
Advanced User Interaction with Urban Digital Twins using Large Language Models

Khaoula Kanna 1, Thomas H. Kolbe 1

 1Chair of Geoinformatics, Technical University of Munich, 80333 Munich, Germany - (khaoula.kanna, thomas.kolbe)@tum.de

Keywords: Urban Digital Twins, CityGML, SensorThings API, SQL, Large Language Models (LLMs), OpenAI.

Abstract

Large language models (LLMs), such as OpenAI's Generative Pre-trained Transformer (GPT), commonly known as ChatGPT has

witnessed a very rapid evolution which has opened the door for new possibilities across various industries and academic fields. These

advanced technologies are transforming how we view and interact with data, how we communicate and solve complex problems. In

this paper, we present a framework that employs LLMs to interact with an Urban Digital Twin (UDT) of a district. The framework

utilizes the semantic richness of CityGML for representing 3D city models and the SensorThings API for managing dynamic sensor

data, allowing users to query and visualize geospatial and dynamic information intuitively. Through experiments with different types

of queries from stakeholders, varying from city planners, to utility providers, and citizens, we found that LLMs can effectively translate

natural language queries into complex geospatial and temporal operations, narrowing the gap between non-expert users and complex

urban datasets into a fine margin. The results shed light on the potential of LLMs to support decision-making in smart city applications.

1. Introduction

Smart city projects often require a lot of expertise to analyze

diverse datasets for decision-making purposes, especially

geospatial data. This can be very time-consuming as well as very

expensive. In the last few years, the heavy advancements in

Generative AI, particularly Large Language Models (LLMs),

have drawn eyes and attention from both industry and academia.

LLMs are known for their superior and impressive capabilities in

better interpreting and generating natural language. They have

successfully been integrated into various applications, such as

robotics and medicine (Wu et al., 2024), serving as powerful

assistants across different domains. Moreover, and on a specific

note, LLMs show great potential for understanding of GIS and

related fields [(Singh et al., 2024), (Huang et al., 2024), (Li &

Ning, 2023)]. LLMs have facilitated intuitive question answering

which made the gap between geospatial data and end-users to

almost inexistent by making geospatial information more

accessible to non-experts. However, in the context of smart cities,

decision-making increasingly relies on Urban Digital Twins

(UDTs), which host not only static geospatial data but also

dynamic data, such as real-time sensor information. Many studies

have focused on LLM integration with GIS data and workflows,

however, there is a noticeable gap in research exploring how

LLMs can interact with complex datasets including static and

dynamic data within UDTs to support user interaction with UDTs

and urban decision-making.

Addressing these challenges requires the use of LLMs not only

for natural language interaction but also customizing their

capabilities to meet the particular needs of different stakeholders

who are directly involved in smart city projects. In this paper, we

apply the concept of Urban Digital Twins to the EU research

project ASCEND, aiming at creating Positive Energy Districts

for the use case of the Harthof district in Munich. This project

involves various partners, including the City of Munich, the MGS

as Partner A, which is the Society for Urban Renewal, the

Stadtwerke München as Partner B, which is City Utilities, and

local citizens. Each of these stakeholders has distinct interests

and information needs. For instance, Partner A is primarily

focused on identifying buildings that are less energy efficient and

require refurbishment strategies, whereas Partner B is more

concerned with monitoring the electricity demand and

consumption of each building at specific times to optimize

energy distribution. In contrast, citizens are interested in more

localized queries, such as: “Show me the building on X Street

with the number Y, provide the solar potential of its roof, and

calculate how many photovoltaic panels I can install, the

expected energy generation, and the associated costs.”

To address these varied requirements, we aim to build a flexible

framework capable of answering complex queries from different

user groups, making it possible for each stakeholder to interact

intuitively with the digital twin using natural text. Given the

diverse needs and varying levels of expertise among our

stakeholders, the key challenge is to develop a unified framework

that allows each group to interact with the Urban Digital Twin

using natural language, without requiring specialized knowledge

of geospatial databases, data models, or query languages. To

address this, our research focuses the following hypothesis:

Integrating LLMs with the open geospatial standards CityGML

and SensorThings API in the UDT enables the accurate

translation of natural language into structured geospatial and

temporal queries, allowing diverse user groups (e.g., city

planners, utility providers, and citizens) to receive accurate

relevant responses in different languages, including German

and English.

By addressing this hypothesis, this study aims to establish a

scientific approach for employing LLMs to enable intuitive

interaction with Urban Digital Twins, supporting complex urban

data interactions across multiple stakeholder domains. The rest

of the paper is structured as follows: Section 2 lists some recent

advancements and identifies the research gaps in this area.

Section 3 introduces the methodology of the framework. Section

4 introduces the case study of the framework in the district

Harthof in Munich, with the results. This section is followed by

the evaluation section, where the framework is being evaluated

using evaluation metrics. Section 6 discusses the framework

result, followed by a conclusion for future work.

