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Abstract

Accurately estimating injury severity in crashes relies on understanding vehicle occupant movements. This is simulated using
crash test dummies in controlled test cases. Currently, stationary high-speed cameras positioned outside the vehicle track the
kinematics of the different dummy parts by following optical markers placed on these dummies. However, onboard high-speed
cameras are primarily used for documentation and are not suitable for determining 3d object kinematics with the required accuracy.
Furthermore, with the increasing sophistication of modern airbag systems, points inside the vehicle that need to be visible for the
stationary cameras may be obscured by the deployment of airbags. To address this limitations, we propose relocating onboard
high-speed cameras inside the vehicle and investigating the resulting uncertainties. The dynamic nature of crash events presents
challenges for these onboard cameras to accurately self-localize, given the rapid changes occurring within the vehicle. To overcome
this challenge, we introduce a novel method for determining the position and orientation of the onboard stereo camera pair at each
time point, followed by an analysis of the uncertainties involved. We use Monte Carlo simulations and bootstrapping techniques
to estimate the uncertainties associated with point measurements in crash test scenarios. And therefore we can determine the
object kinematics and their related uncertainties inside the vehicle using the onboard high-speed cameras instead of the stationary
high-speed cameras.

1. Introduction

Road traffic accidents remain a leading cause of injury and
fatality worldwide, underscoring the critical importance of en-
hancing occupant protection systems. To mitigate the risks as-
sociated with collisions, automotive manufacturers invest heav-
ily in optimizing vehicle structures and restraint systems, such
as seat belts and airbags. These optimizations are tested and
validated through controlled crash tests, which are essential for
assessing the performance of safety features under realistic im-
pact scenarios.
High-speed cameras are used in crash tests to assess impact dy-
namics. They are usually positioned to the side or suspended
from the ceiling. The cameras are calibrated to focus on optical
markers placed on the vehicle bodywork and within the interior,
including those on crash test dummies. However, the effect-
iveness of this approach is challenged by the increasing use of
advanced airbag systems. While the deployment of additional
and larger airbags, such as curtain and center airbags, enhances
occupant protection, it often results in occlusions that obscure
interior points. This obstruction impedes the ability to accur-
ately track marker movement, thereby hindering the validation
of crash simulations. To circumvent these occlusions, methods
such as the deactivation of individual airbag areas or the re-
moval of parts of the bodywork have been employed. However,
these procedures add costs, risk damaging the vehicle structure,
and may not always be effective. Alternative approaches in-
clude using MEMS inertial sensors (Björkholm et al., 2010) and
X-ray imaging during safety tests (Leost et al., 2020), (Butz et
al., 2021). Zhang et al. (Zhang et al., 2022) proposed a system
utilizing interconnected cameras and checkerboard patterns for
localization, enhanced by inertial sensors and extended Kalman
filters. This method is promising, even if the area of application
is limited. The entire floor should be provided with a checker-
board pattern and the system is also very susceptible to vibra-
tions due to its lever arm.

To address these challenges and close the existing research gap,
we propose an improved stereo camera system to be installed
onboard. This system is designed to function throughout the
crash event, even when movement extends beyond predefined
patterns. The core idea is that at least one camera localizes itself
based on the exterior environment using bundle adjustment, al-
lowing for accurate positioning without relying on interior ref-
erence points that may become occluded or move during the
crash. This outward-facing camera is permanently linked to an-
other camera viewing the interior, ensuring that their relative
orientation to each other is pre-calibrated and therefore known
and that this camera-to-camera orientation is stable within the
crash test. The system is designed so that their fields of view do
not overlap.
Our primary objective is to achieve a level of three-dimensional
point uncertainty comparable to that of existing stereo systems,
with a maximum permissible deviation of less than 5 mm in
each spatial direction (Raguse and Heipke, 2009). To estim-
ate and validate this level of accuracy theoretically, we conduct
an uncertainty analysis using bootstrapping (Efron, 1979) and
Monte Carlo (MC) simulation. The MC method (Metropolis
and Ulam, 1949) allows us to model the probabilistic behavior
of the system under various configurations, providing a com-
prehensive estimate of measurement uncertainties.
In this paper, we present the development and evaluation of
the above-mentioned onboard stereo camera system for crash
tests. We examine various configurations, discuss their advant-
ages and disadvantages, and address the associated uncertain-
ties. This advancement is crucial for validating crash simula-
tions and ultimately enhancing vehicle safety.
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The content of this paper is organized as follows: In Section
2, the methodology of the proposed system is described in de-
tail, including the setup and computational processes. Section 3
presents the results of the uncertainty analysis, which was con-
ducted using MC simulations and bootstrapping. In Section 4,
we analyze the implications of our findings and evaluate them in
comparison with existing methods. Finally, Section 5 provides
a conclusion to the paper and outlines potential future research.

