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Abstract 
 
Image-to-point cloud (I2P) registration plays a vital role in applications requiring accurate spatial alignment between 2D images and 
their corresponding 3D point clouds. Traditional I2P methods often require extensive training to generalise across diverse environments 
and rely on intrinsic camera parameters for accurate metric depth estimation, limiting their effectiveness in complex or unseen 
scenarios. To address these challenges, this study introduces a novel approach that leverages Camera Motion Generation (CMG) and 
Monocular Depth Estimation (MDE) for I2P registration task. CMG simulates camera movements in the up, down, left, and right 
directions, enabling the generation of novel viewpoints of the scene. MDE is applied to each frame to generate point clouds, which are 
subsequently registered using multi-way registration. The final registered point cloud is then aligned with the scene point cloud through 
the Iterative Closest Point (ICP) algorithm, ensuring precise spatial alignment. The proposed method eliminates the need for training 
or reliance on intrinsic camera parameters, making it robust for diverse and unseen environments. We evaluated the proposed approach 
through extensive experiments using the Root Mean Square Error (RMSE) to measure registration accuracy between the generated and 
ground truth point clouds. The results indicate that our method achieves competitive RMSE values across various scenarios, validating 
its effectiveness in enhancing I2P registration accuracy and adaptability. 
 

1. Introduction 

Image-to-point cloud (I2P) registration involves determining the 
rigid transformation, encompassing both rotation and translation, 
that aligns a 3D point cloud with its corresponding 2D image 
(Kang et al., 2023). I2P registration has numerous applications in 
fields such as robotics and augmented reality (Bai et al., 2024). 
To establish accurate pixel-to-point correspondences in I2P 
registration, depth information is essential. Depth information 
allows each pixel in the 2D image to be associated with a 
corresponding 3D point in the point cloud, facilitating precise 
spatial alignment. This information is often obtained from 
sensors such as LiDAR, which provide direct measurements of 
the distance between the sensor and the observed scene. While 
LiDAR offers precise and direct depth measurements, they have 
several limitations that affect their practicality in certain 
applications. LiDAR systems are often expensive, and power-
intensive, making them less suitable for lightweight, low-cost, or 
portable scenarios.  
 
Monocular depth estimation (MDE) is the process of estimating 
depth information from a single image to predict the distance 
from the camera to each pixel within the scene (Ke et al., 2024). 
Unlike stereo cameras or LiDAR systems, MDE does not require 
multiple viewpoints or specialised sensors, making it a more 
accessible and cost-effective solution for depth estimation. 
Despite the challenges associated with MDE, particularly 
regarding accuracy in complex or unseen environments, recent 
advancements in deep learning, coupled with the availability of 
large-scale datasets, have improved its performance in zero-shot 
depth estimation. Consequently, MDE has gained increased 
relevance in I2P registration (Wang et al., 2023). Depth 
estimation can be classified into two categories: (1) relative depth 
estimation and (2) metric depth estimation. Relative depth 
estimation techniques assess the depth of objects within an image 
in relation to one another, offering a spatial understanding of the 
scene's layout. While this approach enhances scene perception, it 
is insufficient for I2P registration, which requires precise, 

absolute depth measurements to accurately align images with 3D 
point clouds. In contrast, metric depth estimation provides depth 
values in real-world units, such as metres, representing the actual 
distance from the camera to each object, making it suitable for 
registration tasks. 
 
Point clouds and multi-view images provide a detailed 
representation of scenes by combining depth information with 
visual features in 3D environment. However, when using single 
images, the visual context is often insufficient, presenting 
significant challenges for accurate I2P registration. Single 
images capture the scene from a single viewpoint, which restricts 
the ability to infer depth and structure for aligning 2D image data 
to 3D point clouds. Additionally, single viewpoint is inadequate 
for capturing geometric relationships and occlusions within the 
scene. Video generation from a single image can produce 
multiple frames that simulate different viewpoints and 
movements, thereby enriching the visual information extracted 
from a single image. Image-to-video (I2V) generation allows for 
a rich representation of the environment by extrapolating 
additional visual information that is not present in the original 
image (Gupta et al., 2022). By synthesising multiple frames, this 
technique offers additional visual cues that can help in tasks such 
as scene interpretation and 3D reconstruction (Voleti et al., 
2024).  
 
In video sequences, motion can be classified into two types: (1) 
local motion and (2) global motion (Wang et al., 2024b). Local 
motion refers to the movement of objects within a scene while 
the camera remains fixed. This type of motion changes the 
relative positions, interactions, and dynamics of the objects 
without altering the viewpoint. This is essential for simulating 
dynamic objects to enhance the overall realism of the video. 
Global motion refers to the movement of the camera, which 
results in a shift in the view of the entire scene. As the camera 
moves, the corresponding shift in viewpoint alters the spatial 
representation of objects, affecting both their position and scale 
within the scene. This type of motion enhances the visual 
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perspective and plays a crucial role in improving the 
understanding of spatial relationships within the scene. In this 
study, we refer to this process as camera motion generation 
(CMG), which involves creating simulated or controlled camera 
movements to obtain multiple viewpoints of the scene. 
 
