinforcement Learning for Multi Energy Microgrid 

Management 

Recent advancements in microgrid optimization emphasize the 

superiority of Reinforcement Learning (RL) and Deep 

Reinforcement Learning (DRL) over traditional heuristic 

algorithms. (Tajjour and Singh Chandel, 2023) note that RL’s 

key advantage lies in its robust decision-making and stable 

convergence capabilities, even when faced with numerous 

variables. What sets RL apart is its consistent ability to achieve 

optimal solutions, an attribute well-supported by a variety of 

studies (Li et al., 2023), (Subramanya et al., 2022), (Klemm and 

Wiese, 2022). 

 

These advanced learning methods represent a significant move 

towards model-free or data-driven management approaches 

(Chen et al., 2022). (Nakabi and Toivanen, 2021) highlight that 

learning directly from a microgrid’s operational data allows these 

systems to fine-tune control strategies without the need for an 

explicit system model. This advantage is twofold: it enhances 

Energy Management Systems (EMS) scalability and reduces 

maintenance costs, marking a shift towards more autonomous 

and intelligent energy management systems. 

 

The adaptability of RL and DRL is especially crucial in the 

dynamic environment of microgrid operations (Chen et al., 

2022). Employing RL and DRL strategies provides a practical 
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approach. These methods learn and adapt to the system's 

behavior iteratively, allowing them to solve the control problem 

efficiently without any prior knowledge of the system (Israr and 

Yang, 2021). 

 

1.3 DRL and Limitations 

The DRL agent autonomously determines the best actions to take 

within the energy management system, learning to maximize a 

reward function that reflects the optimal way of operating the 

microgrid. Through continuous learning and adaptation, the DRL 

model improves its decision-making process, effectively 

managing energy resources to ensure stability and reliability. 

This capability is of value in the dynamic urban environments 

where demand patterns and resource availability can be highly 

variable. However, dense urban districts, with their high resource 

demands, also pose complexities in mapping system operations, 

revealing the limitations of DRL in efficiently handling high- 

density scenarios. Introducing distance considerations or 

dynamic microgrids into the RL paradigm complicates the 

optimization process further. The action space, representing all 

possible actions the RL agent can take, increases exponentially 

when considering shortest paths or changing topologies. This 

complexity arises from the combinatorial nature of calculating 

the shortest distances between various nodes in the system, where 

the action space can potentially grow factorially with each 

additional node (Almasan et al., 2022). A challenge arises when 

combining this concept with a Deep Q-Network (DQN)-trained 

RL agent, as they are not designed to handle changing topologies. 

(Almasan et al., 2022) highlight that current advancements in 

DRL for networking are limited to network configurations 

encountered during training and struggle with unfamiliar 

structures. This limitation stems from the reliance on 

conventional neural network architectures, such as densely 

connected layers, which do not effectively capture the 

complexities of graph-based data. 

 

1.4 DRL-GNN for Internet Networks 

The recent studies on the integration of DRL and GNN 

(Fathinezhad et al., 2023),  and (Ji et al., 2024) in Internet of 

Vehicles technology demonstrate the potency of this integration. 

(Almasan et al., 2022) propose combining DRL with GNNs for 

routing optimization in internet networks. This combination 

allows for route allocation and training an agent for unknown 

topologies (Almasan et al., 2022). The architecture they provide 

can learn and generalize over unknown topologies due to 

optimization over an additional dimension. However, this 

approach requires significant computational power, and the input 

network of nodes and action space is limited. In their research, 

the agent is trained in scenarios with a single topology of 14 

nodes (Nsfnet) and then analyzed in larger topologies up to 100 

nodes. Performance dropped by 15% in these larger topologies. 

See (Almasan et al., 2022) for the algorithm for the DRL-GNN 

agent and the action space representation. 