2. Methodology

In the following chapter, two different configuration proposals
are presented as possible solutions: a system with three cam-
eras and another with four cameras. The uncertainty of the
point measurements with the systems is estimated using MC
simulation. This requires the inclusion of uncertainties related
to system calibration and localization through image measure-
ments. The uncertainty of localization using linking images is
estimated by bootstrapping (Efron, 1979).

2.1 Overview of the Proposed Camera Systems

Due to the abrupt deceleration during a crash, the vehicle’s posi-
tion and orientation change relative to the world coordinate sys-
tem. This sudden movement generates vibrations, which also
affect the mounted cameras directly on the vehicle. These vi-
brations are unpredictable and depend, for example, on the type
of crash test, the vehicle type, and the mounting of the camera
in the interior. As a result, movement and orientation cannot be
reliably predicted.
The basic idea is to install two cameras together which have
a fixed orientation between each other during the crash. The
images recorded by the system are precisely synchronized in
time during the test with an accuracy of less than 20 µs. One
camera looks outwards, the other inwards. The camera facing
outwards combines the recorded images using bundle adjust-
ment. The result of the bundle adjustment is the translation and
orientation in the world coordinate system of the camera point-
ing outwards in each epoch. By pre-calibrating the translation
and orientation of the two cameras in relation to each other, the
orientation and translation of the inward-facing camera can be
derived. This system fulfills the requirement for the kinematic
analysis if the view to the outside is permanently unobstructed.
The system is shown in Figure 1.

Outward Facing Camera

Inward Facing Camera

Figure 1. CrashCamMINI 3530 Pair without objective

Four camera system In the initial test configuration, each
camera positioned within the interior is accompanied by an ad-
ditional camera. This configuration ensures the independence
of the base between the cameras, eliminating the necessity for
scale measurement. The configuration has the advantage that
the camera poses are independent of each other. There is nearly

no correlation between the poses of the camera pairs. Refer to
Figure 2 for a schematic illustration.

Fixpoints

Vehicle

Camera System

Figure 2. The overview sketch provides a top-down perspective
of a vehicle equipped with integrated camera systems. The
system is capable of directly measuring a point in space.

Three camera system In the second experimental setup, a
pair of cameras along with an additional single camera is util-
ized. The outward-facing camera of the pair aligns itself using
the fixed environment as a reference and transfers the pose to
the inward-facing camera. An additional camera located within
the vehicle is connected based on tie points with the relative
orientation in each epoch. To determine the scale of the base,
a scale is measured in each epoch. This scale must be within
the field of view and must not deform during the crash. The ad-
vantage of this solution is that it reduces the number of cameras
needed; however, the uncertainties of the point measurements
may be larger. Figure 3 provides a schematic representation of
the setup.

Fixpoints

Vehicle

Camera System

Figure 3. The overview sketch provides a top-down perspective
of a vehicle equipped with integrated camera systems. The

direction of view to points is indicated by dashed lines, and the
connected blue dots represent the scale for measurement.