2. Related Work

Artificial intelligence (AI) has gradually been integrated into the

study of geospatial research in recent years, giving birth to

GeoAI. This multidisciplinary area of study analyzes very large

and varied geospatial data using AI which ultimately improves

our comprehension of urban environments. GeoAI has been

utilized in many different fields, such as the generation of 3D city

models from aerial data and object detection in satellite imagery

((Biljecki & Ito, 2021), (Kang et al., 2020), (F. Zhang et al.,

2023), (Wu & Biljecki, 2021)). GeoAI has also significantly

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-G-2025-469-2025 | © Author(s) 2025. CC BY 4.0 License.

469

changed 3D city modeling. Researchers have created novel ways

to create realistic and intricate 3D representations of urban

landscapes using AI approaches. For instance, (Pang & Biljecki,

2022) worked on creating three-dimensional city models using

aerial imagery. These advancements have set the stage for more

sophisticated AI applications, particularly in the context of urban

digital twins and dynamic urban environments. This however

should make GeoAI go beyond merely applying AI and machine

learning methods to geoscience use cases, and should also

integrate spatial, temporal, and place-based aspects into the AI

methods (Janowicz, 2023).

In this regard, using LLMs opens up additional GeoAI

possibilities. It provides the capacity to handle and comprehend

complex geospatial data by fusing natural language with spatial

data. Many researchers investigated the use of LLMs with GIS in

various ways, even though it's still in the early stages of

development and deployment. For example, (Mooney et al.,

2023) evaluated ChatGPT’s understanding of GIS concepts by

having it take an exam based on GIS textbooks without any

prompting or finetuning. They found out that even though GPT

showcased a very promising understanding of geospatial

concepts, there is still room for improvement. (Li & Ning, 2023)

went one step further with their prototype, LLM-Geo, which uses

the GPT-4 API to conduct spatial analysis in an autonomous

manner. The findings demonstrate how automating spatial

analytic operations and improving the usability of GIS

technology for non-specialists in the field could revolutionize the

GIS industry. Similar to this, (Y. Zhang, Wei, et al., 2024) created

the user-friendly framework GeoGPT, which blends LLMs with

established GIS community tools to tackle a variety of

geographic jobs and GIS analysis independently.

Few other works focused on creating innovative user-interfaces.

For instance, (Census GPT, 2023) created a user interface that

takes natural language questions, converts them to SQL using

GPT-3.5, then queries an SQL database, and finally provides 2D

data visualization using tools such as Mapbox and Plotly.

ChatGeoGPT (Strong, 2023) is another initiative of using

ChatGPT to talk to the Open Street Map and query geographical

information. The authors found out that ChatGPT was trained on

the Overpass API (which is an API to interact with OSM map

data) and can construct queries better than humans do.

ChatGeoGPT uses GPT-3’s knowledge to convert natural text to

Overpass QL queries and translate API responses back into easy-

to-understand, actionable summaries. The authors however

pointed out that ChatGPT has limitations for more sophisticated

Overpass QL queries.

LLMs still face many challenges and obstacles on its way,

distinctly when it comes to discipline-specific knowledge,

despite all these promising results and achievements. This

limitation often results in hallucinations, where the models

produce incorrect or misleading information. Nevertheless, fine-

tuning LLMs for GIS-specific tasks enhances their accuracy and

reliability. For instance, BB-GeoGPT (Y. Zhang, Wang, et al.,

2024) is a fine-tuned LLM for GIS-specific knowledge. BB-

GeoGPT was developed on the LLaMA-2-7B model using

thousands of GIS datasets. While BB-GeoGPT exhibits

promising results, it lags behind more advanced commercial

models like GPT-3.5-turbo. LAMP (Balsebre et al., 2024) is

another fine-tuned LLM for GIS specific knowledge. It was

developed on the LLaMa-2-7B-Chat model. The authors

compared the model to famous LLMs such as LLaMa-2-70B,

GPT-3.5 and GPT-4, and the results were promising, however,

hallucination problems were still frequent as the authors pointed

out, and the lagging behind commercial models such as GPT-4 is

still prominent.

In general, LLMs can help in making the transition toward a

world where users do not need to be experts in specific fields.

This can free up time for users to focus on decision-making

instead. However, due to the complexity of data sources

including static 3D city models and dynamic IoT datastreams,

integrating LLMs into complex ecosystems such as UDTs

becomes very challenging. To address the heterogeneity of these

data sources, open standards developed by the Open Geospatial

Consortium (OGC) are important. For instance, SensorThings

API (Liang, Khalafbeigi, et al., 2021) is used for managing

dynamic IoT data, while CityGML (Gröger et al., 2012) provides

a standardized format for representing 3D city models. The OGC

standard CityGML is the most widely adopted open standard for

the exchange and representation of semantic 3D City Models.