 

1.5 The gap and DRL-GNN with Clustering as New Proposed 

Method 

While DRL demonstrates suitability for flexibility and adaptation 

to the dynamic nature of microgrids, the quickly growing action 

space poses a challenge in managing the complexity and scale of 

potential actions. To address these limitations, a combination of 

DRL with a GNN and Clustering is proposed. This hybrid 

approach aims to manage the expanding action space and 

improve the efficiency and scalability of the optimization 

process. The main objective is to minimize the burden on the grid 

and enhance grid flexibility by increasing the energy balance 

while integrating Renewable DERs and meeting variable energy 

demand for diverse topologies. The developed model may offer 

significant value by facilitating exploration of various microgrid 

configurations, through the identification of optimal setups and 

of optimal management. 

By creating sub-microgrids, or clusters, with a net output per 

cluster per timestep the required computational can be regulated. 

As the agent has become indifferent for the topology, clusters can 

be determined dynamically in line with efficient energy 

balancing strategies that take into account factors like distance 

and complementary consumption profiles.  

The DRL-GNN method, proposed by (Almasan et al., 2022), 

combined with topology-size constraints by means of clustering, 

facilitates a new way to optimize a microgrid with DRL. It allows  

for the creation of subsystems that reduce and bound the action 

space, thereby minimizing its influence on the training process. 

 

2. Underlying Components 

2.1 DRL and Markov Decision Process 

Markov Decision Processes (MDPs) form the mathematical 

foundation of reinforcement learning, enabling sequential 

decision-making under uncertainty. MDPs consider both 

immediate outcomes of current decisions and the impact of future 

actions, represented by a dynamic state and value function in the 

Bellman equation (Sutton & Barto, 2018), as shown in: 

 

𝑄∗(𝑠, 𝑎) = Ε[𝑟 + 𝛾 max
�́�

𝑄∗(�́�, �́�)]  (1) 

 

Where 𝑄∗(𝑠, 𝑎) represents the optimal state-action value 

function, which gives the maximum expected return starting from 

state 𝑠, taking action 𝑎, and thereafter following the optimal 

policy. Ε denotes the expected value, indicating that the returns 

are averaged over all possibilities, weighted by their probability 

of occurrence. 𝑟 is the immediate reward received after taking 

action 𝑎 in state 𝑠.  

𝛾 is the discount factor, which represents the difference in 

importance between future rewards and immediate rewards, and 

makes it possible to take in uncertainty. The factor is a value 

between 0 and 1, that determines the weight given to future 

rewards in the decision-making process. A higher discount factor 

places more importance on future rewards, reflecting greater 

confidence in the predictability of future outcomes, while a lower 

discount factor emphasizes immediate rewards, indicating higher 

uncertainty about future events.  

Selecting the appropriate discount factor for a microgrid depends 

on the specific goals and characteristics of the system. A high 

discount factor can promote long-term sustainability and 

strategic planning, but it should be balanced with the need to 

address immediate operational challenges. 

max
�́�

 denotes the maximum value over all possible actions 𝑎′ from 

the new state 𝑠′ and 𝑄∗(�́�, �́�) represents the optimal state-action 

value function for the next state 𝑠′ and any action 𝑎′ and 𝑠′ is the 

new state after action 𝑎 is taken in state 𝑠. 

 

2.2 Graph Neural Networks 

A GNN is a type of neural network specifically designed to 

process data structured as graphs, capturing both the relationships 

(edges) and individual entities (nodes) in the data. Through 

iterative message passing or neighborhood aggregation, each 

node in a GNN updates its feature representation by aggregating 

information from its neighbors, allowing it to learn contextually 

enriched embeddings. This aggregation process enables GNNs to 
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learn hierarchical, complex patterns that depend on the graph 

structure. A message passing neural networks layer 𝑙 can be 

expressed as: 

 

ℎ𝑢
(𝑙+1)

= 𝜙(ℎ𝑢
(𝑙)

, ⊕
𝑣𝜖𝑁𝑢

𝜓(ℎ𝑢
(𝑙)

, ℎ𝑣
(𝑙)

, 𝑒𝑢𝑣))    (2) 

 

where ℎ𝑢
(𝑙)

 and ℎ𝑣
(𝑙)

 are the feature vectors of nodes 𝑢 u and 𝑣 v 

at layer 𝑙 and 𝑒𝑢𝑣 is the edge feature between nodes 𝑢 and 𝑣 and 

⊕ is the aggregate function which combines messages from 

neighbours, 𝜙 and 𝜓 are differentiable functions. 𝜓 is a function 

that may transform or weight neighbour features before 

aggregation and ϕ is an activation function. This is illustrated in 

Figure 1. 