2.2 Camera Calibration and Configuration

To determine the alignment between the cameras, we need to
consider six degrees of freedom. Calibration involves aligning
the projection centers of both cameras and determining their re-
lative positions and orientations. The positions of the cameras’
projection centers depend on the sensor, lens characteristics and
how they are mounted. The base (i.e., the separation between
cameras) depends on how the cameras are installed relative to
each other. Since we cannot directly infer the projection cen-
ters from housing measurements, the base and orientation must
be calibrated using images. To maintain calibration during the
crash, the cameras are connected by metal plates directly moun-
ted on their housings. The lenses are screwed into the threads
and then glued to ensure they remain firmly connected. We
use two CrashCamMINI 3530 cameras from Imaging Solutions
GmbH. An illustration of the system is provided in Figure 1
The calibration process requires two steps. First, the internal
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orientation of each camera must be established using test field
calibration. Next, the camera pair is moved through all degrees
of freedom in a laboratory setting, as illustrated in Figure 4.

2m

Figure 4. The Z and Y planes are shown from a top-down
perspective. The walls with circular markers are indicated in
grey, and the scale is shown in blue. The camera pair moves

along the black trajectory.

In the laboratory, markers are installed that serve two purposes:
they act as reference points between components and provide
a calibrated scale of 2 meters in length. Using a large scale
reduces the base uncertainties. The images are then analyzed
using a bundle adjustment with elliptical markers and SIFT fea-
ture points. After the bundle adjustment, the 3D coordinates of
the markers are exported. The scaling factor can be calculated
using the exported marker points on the scale. In each epoch,
when both images are included in the bundle, the base and ori-
entation between the cameras can be calculated as follows:

Hcam2
cam1 = Hinit

cam1 ·
(
Hinit

cam2

)−1

H =

[
R t
0 1

]
(1)

Where H is the Homography between two systems, e.g. the
initial system and the system of cam 1 and/or cam 2, the Ho-
mography H consists of the Rotation R and the translation t
between the two systems. The scale is fixed and set to 1. The
mean values from the entire data set are used for calibration. As
the number of observations n increases, the standard deviation
of the calibration roughly decreases proportionally to 1/

√
n.

The standard deviation is given by σcalibration = σ√
n

. This cal-
ibration allows us to estimate the standard deviation associated
with a single measurement, corresponding to the standard devi-
ation computed from all measurements.

2.3 Uncertainty Analysis Techniques

The overall uncertainty is influenced by multiple factors, in-
cluding the uncertainty of the outward-facing camera, the calib-
ration uncertainty between cameras, uncertainties arising from
linking additional cameras through image matching, and un-
certainties related to pixel measurements and system configur-
ation. To estimate the uncertainty of the image-based localiz-
ation, we employ bootstrapping. Monte Carlo simulations are
then used to integrate and quantify the combined uncertainties.

2.3.1 Bootstrapping The bootstrapping technique is a
powerful statistical resampling method introduced by Efron in
1979. It estimates the distribution of a statistic by sampling
with replacement from the original data, enabling the deriva-
tion of confidence intervals and uncertainty measures without

making strict assumptions about the underlying distribution. In
the context of our camera system, bootstrapping is employed
to estimate the uncertainty of camera poses, particularly when
direct derivation of covariance matrices is impractical.
The bootstrapping technique works by resampling the dataset of
image matches, generating multiple new datasets from the ori-
ginal. For each new dataset, we calculate camera poses using
bundle adjustment or relative orientation techniques, deriving a
statistical distribution of these poses. The repeated resampling
provides insight into the variability and reliability of the camera
pose estimates. This approach is particularly advantageous for
estimating uncertainties in scenarios where occlusions or image
quality might limit the effectiveness of traditional covariance
analysis.

Flowchart Bootstrapping Matches To estimate the uncer-
tainty in the absolute orientation the six degrees of freedom
(6DoF) between two images without using an external sensor,
we perform the process multiple times. In each iteration, we
randomly select the same number of matches from the total set
of image feature matches and generate a new dataset. Each
dataset may contain duplicate matches due to the resampling
process. We then calculate the absolute orientation based on the
new dataset, aligning the images to a fixed coordinate system.
The poses from each iteration are recorded for further analysis.
The procedure is illustrated in flowchart from in Fig. 5. This
method ensures that variations in scaling are taken into account,
as the points used for alignment may differ across iterations,
providing a robust estimate of uncertainty across different con-
figurations.