This study proposes a novel method using CMG to address the 
limitations of depth estimation and visual information in current 
I2P registration tasks that rely solely on single images. Camera 
motions are simulated using the MotionCtrl (Wang et al., 2024b) 
framework, which generates multiple frames from a single image 
by simulating various camera movements. From the generated 
video, appropriate frames are extracted for each motion direction 
to ensure the highest quality and consistency. For depth 
estimation, the Depth Anything V2 model (Yang et al., 2024b) is 
employed to perform monocular metric depth estimation on both 
the original image and the selected frames from each motion. 
This depth information is then used to generate point clouds for 
each image, providing a 3D spatial representation of the scene. 
These point clouds are then aligned using multiway registration 
(Choi et al., 2015), ensuring that they are consistently positioned 
within a global coordinate system. In this process, pose graph 
optimisation is applied to align the generated point clouds by 
calculating transformations between overlapping geometries. 
Following this, an initial alignment is conducted to reduce the 
spatial disparity between the registered point clouds and the 
ground truth point cloud. Finally, Iterative Closest Point (ICP) 
registration is applied to further refine the alignment. To assess 
the effectiveness of the proposed method, we evaluate the 
accuracy of the I2P registration by comparing the registered point 
clouds with the ground truth point cloud. The assessment is 
primarily conducted using the Root Mean Square Error (RMSE), 
which measures the average distance between corresponding 
points in the registered and ground truth point cloud. In summary, 
the key contributions of this study are as follows: 
 
1. To the best of our knowledge, this is the first study to utilise 

CMG for the I2P registration task. 
2. A method is designed to enable I2P registration in unseen 

environments without requiring any training. 
3. The reliance on intrinsic camera parameters for metric depth 

estimation is eliminated by employing zero-shot MDE 
models. 

4. Experiments are conducted to demonstrate the feasibility of 
the proposed approach for I2P registration. 
 

The remainder of this paper is organised as follows. The literature 
review is presented in Section 2. In Section 3, we detail the 
proposed methodology. Section 4 provides the results and 
discussions of the findings. Finally, the conclusions and potential 
future works are outlined in Section 5. 
 

2. Literature Review 

This section reviews the state-of-the-art (SOTA) algorithms for 
I2P registration task. Recent advancements in MDE methods are 
then examined. Finally, CMG models are explored, and their 
relevance to the current study is discussed. 
 
2.1 Image-to-Point Cloud Registration 

To register image into the point clouds, most existing approaches 
utilise high-quality training datasets (Kang et al., 2023, Li and 
Lee, 2021, Jeon and Seo, 2022) and depth information (Campbell 
et al., 2020, Liu et al., 2020, Wang et al., 2021). Besides, some 
approaches require camera intrinsic parameters for 2D-to-3D 
transformation (Sheng et al., 2024). CoFiI2P (Kang et al., 2023) 

introduced a registration network that progressively aligns 
images and point clouds by extracting multi-level 
correspondences using transformers, incorporating both self-
attention and cross-attention mechanisms to enhance the 
robustness and accuracy of image-to-point cloud registration in 
autonomous systems. DeepI2P (Li and Lee, 2021) presented an 
approach for I2P registration, transforming the registration 
problem into a two-stage classification and optimisation 
framework. This approach predicted the rigid transformation by 
estimating whether points in the point cloud project within or 
outside the camera frustum. EFGHNet (Jeon and Seo, 2022) 
introduced an I2P registration method for outdoor environments, 
utilising a two-phase process—virtual alignment and compare-
and-match to estimate the transformation between an image and 
a pre-collected point cloud for both urban and off-road settings. 
CorrI2P (Ren et al., 2022) developed a feature-based dense 
correspondence framework for I2P registration, leveraging a 
two-branch neural network with a symmetric overlapping region 
detector to extract dense 2D-3D correspondences and estimate 
the camera pose. CFI2P (Yao et al., 2024) proposed a coarse-to-
fine correspondence learning framework for image-to-point 
cloud registration, emphasising quantity-aware correspondences 
between point sets and pixel patches to improve matching 
accuracy. All these learning-based approaches employed 
extensive point cloud data and corresponding images datasets for 
network training. Besides, they were specifically designed for 
outdoor environments, limiting their ability to generalise to 
indoor settings. In this study, a pre-trained monocular depth 
estimator is employed to eliminate the need for training on the 
I2P registration, with a primary focus on indoor environments. 
 