 
Figure 1. Graph Neural Networks 

 

2.3 Clusters 

Clustering methods have been observed to offer significant 

advantages for urban microgrid scenarios (Bandeiras et al., 2020; 

Philipo et al., 2021). According to (Yu et al. 2022), microgrid 

clustering can enhance the utilization and local consumption of 

renewable energy sources (RESs). Additionally, clustering has 

the potential to reduce maintenance costs and extend the overall 

lifespan of the network (Yu et al., 2022). 

In this approach, clustering methods enable the creation of 

subsets according to desired sizes and net output. Depending on 

the specific goals and characteristics of the system, factors for 

clustering can be selected. Examples of factors to cluster by 

include distance and user profile per building. By clustering in 

this manner, the same effect is observed as mentioned by (Yu et 

al. 2022), where local usage is preferred. The preference is for 

every sub-microgrid to become as independent as possible and 

for the distance of energy exchange to be limited. 

An important consideration in clustering is whether dynamic 

clustering per time step significantly increases performance or if 

a longer-term approach, for example annual clustering, would 

suffice to determine optimal clusters while still achieving 

distance minimization. Hierarchical clustering, DBSCAN, and 

K-means clustering are all techniques that facilitate the creation 

of subsets. By incorporating attributes such as net output, 

geographical distance, consumption profiles, resource 

availability, and other relevant factors, these clustering methods 

can create more effective and meaningful clusters that align with 

the system's goals. Research has shown that hierarchical 

clustering algorithms are better suited for microgrid planning 

because of their flexibility with any dataset, ability to explore the 

entire solution space to ensure globally optimal networks, and 

their relative computational efficiency (Cheong et al., 2017). This 

method builds a hierarchy of clusters through either an 

agglomerative (bottom-up) approach or a divisive (top-down) 

approach. The algorithm's inherent simplicity and computational 

efficiency are significant benefits, especially when dealing with 

extensive datasets (Cheong et al., 2017). Its versatility is a key 

advantage, particularly in scenarios involving sparse and 

heterogeneous data typical of remote or isolated locations. 

Hierarchical clustering can form dense, isolated clusters optimal 

for microgrid configurations in these areas (Cheong et al., 2017). 

 

2.4 Microgrid Components 

Key system elements, critical for modelling and optimizing an 

energy grid system, include energy loads, representing total 

energy demand, which can be balanced across buildings to reduce 

reliance on the main grid. The utility grid acts as a backup, 

enabling energy flow during supply-demand imbalances and 

incurring higher costs during peak hours. Distributed Energy 

Resources (DERs), such as solar and geothermal energy, and 

components like electrolyzers, fuel cells, and batteries provide 

flexibility and sustainability. Electric vehicles (EVs) and 

hydrogen-based systems like Combined Heat and Power (CHP) 

units also support the system, enhancing resilience and self-

sufficiency. These elements collectively shape an efficient and 

environmentally-friendly energy network within the urban 

landscape. Figure 2 presents a schematic illustration of microgrid 

components and their potential inter-connection at a specific 

time. 

 

 
Figure 2. Schematic illustration of microgrid components and 

their inter-relations at a specific time. 

 

3. Methodology and Discussions 

This section includes the description and discussions of DRL-

GNN-dynamic clustering integration and its adaptation to 

microgrid adaptive optimization.  