Image 1, 6DoF Pose Image 1 Image 2

Feature Points, Ellipses Feature Points, Ellipses

Matching

Bootstrap-Resample

Reconstruction

Transformation

6 DoF Pose Image 2

Figure 5. For reasons of simplicity, the flowchart model refers to
two images. The bootstrapping samples are drawn from the

complete matching set. The six parameters of the pose are then
determined iteratively.
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The bootstrapping technique provides a robust estimate of un-
certainty that accounts for potential variations in image match-
ing, ensuring that the system’s performance remains reliable
even under less-than-ideal conditions. It also allows us to
quantify how sensitive the camera system is to errors in im-
age feature matching, providing critical insights for improving
system design and robustness.

2.3.2 Monte Carlo Simulation We employ the Monte
Carlo simulation method, as described by Metropolis and Ulam
1949, to estimate the uncertainty in photogrammetric point
measurements. Monte Carlo simulations are particularly valu-
able for propagating uncertainties through a complex system,
allowing us to understand the probabilistic impact of various
sources of error on the final results.
The uncertainty in point measurement depends on the uncer-
tainties associated with the cameras, which arise from factors
such as camera calibration, image matching, and sensor noise.
These uncertainties are determined either directly– such as
through bundle adjustment – or indirectly by linking the camera
to another using image matching. The goal of the Monte Carlo
simulation in this context is to quantify how these uncertain-
ties influence the accuracy and reliability of the final 3D spatial
measurements. To accurately propagate uncertainty from one
camera to another, we need to account for the six pose paramet-
ers (three for translation and three for rotation) and their asso-
ciated standard deviations. Additionally, calibration or absolute
orientation parameters for each camera have uncertainties that
must be incorporated.
Monte Carlo simulation involves generating multiple random
realizations of these uncertainties and applying them to estim-
ate their cumulative effect on the system. Specifically, homo-
geneous transformation matrices are used to represent the re-
lative positions and orientations of the cameras, and random
variations are introduced based on known standard deviations.
The following pseudocode outlines the procedure for propagat-
ing uncertainties through a camera pair.

Uncertainty Propagation Camera Pair
Input: Hcam1

init , σ(Hcam1
init ),Hcam2

cam1, σ(H
cam2
cam1),

Output: Hcam2
init , σ(Hcam2

init )

Initialize Hsave[4×4×n] ← {}
for i = 1 to n do

H(i) cam1
init ∼ N (Hcam1

init , σ(Hcam1
init ))

H(i) cam2
cam1 ∼ N (H cam2

cam1, σ(H
cam2
cam1 ))

H(i)cam2
init ← H(i) cam1

init ·H(i) cam2
cam1

H(i) save ← H(i) cam2
init

end for
Hcam2

init , σ(Hcam2
init )← mean(H save), σ(H save)

The above algorithm describes how uncertainties are propag-
ated from one camera to another. We begin by generating mul-
tiple realizations of the initial transformation matrix Hcam1

init , in-
corporating random deviations based on its standard deviations.
We do the same for the transformation between the two cam-
eras, Hcam2

cam1. By combining these transformations for each it-
eration, we compute the transformation for the second camera
relative to the initial coordinate system, Hcam2

init . Repeating this
process n times allows us to derive a distribution of possible
transformations, which can then be analyzed to determine the
mean transformation and its associated uncertainty.

Uncertainty Propagation Forward Intersection We define
a point Pinit in space, along with the camera positions Pcam1
and Pcam2, to estimate the uncertainty of a spatial measure-
ment. We calculate the rotation matrices RPinit

Pcam1
and RPinit

Pcam2

to align the point directly along the line of sight of each cam-
era. These camera positions and rotation matrices define the
complete transformation matrices for each camera, HPinit

cam1 and
HPinit

cam2.
The image coordinate system follows a right-handed conven-
tion, with the origin located at the center of the image. Since
the cameras are directly aligned with the point, it lies precisely
on the optical axis, resulting in pixel measurements of px = 0,
py = 0. We generate Monte Carlo poses using the uncertainties
in the camera poses, σ(Hcam1

init ) and σ(Hcam2
init ). We determine

the corresponding points in 3D space using forward intersec-
tion based on the direct linear transformation method (Hartley
and Zisserman, 2004), resulting in a distribution that reflects the
uncertainty in Pinit.
The following pseudocode outlines the procedure for propagat-
ing uncertainties through forward intersection:

Input: Pinit, Pcam1, Pcam2, σ(Hcam1
init ), σ(Hcam2

init )
Output: Set of forward intersections Pset

Compute RPinit
Pcam1

from Pcam1 and Pinit

Compute RPinit
Pcam2

from Pcam2 and Pinit

Compute HPinit
cam1 from RPinit

cam1 and Pcam1

Compute HPinit
cam2 from RPinit

cam2 and Pcam2
px cam1, py cam1 ← 0, 0
px cam2, py cam2 ← 0, 0
Initialize Pset ← {}
for i = 1 to n do

H(i)Pinit
cam1 ∼ N (HPinit

cam1, σ(H
cam1
Pinit

))

H(i)Pinit
cam2 ∼ N (HPinit

cam2, σ(H
cam2
Pinit

))

Pi ← forw inter*(H(i)Pinit
cam1,H(i)Pinit

cam2, 0)
Pset ← {Pi}

end for
return

forw inter* = forward intersection

3. Experiments and Results

First, we discuss the uncertainties associated with the calibra-
tion, followed by the results of the bootstrapping. Then, we
integrate these uncertainty analyses into a Monte Carlo simula-
tion and present the results for a realistic scenario.

3.1 Calibration Camera-Camera

To estimate the calibration uncertainty for the simulation, we
generated test data using a system comprising two CrashCam-
MINI 3530 cameras (Figure 2). The system is equipped with
a 12.5 mm focal length lens for the outward-facing camera
and an 8 mm focal length lens for the inward-facing camera.
Each camera features a sensor with a resolution of 2560 x 1440
pixels.

The intrinsic parameters of the cameras were pre-calibrated us-
ing a test pattern, with distortion parameters - including radial
and tangential distortion — estimated according to the OpenCV
model. Once the pre-calibration was complete, the intrinsic
parameters were excluded from the bundle adjustment to fo-
cus on optimizing the relative position and orientation of the
cameras.
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After pre-calibration, 140 time-synchronized images were cap-
tured for each camera while the system was moved through all
six degrees of freedom. A bundle adjustment was performed
using these images, with SIFT features and elliptical mark-
ers for feature detection and matching, utilizing the COLMAP
software (Schönberger and Frahm, 2016), (Schönberger et al.,
2016) for processing. The image block was scaled using a 2-
meter reference scale with attached elliptical markers, which
was 10 times larger than the baseline distance between the two
cameras, providing robust scaling accuracy. The coordinate
system was arbitrarily positioned in space, as only the scaling
was crucial for this analysis.

The following Figure 6 illustrates the camera positions in red
and the laboratory tie points in color.

Figure 6. The camera positions are shown in red and the tie
points are colored according to uncertainty. Points with a

reprojection error of less than 1 pixel are represented by dark
blue dots, whereas points with a reprojection error exceeding 2

pixels are indicated by red dots.

To determine the calibration parameters, we set the origin of the
coordinate system at the projection center of camera 1, with the
axes following the image coordinate system of camera 1 accord-
ing to the OpenCV convention. The six calibration parameters
for each epoch can then be determined as Equation 1.

Table 1 presents the results of the base calibration. The standard
deviation of the measurement in each coordinate is approxim-
ately 2 mm. With 140 epochs (n), the standard error of the mean
reduces to about 0.2 mm (assuming σmean = σ/

√
n). However,

dividing by
√
n may be too optimistic, as this does not account

for potential systematic effects and correlations. For example,
errors in the intrinsic parameters directly affect the baseline.

X [mm] Y [mm] Z [mm]
base 61.98 -1.71 179.76
σ 2.25 3.08 1.53
σ√
n

0.19 0.26 0.13

Table 1. Results of the base calibration

Table 2 presents the results of the orientation estimation.