2.2 Monocular Depth Estimation 

The primary challenge in MDE lies in estimating depth 
information from a single 2D image, which is fundamentally 
ambiguous due to the absence of 3D spatial data. Several studies 
have focused on both relative (Ranftl et al., 2020, Yao et al., 
2024, Ke et al., 2024) and metric (Bhat et al., 2023, Yin et al., 
2023, Yang et al., 2024a) MDE. Marigold (Ke et al., 2024) 
introduced a diffusion-based model for relative MDE, utilising 
pre-trained image stable diffusion and fine-tuning them with 
synthetic data to achieve SOTA performance on natural images, 
even in zero-shot scenarios using only synthetic RGB-D data. 
ZoeDepth (Bhat et al., 2023) presented a two-stage MDE that 
integrates relative depth pre-training with metric depth fine-
tuning. It employed an encoder-decoder architecture for relative 
depth estimation, then adds domain-specific heads for metric 
depth using a lightweight metric bins module. Depth Anything 
(Yang et al., 2024a) proposed a relative and metric MDE that 
scales up by leveraging large-scale unlabelled datasets, 
combining self-supervised learning and rich semantic priors from 
pre-trained encoders to achieve strong zero-shot generalisation 
across unseen scenes. Depth Anything V2 (Yang et al., 2024b) 
enhances the Depth Anything model by replacing labelled real 
images with synthetic data, scaling up the dataset with pseudo-
labelled real images (62M), and utilising a teacher-student model 
framework for training. It provides more robust predictions for 
complex scenes, better generalisation through metric depth fine-
tuning, and faster inference speeds. According to the accuracy of 
SOTA pre-trained models, Depth Anything V2 is utilised for 
zero-shot metric MDE in this research. 
 
2.3 Camera Motion Control in Image-to-Video Generation 

I2V generation refers to the process of generating consistent 
video sequences from static images. Traditionally, I2V methods 
have utilised approaches such as Generative Adversarial 
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Networks (Wang et al., 2020, Tulyakov et al., 2018) and 
Variational Autoencoders (Wang et al., 2022, Xu et al., 2023) 
However, with the exceptional performance of diffusion models 
in image generation tasks, I2V research has shifted towards 
leveraging diffusion models for advanced video generation 
(Blattmann et al., 2023, Guo et al., 2023). CMG in I2V models is 
essential for producing realistic and dynamic video sequences, as 
it effectively simulates natural movements. MotionLoRA is a 
lightweight fine-tuning technique integrated into AnimateDiff 
(Guo et al., 2023),  which allows a pre-trained motion module to 
efficiently adapt to new motion patterns. This method leverages 
LoRA layers in the self-attention components of the motion 
module, enabling personalisation of motion effects with limited 
reference videos. VideoComposer (Wang et al., 2024a) 
incorporated motion control by utilising motion vectors extracted 
from compressed videos as temporal control signals. These 
vectors guide the synthesis of inter-frame dynamics, ensuring 
temporal consistency and enabling the generation of smooth, 
controlled video sequences. MotionCtrl (Wang et al., 2024b) 
utilised a multi-step training strategy to control both camera and 
object motion effectively by training on distinct datasets tailored 
to specific motion control needs. The Camera Motion Control 
Module (CMCM) is trained using the Realestate10K (Zhou et 
al.). While the dataset has limitations in scene diversity, it 
provides precise annotations of camera poses that enhance the 
quality of training. Challenges such as the lack of captions for 
text-to-video models are addressed by integrating Blip2 (Li et al., 
2023) to generate the necessary captions for video clips in 
Realestate10K. Given the superior performance of MotionCtrl 
compared to MotionLoRA and VideoComposer (Wang et al., 
2024a), CMCM of MotionCtrl was selected for CMG in this 
study. 
 

3. Method 

Figure 1 illustrates the research methodology in this study. The 
process begins with a single input image, where camera motion 
is simulated to generate a sequence of frames for each movement. 
Afterward, a metric depth estimator is applied individually to 
both the original and extracted frames. Point clouds are generated 
from the depth information of each frame and are then aligned 
through multiway registration. An initial alignment is performed  

 
                     Figure 1. Research methodology 

to refine the transformation of the geometries. Finally, the RMSE 
is calculated using the ICP algorithm to assess the accuracy of 
the alignment. 
 
3.1 Camera Motion Generation 

CMG refers to the simulation of dynamic camera movements to 
generate a sequence of frames from a single image. This 
technique enables the creation of video sequences by controlling 
the virtual camera’s motion, offering advantages in scenarios 
where specific camera movements are necessary to interpret or 
analyse scenes in ways that cannot be achieved with the original 
image. In this study, MotionCtrl is utilised to generate video from 
a single image by controlling the camera's movement. The 
CMCM module takes a series of camera poses, denoted as 𝑅𝑅𝑅𝑅 = 
{𝑅𝑅𝑅𝑅0, 𝑅𝑅𝑅𝑅1, ..., 𝑅𝑅𝑅𝑅𝑅𝑅−1}, as input. In this module, the camera pose 
is described using a 3×3 rotation matrix and a 3×1 translation 
matrix. According to the capabilities of MotionCtrl, four main 
camera motions, including up, down, right, and left, are simulated 
to generate one-second videos for each movement. The seed 
value is set to 1230, and the frame rate is configured at 10 frames 
per second. Figure 2 depicts the frames from a one-second video 
generated for each main camera motions.  
 

 
Figure 2. Camera motion generation for four main movements 

 
3.2 Frame Extraction 

In the frame extraction process, an initial set of 30 frames was 
extracted from each one-second video generated by the camera 
motion simulation. However, after careful evaluation, issues such 
as geometric distortions and blurriness in the scenes were 
observed from a certain frame onwards. To address the problem, 
the last consistent frame was selected for each motion. This 
approach ensured that the selected frame preserved both visual 
clarity and consistency. Figure 3 shows the frames extracted from 
a generated video with MotionCtrl. As shown in the figure, some 
frames exhibit issues such as changes in object geometry and 
blurriness, particularly in later frames. 
 