 

3.1 DRL Design for Microgrid Management 

The system to be implemented includes the following essential 

components: 

Environment: This encompasses the RL environment, 

representing the grid setup with all DERs, loads, generators, and 

connections to the main grid. 

States: These define the current status of the grid, providing 

detailed information on the output levels of each DER and 

generator, load demands, the level of power exchange with the 

main grid, battery storage levels, and external environmental 

factors such as weather conditions that impact renewable energy 

output. 

Actions: The agent’s actions include adjusting the outputs of 

controllable DERs, managing Energy Storage Systems (ESSs), 

and determining the level of power exchange between microgrid 

elements and with the main grid. 

Reward Function: This function represents the system's goals, 

incorporating penalties for drawing power from the main grid and 

rewards for utilizing renewable energy sources (RES). It is 
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designed to promote self-sufficiency and reduce operational 

costs. Additionally, the reward function should prioritize local 

load balancing to minimize transmission losses. 

 

3.1.1 Microgrid Action Space 

To represent the actions in a DRL framework for a microgrid, 

each action can be mapped to a feature vector where each element 

corresponds to a control variable for specific components in the 

microgrid. In this study, we have categorized the microgrid 

controllable elements into four categories of: 

1. Controllable DERs Output Adjustments 

𝑎𝐷𝐸𝑅 = [𝑎𝑆𝑜𝑙𝑎𝑟 , 𝑎𝐶𝐻𝑃, … , 𝑎𝐷𝐸𝑅𝑘
 ]

𝑇
  (3) 

Each 𝑎𝐷𝐸𝑅𝑘
 represents the output of a specific DER (e.g., solar, 

CHP, etc.). 

2. ESS Management 

𝑎𝐸𝑆𝑆 = [𝑎𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑐ℎ𝑎𝑟𝑔𝑒 , 𝑎𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ]
𝑇
   (4) 

These elements represent charging and discharging levels for the 

battery or other ESS 

3. Power Exchange with the Main Grid 

𝑎𝐺𝑟𝑖𝑑 = 𝑎𝐺𝑟𝑖𝑑_𝑝𝑜𝑤𝑒𝑟_𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒    (5) 

a single variable for the level of power exchanged with the main 

grid. 

4. Energy sharing between elements 

Let S be an 𝑛 × 𝑛 matrix where each element 𝑠𝑖,𝑗 represents the 

amount of energy shared from element 𝑖 to element 𝑗 (for instance 

building 𝑖 with building 𝑗). In this setup: 

𝑠𝑖,𝑗 ≥ 0 represents the amount of energy sent from element 𝑖 to 

element 𝑗. 

𝑠𝑖,𝑖 = 0, since a building cannot share energy with itself. 

To integrate this matrix S into the action feature vector, we will 

flatten it into a vector. For 𝑛 elements, there are 𝑛 × (𝑛 − 1) 

possible directed energy flows (since 𝑠𝑖,𝑖 = 0 for all 𝑖). The 

flattened vector 𝑎𝑆ℎ𝑎𝑟𝑖𝑛𝑔 for the energy sharing component 

would then be: 

𝑎𝑆ℎ𝑎𝑟𝑖𝑛𝑔 = [𝑠1,2, 𝑠1,3, … , 𝑠1,𝑛,   𝑠2,1, 𝑠2,3, … , 𝑠𝑛,𝑛−1]
𝑇

 (6) 

The overall action feature is as follows: 

𝑎 = [
𝑎𝑆𝑜𝑙𝑎𝑟 , 𝑎𝐶𝐻𝑃, … , 𝑎𝐷𝐸𝑅𝑘

, 𝑎𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑐ℎ𝑎𝑟𝑔𝑒
, 𝑎𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

,

𝑎𝐺𝑟𝑖𝑑𝑝𝑜𝑤𝑒𝑟 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒
, 𝑠1,2, 𝑠1,3, … , 𝑠1,𝑛,   𝑠2,1, 𝑠2,3, … , 𝑠𝑛,𝑛−1  ]

𝑇

 

(7) 

3.1.2  Reward Shaping Indicators and Objectives 

The reward function is essential for training the agent to achieve 

desired behaviors, such as minimizing grid connections, boosting 

microgrid independence, and cutting operational costs. 