CityGML enables both geometrical and semantic representations

of urban objects at multiple levels of detail, ranging from

windows and building units to entire districts and cities. For

managing CityGML datasets, several free and commercial tools

are available. One of the most prominent is 3DCityDB (Z. Yao

et al., 2018), an open-source software suite designed for spatial

relational database management systems (SRDBMS) such as

Oracle Spatial and PostGIS. CityGML is widely used by many

cities around the world for urban planning, management, and

Figure 1. The overall methodology of the framework

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-G-2025-469-2025 | © Author(s) 2025. CC BY 4.0 License. 470

analysis. However, its complexity poses a challenge and a

difficulty for non-experts or professionals from other domains. It

is designed in such a way to fully support all aspects of urban

object representation, which renders it somewhat difficult to

navigate without specialized knowledge and guidance. While

visualization through 3D viewers can make CityGML data more

accessible by allowing users to interact with urban objects and

view their attributes, complex and nested queries still require the

expertise of a GIS professional to extract meaningful insights

from the semantic model. This makes it difficult for non-GIS

experts to interact with the 3D City model.

UDTs are not only static, they also include dynamic data from

IoT sensors or simulations. One widely used way of representing

dynamic data is the OGC SensorThings API standard (Liang,

Khalafbeigi, et al., 2021). The SensorThings API is a RESTful

and lightweight API that uses JSON data encodings for

representing sensors and their data in a standardized and unified

format. Integrating dynamic data with 3D city models is

challenging but has been approached through various methods.

For instance, CityGML 3.0 introduces the Dynamizer module,

which enables the integration of time-series data with CityGML

(Kutzner et al., 2020). Another approach, proposed by

(Santhanavanich & Coors, 2021), is CityThings, which integrates

CityGML with the SensorThings API. The idea behind

CityThings is to include the gml_id, which is the unique identifier

of the urban object, in the properties of the Thing entity in the

SensorThings API. This allows dynamic data to be queried using

the gml_id of the corresponding CityGML feature, establishing a

direct link between static 3D models and real-time sensor data.

For implementing the SensorThings API in this context, the

FROST Server (Fraunhofer IOSB, 2019) is a widely used

solution. It provides very efficient and scalable web platform to

help manage IoT data streams given the fact that it's an open-

source implementation of the SensorThings API. The FROST

Server ensures continuous dynamic data retrieval and allows the

UDTs to include real-time or simulated dynamic data alongside

their static 3D models.

In this paper, we propose a framework for interacting with an

UDT of a district. The UDT integrates a CityGML model with

dynamic time-series data such as monthly heat demand and

hourly electricity consumption per building, managed using the

3DCityDB and the SensorThings API. The LLM determines the

suitable action to take and outputs the results in a clear, user-

friendly format, all based on the user's query. In our framework,

the LLM acts as the 'brain,' while the functions and tools are the

'hands' (Li & Ning, 2023). The results are visualized in a 3D

environment using CesiumJS with OGC 3D Tiles (Cozzi et al.,

2019), to render and highlight specific objects in the digital twin.

The entire framework is built on OGC standards (CityGML,

SensorThings API, and 3D Tiles), ensuring scalability and

compatibility for diverse applications.

3. Methodology of the research

This section presents the methodology behind our framework,

which is designed to enable intuitive interaction with UDTs using

LLMs. The system allows users to ask questions, which are

interpreted and translated into structured data requests to retrieve

geospatial and temporal information. Figure 1 shows the overall

methodology of the framework. The framework is designed in

three parts: the input that the LLM takes in, the geospatial data

pool that the LLM needs to get data from, and the output that the

LLM delivers. The input is of two types: the context prompt,

which contains predefined instructions and context provided to

the LLM to guide its behavior during interactions, and the user

prompt. The user prompt can be of any type: text, voice or

document. Second, the geospatial data pool is where the UDT

data is stored. It includes the 3D city model in CityGML

standard, which is stored and managed in the 3DCityDB.

Moreover, all the dynamic data is stored in the FROST-Server,

which is an implementation of the SensorThings API using the

CityThing approach (Santhanavanich & Coors, 2021). Each

urban object (apartment, building, street, district, or city) can be

modelled as a Thing in the SensorThings API, and its unique

identifier (gml_id) will be stored in the properties of the Thing.

This creates a direct link between the CityGML and the

SensorThings API. Additional contextual information, such as

streets, restaurants, and building usage, data is retrieved from

OpenStreetMap (OSM) using the Overpass API. The

visualization of the 3D city model is enabled through the

CesiumJS Web Viewer using the 3D Tiles format. The output

that the LLM delivers is a text with the information the user asked

for, and a visualization of the highlighted objects in the 3D

Viewer.

In order for the LLM to interact with these external geospatial

databases, it needs some ‘hands’ for that. In fact, the LLMs

naturally function as a closed "black box," meaning their built-in

knowledge is static and outdated, and they cannot interact

directly with dynamic external systems without additional

components. This limitation in our framework is addressed

through the Orchestration Layer, which enables the LLM to

access external data sources and APIs, thereby augmenting its

capabilities at runtime. In the Orchestration layer, the LLM can

connect to external tools using its reasoning ability. For example,

LLMs can call functions and use the function outputs in to solve

the task. A notable and famous approach for function calling is

ReAct (S. Yao et al., 2023), where LLMs invoke a function,

analyze the outputs, and reason about the next action. The

Retrieval-Augmented Generation or RAG for short (Lewis et al.,

2020) is also an approach that enable the LLM to access external

documents or databases dynamically, retrieving context-specific

information before generating the final response. Common

implementations of the Orchestration layer are LangChain and

Figure 2. Excerpt of the 3DCityDB relational schema, which

includes 60 tables. The schema was provided to the LLM as a

JSON file containing 758 lines.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-G-2025-469-2025 | © Author(s) 2025. CC BY 4.0 License.