ω [◦] φ [◦] κ [◦]
angle 179.92 -0.09 179.76
σ 0.047 0.059 0.094
σ√
n

0.004 0.005 0.008

Table 2. Results of the orientation calibration

3.2 Bootstrapping absolute orientation

In order to ascertain realistic uncertainties for the relative ori-
entation, two sample images (see Figure 7) are evaluated. The
results obtained from this process are then compared with a 100
images bundle block adjustment in which the two images are
part of the overall reconstruction. We estimated the uncertainty
of the relative orientation using the methodology outlined in
Section 2.3.1. The uncertainty is influenced by various factors,
including the camera configuration, uncertainties in the intrinsic
parameters, and uncertainties related to the matches and their
distributions. Although multiple sources of uncertainty are
present, a preliminary estimate can be obtained through the
bootstrapping approach. In Figure 7 the keypoints are shown
in red and the matches in green.

Figure 7. Two pictures with the corresponding tie point matches

We performed the reconstruction process 500 times, randomly
drawing matches with replacements. This repeated sampling
allowed us to evaluate the uncertainty of the relative orientation
in a probabilistic manner. The results for two parameters are
presented in figures 8 and 9. In these figures, the dashed line
represents the 1σ confidence interval. The standard deviation
of the base is in the range of 2 mm, while the orientation is in
the range of 0.02°. These values are assumed for the following
Monte Carlo simulation.
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Figure 8. Translation in x-axis

Figure 9. Orientation x-axis

3.2.1 Bundel adjustment Camera-Reference System We
localized the outward-facing camera using bundle adjustment.
To achieve accurate localization, it is recommended that the
scene contains significant depth information, which can be
measured in advance by an additional reference camera. Once
this depth information is captured, we add the corresponding
images of the scene to the bundle adjustment process. The
intrinsic parameters of the cameras are determined in advance
using a test field calibration, ensuring that lens distortion and
other camera-specific characteristics are accurately modeled.
The uncertainty of the bundle adjustment is subsequently
calculated from the covariance matrix obtained during the op-
timization process. For our simulation, we assume uncorrelated
observations with a standard deviation of 1 mm for positional
measurements and 0.01 degrees for rotational measurements in
all directions.

3.3 Monte Carlo Methods

This section discusses the Monte Carlo method, focusing on the
uncertainties of the inward-facing cameras and the point meas-
urements, including their confidence intervals.

3.3.1 Camera-Camera The first step in the uncertainty es-
timation process is to determine the uncertainty associated
with the inward-facing camera (cam2). This is achieved us-
ing 500 poses of the outward-facing camera (cam1) and 500
inter-camera transformations (cam1 to cam2). The transforma-
tion and its associated uncertainty were determined beforehand
through calibration. The poses and transformations are ran-
domly generated and assumed to follow a normal distribution.
The uncertainties are then propagated using a Monte Carlo sim-
ulation to obtain a robust estimate of the uncertainty for cam2.
Once the uncertainty for cam2 is established, the uncertainty for
the attached third camera (cam3) is estimated. This estimation
process incorporates uncertainties derived using the bootstrap-
ping method, which provides a robust measure of variability in
the pose estimates. The uncertainties are again propagated and
combined within a Monte Carlo simulation to obtain the final
uncertainty estimate. The results are presented in the following
tables. Table 3 reports the uncertainties in translation within the
world coordinate system, while Table 4 presents the uncertain-
ties in orientation within the world coordinate system.

1σX [mm] 1 σ Y [mm] 1 σZ [mm]
cam 1 1.00 1.00 1.00
cam 2 1.52 1.54 1.52
cam 3 2.53 2.51 2.55

Table 3. Uncertainties of translation in the world coordinate
system

ω [◦] φ [◦] κ [◦]
cam 1 0.01 0.01 0.01
cam 2 0.011 0.011 0.013
cam 3 0.023 0.023 0.024