Represented in euros, the reward is negative and includes costs 

for DERs, imports, and exports (with positive costs for exports). 

A custom reward shaping mechanism is integrated into the 

microgrid environment to discourage grid reliance by 

dynamically imposing penalties for grid usage at each step. This 

approach encourages the agent to favor local energy production, 

promoting self-sufficiency and cost-effectiveness.  

 

𝑅 = −(∑ 𝑐𝐷𝐸𝑅,𝑖 . 𝐸𝐷𝐸𝑅,𝑖

𝑖

+ 𝑐𝑖𝑚𝑝𝑜𝑟𝑡 . 𝐸𝑖𝑚𝑝𝑜𝑟𝑡 − 𝑐𝑒𝑥𝑝𝑜𝑟𝑡 . 𝐸𝑒𝑥𝑝𝑜𝑟𝑡

+ 𝑝𝑔𝑟𝑖𝑑 .
𝐸𝑖𝑚𝑝𝑜𝑟𝑡

𝐸𝑡𝑜𝑡𝑎𝑙
) 

(8) 

The components of this reward function are: 

1. Cost of DERs 𝐶𝐷𝐸𝑅: 

𝐶𝐷𝐸𝑅 = ∑ 𝑐𝐷𝐸𝑅,𝑖 . 𝐸𝐷𝐸𝑅,𝑖𝑖   (9) 

Where 𝑖: Index for each DER (e.g., solar, wind, geothermal). 

𝑐𝐷𝐸𝑅,𝑖: Marginal cost of operating the 𝑖-th DER (in €/kWh). 

𝐸𝐷𝐸𝑅,𝑖: Energy generated by the 𝑖-th DER (in kWh). 

 

2. Cost of Importing Energy from the Main Grid, 𝐶𝑖𝑚𝑝𝑜𝑟𝑡:  

𝐶𝑖𝑚𝑝𝑜𝑟𝑡 = 𝑐𝑖𝑚𝑝𝑜𝑟𝑡 . 𝐸𝑖𝑚𝑝𝑜𝑟𝑡  (10) 

Where 𝑐𝑖𝑚𝑝𝑜𝑟𝑡:  Cost per unit of imported energy (in €/kWh), 

which may vary depending on peak/off-peak hours. 𝐸𝑖𝑚𝑝𝑜𝑟𝑡: 

Total energy imported from the main grid (in kWh). 

 

3. Revenue from Exporting Excess Energy to the Grid, 

𝐶𝑒𝑥𝑝𝑜𝑟𝑡: 

𝐶𝑒𝑥𝑝𝑜𝑟𝑡 = 𝑐𝑒𝑥𝑝𝑜𝑟𝑡 . 𝐸𝑒𝑥𝑝𝑜𝑟𝑡 (11) 

Where 𝑐𝑒𝑥𝑝𝑜𝑟𝑡: Price per unit of energy exported to the main grid 

(in €/kWh). 𝐸𝑒𝑥𝑝𝑜𝑟𝑡:  Total energy exported back to the main grid 

(in kWh). 

4. Penalty for Grid Usage, 𝑃𝑔𝑟𝑖𝑑: 

𝑃𝑔𝑟𝑖𝑑 = 𝑝𝑔𝑟𝑖𝑑 .
𝐸𝑖𝑚𝑝𝑜𝑟𝑡

𝐸𝑡𝑜𝑡𝑎𝑙
  (12) 

Where 𝑝𝑔𝑟𝑖𝑑 : Penalty rate for grid reliance (unitless or in 

€/kWh). 𝐸𝑡𝑜𝑡𝑎𝑙: Total energy demand or consumption in the 

microgrid (in kWh). This term discourages grid usage by 

imposing a penalty proportional to the fraction of total energy 

demand met by imports from the grid. 