471

the OpenAI’s API. Both of them support RAG and Function

Calling.

Table 1. The defined functions for the AI Assistant to interact

with the UDT.

Our methodology uses the RAG and Function Calling tools in the

Orchestration Layer to enable direct interaction between the

LLM and the UDT. Specifically, RAG is employed to access the

relational database schema of the 3DCityDB, which is storing the

semantic 3D city model. To facilitate the LLM’s understanding

of the complex schema, the 3DCityDB schema was exported in

JSON format, enriched with detailed descriptions for each table

and their relationships. Each table in the schema includes its

primary key, along with foreign keys that define the relationships

between tables. Figure 2 lists an excerpt of the schema of the

3DCityDB and shows the building table, which contains detailed

information about buildings, their classifications and functions

according to the CityGML standard. The building table has

columns such as id (primary key of the building table),

storeys_above_ground (which represents the number of storeys

of the building), and objectclass_id (foreign key linking the

building table to the objectclass table), among many other

columns. By incorporating the column description, the primary

key and the foreign keys with the relationships to the other tables,

the LLM is able to accurately navigate and query the 3DCityDB,

facilitating writing complex geospatial queries. The RAG can

also be used if the user input includes a document and shall

enable the LLM to go through the document and analyze it to

answer the user question.

Indeed, the LLM is able to generate even very complex SQL

queries based on the user input and the database schema, but to

run the SQL query on the database, the LLM needs to call a

specific function. For this reason, Function Calling was used to

allow the LLM invoke functions and access additional resources

and data. Technically, the LLM analyses the user input and

decides which function to call based on the user’s prompt, and

call the function. An example would be calling a weather API to

get current weather of a specific city. LLMs such as GPT-4 and

GPT-3.5 are trained to recognize when a function should be

invoked and then generate a JSON object with the necessary

arguments for that function call. The functions triggered by this

process serve as tools within the AI application, and multiple

functions can be defined and utilized in a single request. Table 1

enumerates the functions used in our framework.

For example, if a user asks: “Show me all the buildings in

street_name that have more than 7 storeys.”, this requires the

LLM to write a SQL query that would answer this question

according to the 3DCityDB schema. In this case, the gml_ids are

stored in the cityobject table, where the buildings have an

objectclass_id of 26. This should be joined with the address and

address_to_building tables where the street_name is stored. The

generated SQL query is as follows:

SELECT DISTINCT co.gmlid

FROM cityobject co

JOIN building b ON b.id = co.id

JOIN address_to_building ab ON b.id = ab.building_id

JOIN address a ON ab.address_id = a.id

WHERE a.street ='street_name'

 AND b.storeys_above_ground > 7

 AND co.objectclass_id = 26;

The LLM then generates this SQL query based on the table and

column descriptions and primary/foreign keys information.

Afterwards, the LLM calls the run_sql_query function and passes

the generated SQL query to run it on the 3DCityDB. Given that

the 3DCityDB is based on PostgreSQL with PostGIS extension,

the LLM can also call PostGIS functions such as ST_3DAREA

to calculate areas and ST_VOLUME to calculate volumes of

buildings if required. The LLM then analyzes the output and

decides on the next action. If the run_sql_query function returns

an error from the database, the LLM analyzes the error and

run_sql_query(query) The LLM passes the

generated SQL query from the

user input and connects to the

3DCityDB to run the query.

query_timeseries

(gml_id,

observedProperty,

phenomenonTime)

The LLM generates the

SensorThings API query and

send a request to the

SensorThings API using the

parameters of the function.

show_results

(gmlids)

This function is designed to

highlight specific objects in

the Cesium Viewer.

query_OSM_data

(overpass_query)

The LLM can find specific

objects in the OSM

(restaurants, transports,

streets) using the Overpass

QL language.

show_marker

(latitude, longitude)

Shows a marker on the viewer

using coordinates of a place.

Usually used after querying

from the OSM.

calculate_distance

(lat1, long1, lat2, long2)

This function calculates the

distance between two objects

using their coordinates.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-G-2025-469-2025 | © Author(s) 2025. CC BY 4.0 License. 472

Figure 3. The User Interface of the UDT of Harthof

Function Explanation

corrects the SQL query accordingly. If there is no error, the LLM

calls the show_results function and passes in the building

gml_ids returned from the database, then highlights the results

using the styling functions of CesiumJS to show the buildings to

the user. If the user query includes questions about dynamic data,

the LLM uses the gml_ids to generate the SensorThings API

query accordingly and call the query_timeseries function. Places

from OSM can also be fetched using generated Overpass queries

by the LLM.