3.3 Metric Depth Estimation 

The process of metric depth estimation from a single image 
involves using computational models to infer the 3D structure of 
a scene from its 2D representation. Due to the absence of camera 
intrinsic parameters, it is essential to employ zero-shot 
monocular metric depth estimation models. These models are 
specifically designed to infer depth information from single 
images without requiring explicit calibration data. This study 
leverages Depth Anything V2 model to estimate depth 
information of single images in unseen scenarios. This model is  
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Figure 3. Frame extraction from the generated video (with "up" 

camera motion as the example) 
 
designed to enhance monocular depth estimation by utilising a 
teacher-student learning approach. Initially, the model employs 
DINOv2-G (Oquab et al., 2023), which is trained exclusively on 
high-quality synthetic images known for their precision but 
limited diversity. To address the challenges of distribution shift, 
pseudo labels were generated for a diverse set of unlabelled real-
world images. Finally, the student models were trained on these 
pseudo-labelled real images, enabling robust generalisation 
across varied environments. The pre-trained encoder was 
transferred for metric depth estimation. To enhance real-world 
applications like multi-view synthesis, the encoder was fine-
tuned using the Hypersim (Roberts et al., 2021) for indoor 
environments and the Virtual KITTI (Cabon et al., 2020) for 
outdoor scenarios, ensuring robust performance in both domains 
of metric depth estimation. In this study, the Depth-Anything-
V2-Large pre-trained model is employed as an encoder for metric 
depth estimation. Based on the characteristics of the captured 
indoor environment and the image dataset, the Hypersim dataset 
is used with a maximum depth threshold of 5 metres to estimate 
the depth information. As the intrinsic camera parameters are not 
available, the model utilises a default focal length of 470.4 for 
both the x and y axes. Figure 4 shows the pipeline to train Depth 
Anything V2 model. 
 

 
Figure 4. Depth Anything V2 training pipeline (Yang et al., 

2024b) 
 

3.4 Point Cloud Generation 

To generate a point cloud from depth information, each 2D pixel 
in the image is transformed into a 3D point using its 
corresponding depth value. The 2D pixel coordinates are first 
normalised by subtracting the image centre and dividing by the 
default focal lengths of Depth Anything V2 model, resulting in 
normalised coordinates. These normalised coordinates are then 
multiplied by the depth value to obtain the 3D. Specifically, the 
3D coordinates are computed as (Hartley and Zisserman, 2003): 
 

(𝑋𝑋,𝑌𝑌,𝑍𝑍) = �
�𝑥𝑥−𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

2
�

𝑓𝑓𝑥𝑥
 ×  𝑧𝑧,

�𝑦𝑦−ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡
2

�

𝑓𝑓𝑦𝑦
 ×  𝑧𝑧, 𝑧𝑧� ,                         (1)                      

 
where  𝑋𝑋,𝑌𝑌,𝑍𝑍 = 3D coordinates 
 𝑥𝑥,𝑦𝑦 = 2D pixel coordinates from the image 
 𝑧𝑧 = depth value for each pixel 

𝑓𝑓𝑥𝑥 , 𝑓𝑓𝑦𝑦 = the default focal length values (470.4 in Depth 
Anything V2 model) 

 
The point cloud generated for each direction is stored in pcd 
format for multiway registration. Figure 5 illustrates the point 
cloud generation from the corresponding depth map. 

 
Figure 5. Point cloud generation from depth information. (a) 

RGB image; (b) Depth map; (c) Point cloud 
 
3.5 Multiway Registration 

Multiway registration is a technique used to align multiple 
geometries, such as point clouds, into a unified global space. This 
approach computes a set of rigid transformations, which ensures 
that the input geometries are correctly aligned after 
transformation. In this research, multiway registration is 
implemented using pose graph optimisation.  
 
3.5.1 Pose Graph Optimisation 
 
The pose graph consists of nodes, each representing a geometry, 
and edges, which define the relationships between geometries 
with overlapping regions. Each node is associated with a pose 
matrix, responsible for transforming the geometry into the global 
coordinate space. The global space is initialised by setting the 
pose of the first geometry. The transformations for the other 
geometries are derived based on pairwise registration between 
neighbouring nodes. Pairwise registration is performed using the 
point-to-plane ICP algorithm (Chen and Medioni, 1992), which 
minimises the alignment error by considering the surface normal 
of points. The objective function for point-to-plane ICP is 
formulated as: 
 
𝐸𝐸(𝑇𝑇) = � ((𝑝𝑝 − 𝑇𝑇𝑇𝑇).𝑛𝑛𝑝𝑝����⃗  )2,

(𝑝𝑝,𝑞𝑞)∈ 𝐶𝐶

                                                  (2) 

 
where  𝐸𝐸(𝑇𝑇) = object function that needs to be minimised. 