 

3.2 DRL-GNN Integration for Dynamic Microgrid 

Optimization  

The combination of DRL with a GNN addresses the 

computational challenges associated with large action spaces and 

varying topologies in microgrid management. The proposed 

method creates manageable clusters within the microgrid and one 

agent that can traverse these sub-microgrids. This method allows 

for the inclusion of distance minimization in cluster formation 

without expanding the action space excessively. Thereby, the 

findings by (Almasan et al., 2022) indicate that the DRL-GNN 

agent surpasses existing leading solutions in these diverse 

topologies. 

The integration of DRL and GNNs represents a cutting-edge 

approach for solving complex, relational decision-making tasks. 

DRL uses deep neural networks to enable agents to learn optimal 
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policies through high-dimensional, dynamic environments, while 

GNNs are specifically designed to model data structured as 

graphs, capturing dependencies and interactions among entities. 

This integration allows DRL agents to process and learn from 

structured, graph-based data, improving their ability to generalize 

and adapt to complex, interconnected settings. 

The embeddings from the GNN serve as inputs to the DRL 

agent’s policy and/or value networks. In Q-learning (e.g., DQN), 

the GNN outputs are used to estimate Q-values, which represent 

expected future rewards for taking specific actions. This enables 

the DRL agent to learn policies that account for the underlying 

graph structure, effectively improving decision-making. Based 

on the GNN output, the agent takes actions that may be either 

node-level (acting on specific nodes) or graph-level (acting on 

the entire graph structure). After the agent takes an action, it 

receives a reward based on the effectiveness of its decision. This 

reward feedback is then used to update both the DRL and GNN 

components through backpropagation. The loss functions used in 

DRL propagate gradients not only through the policy/value 

network but also through the GNN layers. This adjusts the GNN 

parameters to better capture the structure needed for optimal 

decision-making. Over many episodes or iterations, the agent 

continually refines its policy. The GNN learns to produce 

embeddings that capture critical information about the graph 

structure, while the DRL agent learns an optimal policy based on 

these embeddings. The combined model eventually converges on 

a policy that leverages both the graph’s structural information 

(through GNN) and reward-based adaptation (through DRL). 

Figure 3 presents the DRL-GNN integration concept. Here the 

interaction and optimization over the two neural networks is 

depicted within the reinforcement loop. 

 

Figure 3. Interaction agent and model in DRL-GNN integrated 

model 

 

The adaptation of DRL states and actions in GNN is presented in 

Figure 4. 

 

 

Figure 4. Representation of states and actions in GNN 

 

Through DRL-GNN integration the microgrid topology becomes 

indifferent for the optimized model as it has optimized over the 

two dimensions. The GNN creates a graph representation where 

the connections between the nodes are represented as entities in 

the graph. In this representation, the hidden states of the 

connections are initialized based on the input link-level features 

and the action to be evaluated. The state and action space 

depicted in Figure 4. The state features x1-xn is defined for each 

DER component based on its operational status and 

characteristics. For instance, in the case of a solar panel, each 

node can encompass Current Power Output (kW), Capacity 

(kW), Operational Status (Online/Offline), Voltage (V) 

Efficiency (%) and Environmental Impact (gCO2/kWh). 

 

3.3 Dynamic Clustering 

To optimize load sharing within a microgrid, clustering 

techniques can be utilized to group buildings or parcels based on 

their energy consumption profiles (Rostami et al., 2020). This 

approach is frequently used in the formation of multiple 

microgrids but can also be applied within a single microgrid to 

dynamically create optimal energy balance at each time step. 

Dynamic clustering in microgrid optimization refers to the 

strategy of dynamically grouping or reconfiguring microgrid 

resources, such as distributed energy sources, storage units, and 

loads, to improve operational efficiency, stability, and 

adaptability. This concept plays a crucial role in optimizing the 

performance of microgrids, particularly under varying energy 

demands, environmental conditions, and grid interactions. 