4. Case Study

4.1 Case Study context

The framework was developed within the scope of the European

project ASCEND. The project aims to mitigate the effects of

climate change through the creation of Positive Clean Energy

Districts in Europe. The project area in Munich is the Harthof

district. The Harthof district exemplifies many of Munich’s

residential areas, with most buildings constructed between the

1940s and 1970s. It covers 56 ha and is home to 11,500

inhabitants. It is a primarily residential area with 119 residential

buildings and 5500 residential units. The ASCEND EU-Project

aims to develop, test, and implement various initiatives,

including technical and digital requirements, building

refurbishments, PV panels installations and new constructions

and mobility concepts, while measuring the impact of these

actions to facilitate replication on other districts and European

cities. To achieve these goals and make the Harthof district a

positive clean energy district (PCED), it is essential to calculate

and monitor various social, energetic, and financial Key

Performance Indicators (KPIs) at different levels and with

different time resolution. In fact, most KPIs are time-dependent.

Examples of KPIs are the monthly heat energy demand of each

building, hourly electricity consumption of the apartments within

each building, and monthly roof and façade solar irradiation of a

building.

4.2 Data preparation

To calculate the energy KPIs in the Harthof district, two

categories of data were included: publicly available data and

private data. The publicly available data consists of CityGML

data in Level of Detail 2 (LoD2), made accessible by the State

Office for Digitization and Surveying in Bavaria. The LOD2

downloaded data includes information such as the number of

storeys above ground, roof type, measured height, building

usage, building type, etc. Complementary data such as the year

of construction, number of residential units per building, number

of inhabitants per building, and the heating system (gas, oil,

district heating) was obtained from the city of Munich in a 2D

format and merged with the LOD2 CityGML data. The resulted

CityGML dataset was then stored in the 3DCityDB, using the

software 3DCityDB Importer/Exporter. Afterwards, the software

SimStadt (HFT Stuttgart, 2015), which is an energy urban

simulation environment, was used to calculate energy indicators

in the Harthof district using the CityGML dataset. Additionally,

solar potential analysis was also calculated for roofs and facades

of each building using the 3D city model (Willenborg et al.,

2018). All the time-series indicators were then stored according

to the SensorThings API in the FROST Server using the

CityThings approach.

4.3 Implementation of the solution

The implementation of the system consists of two main

components: A Cesium Viewer, where the LOD2 model and the

calculated KPIs can be visualized, and a chat widget that allows

users to interact with the AI Assistant. The user interface is

shown in Figure 3. In the Cesium Viewer, users can explore

LOD2 buildings of the Harthof district. Additionally, clicking on

a building reveals all its attributes stored in the 3DCityDB,

together with the KPIs as time-series data. The time-series data

are queried using the building’s gml_id directly from the

SensorThings API. To the left, we have added a chat window

where users can communicate directly with the AI Assistant.

To implement the AI Assistant, the OpenAI’s Assistant API was

used. The Assistant API allows developers to create customized

agents that are capable of assisting and automating complex

tasks. Moreover, in order for the LLM to interact with external

knowledge, the API is currently supporting three types of tools:

Code Interpreter, File Search, and Function calling. These tools

can be considered as the implementation of the Orchestration

Layer. The Code Interpreter tool allows the assistant to execute

scripts (e.g. running complex mathematical calculations using

Python). The File Search allows developers to retrieve relevant

information by searching through documents using the Retrieval

Augmented Generation (RAG) framework. And with Function

Calling, the LLM can invoke functions if required after analyzing

the user’s input.

4.4 Results

To interact with the system, we have tried different queries.

Initially, we prompted simple queries, such as “Show me the

buildings in Röblingweg Street.” This request required a basic

SQL query to the 3DCityDB to retrieve and highlight the

Figure 4. Examples of user questions to the Assistant.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-G-2025-469-2025 | © Author(s) 2025. CC BY 4.0 License.

473

specified buildings. Next, we asked about specific indicators for

individual buildings. For example, “Which building in

Röblingweg Street had the highest heat demand in January

2024?” and “What is the total heat demand for all buildings in

Röblingweg Street in January 2024?” The Assistant responded

to these queries with a high degree of accuracy within a few

seconds. It was able to achieve this by retrieving building IDs

from the 3DCityDB and subsequently querying the SensorThings

API to access the relevant data. Figure 4 illustrates a query in

which the Assistant was asked to highlight the building with the

highest heat demand in February 2024 among those on a specific

street with more than five apartments.

We also tested more advanced queries that involved joining

different tables within the 3DCityDB. Examples of such queries

include, “How much living space do the buildings in Röblingweg

street have per resident?” and “What is the oldest building in the

Röblingweg Street, and what is the distance of this building to the

nearest metro station?”. The Assistant was able to find the

correct SQL query and fetch the corresponding data. It was also

able to generate the correct Overpass QL query to find nearby

metro stations and calculate the distance to these stations using

the calculate_distance function.