𝑝𝑝, 𝑞𝑞 = the corresponding points from the source and 
target geometries 
𝑇𝑇𝑇𝑇 = the point 𝑞𝑞 from the source geometry after it has 
been transformed by the transformation matrix 𝑇𝑇 
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𝑛𝑛𝑝𝑝����⃗  = the normal vector of the surface at the point 𝑝𝑝 in 
the target geometry 
 

For each pair, the point-to-plane ICP algorithm is employed to 
calculate both coarse and fine transformations, which are 
subsequently integrated as edges into the pose graph. Odometry 
edges link neighbouring nodes that exhibit significant overlap, 
while loop closure edges connect non-adjacent nodes to ensure 
consistency across the entire global registration.  
Once the pairwise registration step is complete, global 
optimisation is applied to refine the pose graph. This optimisation 
minimises the residuals from both the odometry and loop closure 
edges, while pruning false alignments and improving the 
accuracy of the transformation matrices. The optimised 
transformations are then applied to each geometry, ensuring that 
all point clouds are accurately aligned in the global coordinate 
space. In this study, the Open3D (Zhou et al., 2018) is utilised to 
implement multiway registration. This method ensures robust 
and precise alignment of geometries by leveraging both local and 
global geometric relationships. 
 
3.6 Initial Alignment 

Since the ground truth point cloud is a cropped subset of the 
complete environment and is positioned far from the multiway-
registered point cloud in the global coordinate system, an initial 
coarse alignment is manually performed to roughly overlay the 
digital model onto the real-world reference before further 
processing. Without this preliminary step, the spatial distance 
between the ground truth and the registered point clouds would 
be too significant, hindering the effectiveness of ICP registration 
and the accurate calculation of the RMSE between the two point 
clouds. 
 
3.7 ICP Registration 

ICP registration is used to refine the alignment between the 
ground truth and the multiway registered point cloud. The ICP 
algorithm is an iterative method designed to minimise the 
difference between two point clouds by aligning them as closely 
as possible based on geometric correspondences. This algorithm 
transforms one point cloud (referred to as the "source") to 
minimize its distance from the other point cloud (the "target"). 
During each iteration, the transformation matrix was adjusted to 
minimise the alignment error, which is typically measured as the 
mean square distance between corresponding points in the two 
point clouds. Once the ICP registration was completed, RMSE 
was then calculated, providing a quantitative measure of the 
alignment accuracy. The software CloudCompare is used for ICP 
registration and RMSE calculation. Figure 6 shows the ICP 
registration results between two point clouds. 
 

 
Figure 6. ICP registration results. (a) The yellow is the source 

point cloud and red is the target point cloud; (b) The colourised 
point clouds after ICP registration 

 

4. Experiments and results 

4.1 Experiment Settings 

In this study, 2 NVIDIA L40 GPU with 48GB of VRAM, 16 
vCPUs, and 241GB of system memory were utilised for CMG, 
MDE, and multiway registration tasks. The Ubuntu 20.04 has 
been used as operating system. Ground truth point cloud data was 
captured using a LEICA BLK360 laser scanner, while Agisoft 
Metashape and CloudCompare were employed for the point 
cloud processing. 
  
4.2 Results and Discussion 

In this section, we present and analyse the quantitative and 
qualitative outcomes of the I2P registration tasks. 
 
4.2.1 Camera Motion Generation 
 
For the CMG, one-minute videos demonstrating the four primary 
camera movements were generated using MotionCtrl. Figure 7 
presents the CMG results for each direction. Each direction 
displays the generated results for "Scene 1" in the first row and 
"Scene 2" in the second row.  
 

 
Figure 7. Video frames of CMG for four main movements 

 
In both scenes, the extension of objects along the edges in each 
directional movement contributes to a detailed understanding of 
features within the scene and improves depth estimation. For 
example, in the rightward movement frames, the orange electrical 
conduit becomes more visible, allowing for clearer interpretation 
based on its colour and shape. This improves visibility assists in 
recognising the object and adds to the overall understanding of 
the scene. In the upward movement of Scene 2, the white pipes 
extend more clearly, providing a more detailed view of their 
structure. This outcome aligns with the ground truth data, 
indicating that the CMG method effectively captures the vertical 
layout. Similarly, the leftward movement in Scene 1 uncovers 
more of the white storage box, offering a clearer representation 
of its alignment within the scene. This visibility enhances depth 
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estimation by providing additional information about the object's 
spatial configuration. In the downward movement, the extension 
of the chair legs and the floor area offers a more detailed view, 
which can aid in the I2P registration process by providing 
additional points for alignment. 
 
4.2.2 Multiway Registration 
 
To evaluate the multiway registration of different camera 
motions, the RMSE was calculated for the combined point clouds 
generated by the MotionCtrl and Depth Anything V2 models. 
Figure 8 presents the RMSE results of multiway registration for 
Scene 1 using two voxel sizes (0.01 and 0.005 metres). The 
RMSE values indicate the effectiveness of the point-to-plane ICP 
algorithm in aligning the point clouds relative to one another for 
different movements. On the x-axis, arrows indicate the 
directions of the frames extracted from each motion. The circle 
represents the original image, while the “3-step” refers to the 
combination of three multiway registrations: (1) up, right, down; 
(2) up, left, down; and (3) the multiway registration of the first 
and second steps with the original image. The y-axis, measured 
in metres, shows the final RMSE after the multiway registration 
of camera motions and the original image.  
 