Table 4. Uncertainties of orientation in the world coordinate
system

3.3.2 Forward Intersection To estimate the uncertainty
resulting from the configuration, a regular grid is placed over
a realistically sized car interior. Figures 10, 11, 12, and 13
represent the car interior. This corresponds to the typical
seating area of a station wagon. The cameras are positioned in
realistic locations: one in the rear area, facing outward from the
trunk, and another in the door area of the second row of seats.
To ensure that each point is situated within the image area,
the camera is rotated directly to the point in question, thereby
ensuring that the mark measurement is consistently positioned
in the center of the image. The poses are generated using
Monte Carlo simulation, and the associated uncertainty is
calculated in a subsequent step. The points within the vehicle
interior are then calculated from the poses generated in this
manner (2.3.2). Each measurement point is represented as
a cluster of points in the Monte Carlo simulation to account
for uncertainty. The configuration and pose uncertainties are
quantified by the standard deviation of this point cluster. For
each spatial axis, the maximum standard deviation is assessed
to determine whether it remains below the threshold of 5 mm.
The maximum standard deviation across all axes is visualized
using a heat map. In Figure 10, four cameras are depicted,
and the uncertainties of the camera pairs are assumed to be
identical. The simulated points are at the same height as
the cameras in this configuration. The intersection geometry
is optimal when the interior angle at the simulated point is
90 degrees and occurs when the simulated point lies on the
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surface of the sphere. This sphere is defined by the center
point that lies directly between the two projection centers of
the cameras and the diameter as the distance between the two
cameras. Consequently, the cameras are positioned directly
on this spherical surface. The optimal internal angle is visible
here as a dark green semicircle in the figure. Directly between
the cameras, the interior angle approaches 180 degrees, which
results in the simulated directions intersecting the point very
obliquely. This causes the confidence ellipse to be strongly
distorted in this direction, making it impossible to measure
points with an uncertainty of less than 5mm.
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Figure 10. Four camera system points at the same height

Figure 11 describes the same configuration, but with the sim-
ulated points positioned 30 cm higher than the cameras. As a
result, the optimal intersection geometry shifts more toward the
cameras due to the intersection on the sphere’s surface. The
intersection geometry directly between the cameras improves
because they now point upwards, reducing the interior angle
and enhancing measurement reliability.
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Figure 11. Four camera system points at locations 30 cm higher

Figure 12 describes a configuration with an outward-facing
camera and a connected absolute orientation camera (cam 3). In
this analysis, uncertainties related to the scale measurement and
the potential deformation of the scale during the experiment are

neglected here. In this configuration, it is predominantly pos-
sible to achieve measurements with a standard deviation of less
than 5 mm in all spatial directions. The uncertainty of the point
measurement is lower near the attached camera, as the influence
of the camera’s angle measurement is reduced in that area.
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Figure 12. Three camera system points at the same height

Figure 13 once again demonstrates the impact of a 30 cm height
shift on the plane. It is evident that the uncertainties increase
significantly in the rear area, while the intersection geometry
between the cameras becomes less challenging, resulting in a
smaller standard deviation.
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Figure 13. Three camera system points at locations 30 cm higher

However, camera uncertainties can vary considerably based on
the overlap region among cameras, and in some areas, loc-
alization may be impossible. Furthermore, potential correl-
ations between parameters and measurements, as well as the
uncertainties associated with the markers themselves, have not
been accounted for. Despite these considerations, simulations
showed that point uncertainties below 5 mm are achievable with
the current camera configuration. In a three-camera setup, the
measurement point should ideally be placed closer to camera
3, since its orientation is less precisely determined compared to
camera 2. Minimizing the distance to camera 3 therefore re-
mains essential for accurate measurements.
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4. Conclusions

An alternative outward-facing camera approach was proposed
to circumvent the challenges of direct localization inside the
vehicle. Key uncertainties were identified and incorporated
into a Monte Carlo simulation. Given the large number of
parameters, further in-depth analyses are necessary. In par-
ticular, the correlations omitted here should be thoroughly ex-
amined in future studies. Nonetheless, the geometry formed
by the cameras and the measurement point continues to be a
primary driver of measurement accuracy. By combining uncer-
tainty analyses—derived from real data and evaluated through
bootstrapping—within a Monte Carlo framework, regions were
identified where an uncertainty level below 5 mm can be at-
tained under specified conditions. This degree of accuracy
aligns well with crash test requirements, indicating signific-
ant potential for practical use in studying kinematics within
the vehicle interior. To enhance the robustness of the system,
future work could involve integrating data from acceleration
and angular rate sensors. Additional avenues for research in-
clude increasing the number of observations, modeling points
in the interior, and incorporating potential influences from pre-
simulations.
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