Additionally, we tested the system’s ability to process

documents. We uploaded an energy certificate for a random

building and asked the Assistant to locate the building and

summarize the information contained in the document (as shown

in Figure 5). In this case, the Assistant used the RAG to navigate

the uploaded document, extract the building’s address, search for

it in the 3DCityDB, and locate it in the 3D viewer.

However, the system faced challenges with complex requests. In

this case, the user should bring the request down to smaller steps

to avoid such issue. For example, instead of asking: “Which

building in Röblingweg Street with more than 6 apartments has

the highest electricity consumption in the last 24h?”, the user

could ask first for “Which buildings in Röblingweg Street have

more than 6 apartments?”, then “Which of these buildings above

had the highest electricity consumption in the last 24h?”.

In our experiment, two OpenAI models were employed: GPT-

3.5-turbo and GPT-4o. For simple queries and tasks, such as

highlighting specific buildings, both models performed

comparably. However, as the complexity of the requests

increased, GPT-4o consistently outperformed GPT-3.5-turbo on

nearly all queries. This can be attributed to GPT-4o's superior

knowledge of SQL and its enhanced ability to handle complex

tasks. Consequently, GPT-4o was more effective in addressing

complex user queries compared to other models. If the SQL

query happens to be wrongly generated by the model, we

automatically forward the error from the database to the model to

analyze it and re-write the SQL query accordingly. For example,

the model might have looked for a column name that does not

exist. The model gets the error from the database that this column

does not exist, which makes the model go back and search in the

database schema for the right column.

5. Evaluation of the framework

In this chapter, we evaluate the proposed framework to validate

the research hypothesis outlined in the introduction. The goal is

to assess whether our framework can accurately interpret

complex queries from diverse user groups and produce

meaningful outputs using the open standards CityGML,

SpatialSQL, and SensorThings API. To evaluate our framework,

we have collected 71 queries in both German and English.

Examples of these queries and the generated SQL queries can be

found here: https://github.com/tum-gis/ai_assistant_queries. As

our framework intends to serve as an assistant for the UDT of the

Harthof district, these queries were collected from the partners of

the project that have different backgrounds and interests. For

example, the Partner A (Society for Urban Renewal) is more

interested in renovation-related queries. They would like to know

which buildings are already renovated, and which buildings need

a refurbishment based on the energy consumption of the

buildings. The Partner B (the City Utilities) do have questions

regarding the buildings attached to the district heating and the

grid. Citizens have specific questions about the buildings they

live in, such as building energy consumption, energy

management, refurbishment strategies, costs, etc. We also

collected queries from GIS experts to evaluate the framework’s

capability with complex geospatial tasks.

As mentioned previously, we have used two models for

implementing the framework: GPT-3.5-turbo and GPT-4o. To

measure the relevance, accuracy and completeness of the

generated outputs, we use three metrics: Precision, Recall and

F1-Score. Precision is the proportion of true positive predictions

over true positive and false positive predictions made by the

model. Recall which is also known as true positive rate, is equal

to true positives divided by the sum of true positives and false

negatives. Lastly, the F1-Score balances the two metrics to

ensure both relevance and completeness. It can be calculated as

follows:

𝐹1_𝑆𝑐𝑜𝑟𝑒 = 2
Precision x Recall

Precicion+Recall
 (1)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-G-2025-469-2025 | © Author(s) 2025. CC BY 4.0 License. 474

Figure 5. Example of a user request to the Assistant joining in an energy certificate of a random building

and asking the Assistant to locate the building and to summarize the important information mentioned in the

document.

The Precision, Recall and consequently the F1-Score metrics

were calculated 10 times for each single query. Each query was

asked to 10 different GPT-3.5-turbo-based AI Assistants, and to

10 different GPT-4o-based AI Assistants. Then, we calculated

the average Precision and Recall for each query and for each

LLM.

Table 2. The evaluation results obtained by using our

framework based on two large language models (gpt-3.5-turbo

and gpt-4o) on 8 example queries out of 71 queries.

Let’s take the query “Show all buildings in Röblingweg Street”

as an example. This query was asked to 10 different GPT-3.5-

turbo-based Assistants. Each time, we divide the true positives

(TP) (in this case, all the buildings correctly identified as being

in the Röblingweg Street), by the sum of true positives (TP) and

false positives (FP) to calculate Precision. A false positive occurs

when the model returns buildings that are not actually located in

Röblingweg Street but are by mistake included in the result set.

Similarly, Recall is calculated by dividing the true positives (TP)

by the sum of true positives (TP) and false negatives (FN). A false

negative in this scenario would be any building that is located in

Röblingweg Street but was not retrieved by the model in the

results. For the GPT-3.5-turbo model, while it achieved relatively

high precision, it occasionally included a few buildings that were

not in Röblingweg Street (false positives), and in some cases, it

missed a few relevant buildings (false negatives). This caused

minor drops in both Precision and Recall, which resulted in an

average F1-Score of 0.94. On the other hand, GPT-4o

consistently returned the correct set of buildings in every time.

There were no false positives or false negatives, leading to

perfect Precision and Recall values of 1.0, and consequently an

F1-Score of 1.0.