 
Figure 8. RMSE results of multiway registration for Scene 1 

 
For the voxel size of 0.01 metres, the highest RMSE value was 
observed for the "Original image, Left, Up, Right, Down" 
combination with a value of 0.0077, indicating that combining 
multiple complex directional movements increases the overall 
registration error. When the voxel size was reduced to 0.005 
metres, the overall RMSE values decreased, showing improved 
accuracy. The lowest RMSE value, 0.0037, was achieved by the 
"Left, Up, Right, Down" combination, indicating that finer voxel 
resolution significantly enhances registration accuracy by 
capturing more detailed alignments. In Scene 1, the multiway 
registration combinations that involved movements in the up and 
down directions exhibited lower RMSE values compared to those 
involving left and right movements. This is because the up and 
down movements primarily capture the walls, which have less 
variation in depth and fewer intricate features. 
 
Figure 9 shows the RMSE results of multiway registration for 
Scene 2. For the voxel size of 0.01 metres, the highest RMSE 
value was observed in the "Original image, Left, Right" 
combination at 0.0089, while the lowest RMSE value for this 
voxel size was achieved by the "Left, Up, Right, Down" 
combination at 0.0080, suggesting that incorporating both 
vertical and horizontal movements can help reduce registration 
errors. When using the finer voxel size of 0.005 metres, the 
overall RMSE values decreased, indicating improved accuracy. 
The lowest RMSE was again found in the "Left, Up, Right, 

Down" combination with a value of 0.0044. In Scene 2, since the 
complexity of the scene is relatively consistent across both 
horizontal and vertical directions, the RMSE values are closely 
aligned across the different combinations.  
 

 
Figure 9. RMSE results of multiway registration for Scene 2 

 
4.2.3 ICP Registration 
 
The RMSE results of ICP registration in Scene 1, as presented in 
Figure 10, demonstrate registration accuracy based on the 
different camera movements and voxel sizes used. For a voxel 
size of 0.01 metres, the highest RMSE value was recorded for the 
"3 Step" combination, with a value of 0.0714. This suggests that 
incorporating multiple directional movements introduces more 
variability, leading to increased registration errors. The "Up, 
Left, Down" combination achieved competitive results with an 
RMSE value of 0.0451 for a voxel size of 0.005 metres, which is 
lower than the single image registration RMSE value of 0.0459. 
This indicates that incorporating these directional movements 
enhanced the overall accuracy of the ICP registration in Scene 1. 

 
Figure 10. RMSE results of ICP registration for Scene 1 

 
Figure 11 illustrates the RMSE results of ICP registration for 
Scene 2. For a voxel size of 0.01 metres, the highest RMSE value 
was recorded for the "Up, Right, Down" combination at 0.0397. 
For the voxel size of 0.005 metres, the RMSE result for the 
"Original image, Left, Right" combination was competitive, with 
an RMSE value of 0.0345, which is just 0.0003 lower than the 
RMSE obtained from the single image registration. However, the 
results for Scene 2 indicate that incorporating up and down 
movements tends to increase the RMSE values, suggesting that 
vertical shifts introduce more variability and complexity in ICP 
registration process. 
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Figure 11. RMSE results of ICP registration for Scene 2 

 
5. Conclusion 

This study introduced a novel approach for I2P registration using 
CMG and MDE, leveraging the MotionCtrl framework and the 
Depth Anything V2 model. Through the simulation of four main 
camera movements (Up, Right, Left, and Down) from a single 
image, this approach generated point clouds with diverse 
viewpoints. The findings demonstrated that incorporating both 
vertical and horizontal movements can lead to competitive 
results, with our approach achieving lower RMSE values than the 
original image in some scenarios. However, this study has some 
limitations: 
 
• Computational complexity: The multiway registration 

process is computationally intensive for large-scale 
environments, especially as the number of point clouds to 
be registered increases. This intensifies the processing time 
and resource requirements, making it more challenging to 
handle complex scenes efficiently. 

• Manual initial alignment: The approach requires an initial 
manual alignment, which may increase the time required 
and be prone to human error, especially for complex scenes. 

• Motion generation for complex edge features and depth: 
The success of the generated movements is influenced by 
the complexity of edge features and depth variations within 
the scene, potentially impacting the overall registration 
accuracy.  

 

Based on these limitations, future works can focus on eliminating 
the need for initial manual alignment by developing fully 
automated registration techniques, potentially using machine 
learning or computer vision methods to enhance accuracy and 
reduce human error. Additionally, integrating semantic context 
and large language models into the process can be explored to 
improve CMG in complex scenes. 

 

6. Acknowledgements 

This research was supported by the Australian Research 
Council’s Industrial Transformation Research Programme and 
DECRA Fellowship [grant numbers: IH210100048, 
DE220100094]. The authors acknowledge the support of 
industry partners: Emerson and Rockfield.  
 

References 

Bai, C., Fu, R. & Gao, X., 2024. Colmap-pcd: An open-source 
tool for fine image-to-point cloud registration.  2024 IEEE 
International Conference on Robotics and Automation (ICRA). 
IEEE, 1723-1729. 