In the context of GNNs, dynamic clustering can be used to reduce 

the action space by simplifying the structure of the graph, thereby 

focusing the model's attention on the most relevant nodes and 

edges. This is particularly valuable in large or complex graphs, 

where the action space can quickly become overwhelming due to 

the exponential number of possible connections and actions at 

each node. Dynamic clustering groups nodes and edges into 

clusters based on relevance, connectivity, or certain features of 

interest. By replacing multiple nodes or edges with a single 

cluster node or edge, the GNN operates on a simplified version 

of the graph, effectively reducing the number of possible actions 

it has to consider. 

 

 
Figure 5. Schematic representation of dynamic clustering 

integration with GNN 
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Dynamic clustering can be used to create a hierarchical structure 

within the graph. Instead of having to select actions across all 

nodes and edges simultaneously, the GNN can first choose 

between clusters and then refine its focus within a selected 

cluster. This hierarchical reduction of the action space makes the 

decision-making process more efficient. 

This clustering allows the GNN to make coarse-grained decisions 

at the cluster level first, before moving into finer details, which 

reduces the need to evaluate every individual node at the outset. 

 

 
Figure 6. Microgrid dynamic clustering for time step t and 

timestep t+1 

 

This clustering can be used to organize the microgrids strategic- 

ally to optimize energy distribution. The resulting clusters can 

act as isolated units that manage their net load independently, 

which is particularly crucial for balancing the energy within 

the main microgrid system. Each cluster produces a specific net 

load that corresponds to the unbalanced demand within that 

cluster, connecting back to the main grid in various 

configurations. These configurations can range from fully 

interconnected systems where every cluster is connected to 

every other, to arrangements such as a circular or linear chain, 

depending on the specific energy and infrastructure needs 

(Ediriweera & Widanagama Arachchige, 2022). This clustering 

approach not only optimizes the physical distances between 

energy production and consumption points but also minimizes 

transmission losses, thereby enhancing the overall efficiency of 

the microgrid system. 

 

3.4 Scalability and Computational Requirements 

The dynamic clustering approach described in subsection 3.3 

provides advantages in terms of scalability and computational 

efficiency. By managing the size of the sub-microgrids, the 

computational resources required to optimize the topology 

remain manageable. The clusters act as isolated units managing 

their net load independently, facilitating the addition of new 

clusters without significant impact on the overall computational 

load. The system can dynamically reconfigure clusters based on 

changing energy demands, ensuring that the microgrid remains 

optimized as it scales. This scalability allows for the efficient 

operation and optimization of higher number of sub-microgrids. 

 

4. Conclusions 

Combining the DRL-GNN agent with cluster techniques, can 

reduce the required computation and complexity, and increase 

the possibility of optimizing over multiple dimensions and 

topologies. With this novel approach it is possible to take in 

spatial relationships, and therefore to balance on a lower level.  

The applied clustering can already impose strict spatial 

constraints necessary for efficient microgrid generation, while 

also limiting the size of the sub-microgrids. The microgrid is 

divided into several sub-microgrids that exchange energy, aiming 

to minimize distances and balance loads within the network. 

Constraints on the maximum number of loads per sub-microgrid 

ensure system efficiency and stability.  

 

While the DRL-GNN-clustering triplet holds significant 

potential for scaling microgrid optimization, its performance 

should be measured in a follow-up study. The proposed 

framework should be applied to a case study to test the method 

and theory, and to compare the new results against traditional 

optimization methods, further validating its effectiveness. 

The performance analysis should measure the computational load 

and convergence stability when scaling up the microgrid in terms 

of the number of elements and geospatial extent. Moreover, the 

analysis should include various microgrid and urban 

configurations to monitor the effectiveness of the DRL-GNN-

clustering triplet in different settings. It is also important to 

consider the value of the clustering frequency and to use training 

data that includes both seasonal and weekly variations to test the 

approach's performance in various demand-generation settings. 

Exploring the framework in a multi-objective context would 

further extend the proposed method, enhancing its robustness. 
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