Table 2 shows the calculated F1-Score for 8 example queries out

of 71 queries. From the results, it can be seen that GPT-3.5

performed well on most simple queries, with some errors for the

complex queries. On the other hand, GPT-4o performed very

well on most queries, even the complex ones. Our framework

achieved an overall accuracy rate of 62% with GPT-3.5-turbo and

81% with GPT-4o. The average response time for simple queries

was 1.2 seconds, while more complex queries took 3.4 seconds

on average.

Based on these results, our framework successfully answered

typical queries by different user groups using the semantic and

geometric richness of CityGML, its systematic mapping onto a

well-documented 3D geodatabase schema, and the well-

structured dynamic data from the SensorThings API. This

demonstrates the usability and relevance of the system and

validates the research hypothesis. However, there were some

incorrect outputs and hallucinations generated by the model. This

usually happens when the model is faced with complex scenarios

and cannot solve the task. The hallucination problem is a

common limitation that the user should be aware of. To reduce it,

we need to implement additional guidance mechanisms to control

the behavior of the LLM in such cases. For example, the LLM

could ask for more clarification from the user or provide step-by-

step instructions to solve the task.

6. Discussion

In this paper, we demonstrated the potential of integrating Large

Language Models with semantic 3D City Models for enabling

intuitive interaction with Urban Digital Twins. Our evaluation

results showed that the framework could accurately interpret and

respond to a variety of stakeholder queries, using the integration

of LLMs with the open standards CityGML and SensorThings

API. This enabled effective mapping of natural language queries

onto structured geospatial and temporal data, therefore

supporting our research hypothesis. The system successfully

used CityGML’s semantic structure to retrieve static attributes

and utilized SensorThings for dynamic data, achieving a

significant accuracy boost. The use of these open standards

enables the system to directly be applied to others districts and

cities when their data is given in the standardized format.

However, challenges like inconsistency in outputs and

limitations in arithmetic reasoning were noted, especially with

GPT-3.5-turbo. Moreover, performance dropped with more

complex queries, indicating that while the framework is usable

for most stakeholders, it still struggles with highly complex

queries.

It is also important to mention other potential challenges of the

system. First, there is the issue of uncertainty and

unpredictability. The system does not consistently provide the

same outputs for identical inputs, particularly when handling

complex tasks. This issue is more frequent with GPT-3.5-turbo

and occurs less frequently with GPT-4o. Lastly, while

commercial models like GPT-4o are among the most advanced

LLMs available, their cost and usage fees are significantly high.

For this reason, many researchers advocate for the usage of open

source LLMs and their fine-tuning for specific use cases. In our

case, we believe that fine-tuning an LLM to work efficiently with

the 3DCityDB and SensorThings API would be advantageous for

the GIS community.

7. Conclusions and future work

In this work, we presented an innovative framework for user

interaction with the Urban Digital Twin using Large Language

Models. The primary goal of this system is to enable citizens and

non-GIS experts to engage with and evaluate complex geospatial

data in a very interactive and intuitive way. In this framework,

the LLM operates as the "brain," while the functions serve as the

"hands". Using the LLM's interpretation capabilities of human

language and its querying knowledge with highly structured

geospatial data models like CityGML and stored in geospatial

databases like 3DCityDB, users can navigate, interact with, and

analyze complex geospatial data within seconds.

Query Example GPT-3.5

F1-Score

GPT-4o

F1-Score

Show all buildings in Röblingweg

Street

0.94 1

Which building in Parlestaße

Street is the oldest?

0.81 1

Find all buildings with more than

5 apartments

0.75 0.92

Which buildings in

Weyprechtstraße street are not

connected to the district heating?

0.60 0.82

Show buildings in Röblingweg

Street with yearly global solar

irradiation of more than 8000

kWh

0.42 0.67

Which building in Röblingweg

street had the highest heat energy

demand in January 2024?

0.82 1

Locate the building named in the

energy certificate

0.81 1

Calculate distance of this building

X to nearest metro station

0.80 0.92

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-G-2025-469-2025 | © Author(s) 2025. CC BY 4.0 License.

475

The prototype and the study results are already usable and

encourage further exploration of LLMs in geospatial

applications. However, challenges such as uncertainty,

hallucination, and cost were also identified. This requires further

attention and investigation. In the future, we would like to

address these issues by implementing control mechanisms to

enhance the user experience and employ open LLMs that run

locally on computers to reduce the costs. We also plan to explore

and test fine-tuning strategies with local LLMs to interact with

3D models more effectively and intuitively.

Acknowledgements

We thank all our partners in the ASCEND Project that is funded

by European Union, especially the city of Munich for their

collaboration and for providing the data for this work.

References

Balsebre, P., Huang, W., & Cong, G. (2024). LAMP: A Language

Model on the Map. http://arxiv.org/abs/2403.09059

Biljecki, F., & Ito, K. (2021). Street view imagery in urban

analytics and GIS: A review. Landscape and Urban Planning,

215.