Bhat, S. F., Birkl, R., Wofk, D., Wonka, P. & Müller, M., 2023. 
Zoedepth: Zero-shot transfer by combining relative and metric 
depth. arXiv preprint arXiv:2302.12288. 

Blattmann, A., Dockhorn, T., Kulal, S., Mendelevitch, D., Kilian, 
M., Lorenz, D., Levi, Y., English, Z., Voleti, V. & Letts, A., 
2023. Stable video diffusion: Scaling latent video diffusion 
models to large datasets. arXiv preprint arXiv:2311.15127. 

Cabon, Y., Murray, N. & Humenberger, M., 2020. Virtual kitti 2. 
arXiv preprint arXiv:2001.10773. 

Campbell, D., Liu, L. & Gould, S., 2020. Solving the blind 
perspective-n-point problem end-to-end with robust 
differentiable geometric optimization.  Computer Vision–ECCV 
2020: 16th European Conference, Glasgow, UK, August 23–28, 
2020, Proceedings, Part II 16. Springer, 244-261. 

Chen, Y. & Medioni, G., 1992. Object modelling by registration 
of multiple range images. Image and vision computing, 10, 145-
155. 

Choi, S., Zhou, Q.-Y. & Koltun, V., 2015. Robust reconstruction 
of indoor scenes.  Proceedings of the IEEE conference on 
computer vision and pattern recognition. 5556-5565. 

Guo, Y., Yang, C., Rao, A., Liang, Z., Wang, Y., Qiao, Y., 
Agrawala, M., Lin, D. & Dai, B., 2023. Animatediff: Animate 
your personalized text-to-image diffusion models without 
specific tuning. arXiv preprint arXiv:2307.04725. 

Gupta, S., Keshari, A. & Das, S., 2022. Rv-gan: Recurrent gan 
for unconditional video generation.  Proceedings of the 
IEEE/CVF conference on computer vision and pattern 
recognition. 2024-2033. 

Hartley, R. & Zisserman, A., 2003. Multiple view geometry in 
computer vision, Cambridge university press. 

Jeon, Y. & Seo, S.-W., 2022. Efghnet: A versatile image-to-point 
cloud registration network for extreme outdoor environment. 
IEEE Robotics and Automation Letters, 7, 7511-7517. 

Kang, S., Liao, Y., Li, J., Liang, F., Li, Y., Li, F., Dong, Z. & 
Yang, B., 2023. CoFiI2P: Coarse-to-Fine Correspondences for 
Image-to-Point Cloud Registration. arXiv preprint 
arXiv:2309.14660. 

Ke, B., Obukhov, A., Huang, S., Metzger, N., Daudt, R. C. & 
Schindler, K., 2024. Repurposing diffusion-based image 
generators for monocular depth estimation.  Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 9492-9502. 

Li, J. & Lee, G. H., 2021. DeepI2P: Image-to-point cloud 
registration via deep classification.  Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 15960-15969. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-453-2025 | © Author(s) 2025. CC BY 4.0 License.

 
459



 

Li, J., Li, D., Savarese, S. & Hoi, S., 2023. Blip-2: Bootstrapping 
language-image pre-training with frozen image encoders and 
large language models.  International conference on machine 
learning. PMLR, 19730-19742. 

Liu, L., Campbell, D., Li, H., Zhou, D., Song, X. & Yang, R., 
2020. Learning 2d-3d correspondences to solve the blind 
perspective-n-point problem. arXiv preprint arXiv:2003.06752. 

Lyu, Y., Liang, P. P., Pham, H., Hovy, E., Póczos, B., 
Salakhutdinov, R. & Morency, L.-P., 2021. StylePTB: A 
compositional benchmark for fine-grained controllable text style 
transfer. arXiv preprint arXiv:2104.05196. 

Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., 
Khalidov, V., Fernandez, P., Haziza, D., Massa, F. & El-Nouby, 
A., 2023. Dinov2: Learning robust visual features without 
supervision. arXiv preprint arXiv:2304.07193. 

Ranftl, R., Lasinger, K., Hafner, D., Schindler, K. & Koltun, V., 
2020. Towards robust monocular depth estimation: Mixing 
datasets for zero-shot cross-dataset transfer. IEEE transactions 
on pattern analysis and machine intelligence, 44, 1623-1637. 

Ren, S., Zeng, Y., Hou, J. & Chen, X., 2022. CorrI2P: Deep 
image-to-point cloud registration via dense correspondence. 
IEEE Transactions on Circuits and Systems for Video 
Technology, 33, 1198-1208. 

Roberts, M., Ramapuram, J., Ranjan, A., Kumar, A., Bautista, M. 
A., Paczan, N., Webb, R. & Susskind, J. M., 2021. Hypersim: A 
photorealistic synthetic dataset for holistic indoor scene 
understanding.  Proceedings of the IEEE/CVF international 
conference on computer vision. 10912-10922. 

Sheng, Y., Zhang, L., Li, X., Duan, Y., Zhang, Y., Zhang, Y. & 
Ji, J., 2024. Rendering-Enhanced Automatic Image-to-Point 
Cloud Registration for Roadside Scenes. arXiv preprint 
arXiv:2404.05164. 

Tulyakov, S., Liu, M.-Y., Yang, X. & Kautz, J., 2018. Mocogan: 
Decomposing motion and content for video generation.  
Proceedings of the IEEE conference on computer vision and 
pattern recognition. 1526-1535. 

Voleti, V., Yao, C.-H., Boss, M., Letts, A., Pankratz, D., 
Tochilkin, D., Laforte, C., Rombach, R. & Jampani, V., 2024. 
Sv3d: Novel multi-view synthesis and 3d generation from a 
single image using latent video diffusion. arXiv preprint 
arXiv:2403.12008. 

Wang, B., Chen, C., Cui, Z., Qin, J., Lu, C. X., Yu, Z., Zhao, P., 
Dong, Z., Zhu, F. & Trigoni, N., 2021. P2-net: Joint description 
and detection of local features for pixel and point matching.  
Proceedings of the IEEE/CVF International Conference on 
Computer Vision. 16004-16013. 

Wang, H., Liu, Y., Wang, B., Sun, Y., Dong, Z., Wang, W. & 
Yang, B., 2023. FreeReg: Image-to-point cloud registration 
leveraging pretrained diffusion models and monocular depth 
estimators. arXiv preprint arXiv:2310.03420. 

Wang, S., Xieshi, M., Zhou, Z., Zhang, X., Liu, X., Tang, Z., Dai, 
Y., Xu, X. & Lin, P., 2022. Two-channel vae-gan based image-

to-video translation.  International Conference on Intelligent 
Computing. Springer, 430-443. 

Wang, X., Yuan, H., Zhang, S., Chen, D., Wang, J., Zhang, Y., 
Shen, Y., Zhao, D. & Zhou, J., 2024a. Videocomposer: 
Compositional video synthesis with motion controllability. 
Advances in Neural Information Processing Systems, 36. 

Wang, Y., Bilinski, P., Bremond, F. & Dantcheva, A., 2020. 
Imaginator: Conditional spatio-temporal gan for video 
generation.  Proceedings of the IEEE/CVF Winter Conference on 
Applications of Computer Vision. 1160-1169. 

Wang, Z., Yuan, Z., Wang, X., Li, Y., Chen, T., Xia, M., Luo, P. 
& Shan, Y., 2024b. Motionctrl: A unified and flexible motion 
controller for video generation.  ACM SIGGRAPH 2024 
Conference Papers. 1-11. 

Xu, X., Wang, Y., Wang, L., Yu, B. & Jia, J., 2023. Conditional 
temporal variational autoencoder for action video prediction. 
International Journal of Computer Vision, 131, 2699-2722. 

Yang, L., Kang, B., Huang, Z., Xu, X., Feng, J. & Zhao, H., 
2024a. Depth anything: Unleashing the power of large-scale 
unlabeled data.  Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition. 10371-10381. 

Yang, L., Kang, B., Huang, Z., Zhao, Z., Xu, X., Feng, J. & Zhao, 
H., 2024b. Depth Anything V2. arXiv preprint 
arXiv:2406.09414. 

Yao, G., Xuan, Y., Chen, Y. & Pan, Y., 2024. Quantity-Aware 
Coarse-to-Fine Correspondence for Image-to-Point Cloud 
Registration. IEEE Sensors Journal. 

Yin, W., Zhang, C., Chen, H., Cai, Z., Yu, G., Wang, K., Chen, 
X. & Shen, C., 2023. Metric3d: Towards zero-shot metric 3d 
prediction from a single image.  Proceedings of the IEEE/CVF 
International Conference on Computer Vision. 9043-9053. 

Zhang, S., Wang, J., Zhang, Y., Zhao, K., Yuan, H., Qin, Z., 
Wang, X., Zhao, D. & Zhou, J., 2023. I2vgen-xl: High-quality 
image-to-video synthesis via cascaded diffusion models. arXiv 
preprint arXiv:2311.04145. 

Zhou, Q.-Y., Park, J. & Koltun, V., 2018. Open3D: A modern 
library for 3D data processing. arXiv preprint arXiv:1801.09847. 

Zhou, Y., Zhang, R., Chen, C., Li, C., Tensmeyer, C., Yu, T., Gu, 
J., Xu, J. & Sun, T., Lafite: Towards language-free training for 
text-to-image generation, 2021. URL https://arxiv. 
org/abs/2111.13792. 
 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-453-2025 | © Author(s) 2025. CC BY 4.0 License.

 
460

https://arxiv/

	1. Introduction
	2. Literature Review
	2.1 Image-to-Point Cloud Registration
	2.2 Monocular Depth Estimation
	2.3 Camera Motion Control in Image-to-Video Generation

	3. Method
	3.1 Camera Motion Generation
	3.2 Frame Extraction
	3.3 Metric Depth Estimation
	3.4 Point Cloud Generation
	3.5 Multiway Registration
	3.5.1 Pose Graph Optimisation

	3.6 Initial Alignment
	3.7 ICP Registration

	4. Experiments and results
	4.1 Experiment Settings
	4.2 Results and Discussion
	4.2.1 Camera Motion Generation
	4.2.2 Multiway Registration
	4.2.3 ICP Registration


	5. Conclusion
	6. Acknowledgements
	References