Census GPT. (2023). caesarHQ/textSQL [GitHub].

caesarHQ/textSQL. https://github.com/caesarHQ/textSQL

Cozzi, P., Lilley, S., & Getz, G. (2019, January 31). 3D Tiles

Specification 1.0. Open Geospatial Consortium.

Fraunhofer IOSB. (2019). FROST-Server: An Open-Source

SensorThings API Implementation (Version 1.14).

https://github.com/FraunhoferIOSB/FROST-Server

Gröger, G., Kolbe, T. H., Nagel, C., & Haefele, K.-H. (2012).

OGC City Geography Markup Language (CityGML) Encoding

Standard (pp. 12–019).

HFT Stuttgart. (2015). SimStadt Documentation. SimStadt.

https://simstadt.hft-stuttgart.de/

Huang, C., Chen, S., Li, Z., Qu, J., Xiao, Y., Liu, J., & Chen, Z.

(2024). GeoAgent: To Empower LLMs using Geospatial Tools

for Address Standardization. Findings of the Association for

Computational Linguistics ACL 2024, 6048–6063.

Janowicz, K. (2023). Philosophical Foundations of GeoAI:

Exploring Sustainability, Diversity, and Bias in GeoAI and

Spatial Data Science.

Kang, Y., Zhang, F., Gao, S., Lin, H., & Liu, Y. (2020). A review

of urban physical environment sensing using street view imagery

in public health studies. Annals of GIS, 26(3), 261–275.

Kutzner, T., Chaturvedi, K., & Kolbe, T. H. (2020). CityGML

3.0: New Functions Open Up New Applications. PFG – Journal

of Photogrammetry, Remote Sensing and Geoinformation

Science, 88(1), 43–61.

Lewis, P., Perez, E., Piktus, A., Petroni, …, & Kiela, D. (2020).

Retrieval-Augmented Generation for Knowledge-Intensive NLP

Tasks, 33.

Li, Z., & Ning, H. (2023). Autonomous GIS: The next-generation AI-
powered GIS. International Journal of Digital Earth, 16(2), 4668–4686.

Liang, S., Khalafbeigi, T., & Van der Schaaf, H. (2021). OGC

SensorThings API Part 1: Sensing Version 1.1.

https://docs.ogc.org/is/18-088/18-088.html

Mooney, P., Cui, W., Guan, B., & Juhász, L. (2023). Towards

Understanding the Geospatial Skills of ChatGPT: Taking a

Geographic Information Systems (GIS) Exam. Proceedings of

the 6th ACM SIGSPATIAL International Workshop on AI for

Geographic Knowledge Discovery, 85–94.

Pang, H. E., & Biljecki, F. (2022). 3D building reconstruction

from single street view images using deep learning. International

Journal of Applied Earth Observation and Geoinformation, 112,

102859.

Santhanavanich, T., & Coors, V. (2021). CityThings: An

integration of the dynamic sensor data to the 3D city model.

Environment and Planning B: Urban Analytics and City Science,

48(3), 417–432.

Singh, S., Fore, M., & Stamoulis, D. (2024). GeoLLM-Engine:

A Realistic Environment for Building Geospatial Copilots. 2024

IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), 585–594.

Strong, B. (2023, March 18). ChatGeoPT: Exploring the future

of talking to our maps. Earth Genome.

https://medium.com/earthrisemedia/chatgeopt-exploring-the-

future-of-talking-to-our-maps-b1f82903bb05

Willenborg, B., Sindram, M., & Kolbe, T. H. (2018).

Applications of 3D city models for a better understanding of the

built environment. Trends in Spatial Analysis and Modelling:

Decision-Support and Planning Strategies, 167–191.

Wu, A. N., & Biljecki, F. (2021). Roofpedia: Automatic mapping

of green and solar roofs for an open roofscape registry and

evaluation of urban sustainability. Landscape and Urban

Planning, 214.

WU, J., Wu, X., & Yang, J. (2024). Guiding Clinical Reasoning

with Large Language Models via Knowledge Seeds.

Yao, S., Zhao, J., Yu, D., ... & Cao, Y. (2023). ReAct:

Synergizing Reasoning and Acting in Language Models.

Yao, Z., Nagel, C., … & Kolbe, T. H. (2018). 3DCityDB - a 3D

geodatabase solution for the management, analysis, and

visualization of semantic 3D city models based on CityGML.

Open Geospatial Data, Software and Standards, 3(1), 5.

Zhang, F., Wegner, J. D., Yang, B., & Liu, Y. (2023). Street-level

imagery analytics and applications. ISPRS Journal of

Photogrammetry and Remote Sensing, 199, 195–196.

Zhang, Y., Wang, Z., … & Yu, W. (2024). BB-GeoGPT: A

framework for learning a large language model for geographic

information science. Information Processing & Management,

61(5).

Zhang, Y., Wei, C., He, Z., & Yu, W. (2024). GeoGPT: An

assistant for understanding and processing geospatial tasks.

International Journal of Applied Earth Observation and

Geoinformation, 131.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-G-2025-469-2025 | © Author(s) 2025. CC BY 4.0 License.

476

