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Abstract 

 

Large language models (LLMs), such as OpenAI's Generative Pre-trained Transformer (GPT), commonly known as ChatGPT has 

witnessed a very rapid evolution which has opened the door for new possibilities across various industries and academic fields. These 

advanced technologies are transforming how we view and interact with data, how we communicate and solve complex problems. In 

this paper, we present a framework that employs LLMs to interact with an Urban Digital Twin (UDT) of a district. The framework 

utilizes the semantic richness of CityGML for representing 3D city models and the SensorThings API for managing dynamic sensor 

data, allowing users to query and visualize geospatial and dynamic information intuitively. Through experiments with different types 

of queries from stakeholders, varying from city planners, to utility providers, and citizens, we found that LLMs can effectively translate 

natural language queries into complex geospatial and temporal operations, narrowing the gap between non-expert users and complex 

urban datasets into a fine margin. The results shed light on the potential of LLMs to support decision-making in smart city applications. 

 

1. Introduction 

Smart city projects often require a lot of expertise to analyze 

diverse datasets for decision-making purposes, especially 

geospatial data. This can be very time-consuming as well as very 

expensive. In the last few years, the heavy advancements in 

Generative AI, particularly Large Language Models (LLMs), 

have drawn eyes and attention from both industry and academia. 

LLMs are known for their superior and impressive capabilities in 

better interpreting and generating natural language. They have 

successfully been integrated into various applications, such as 

robotics and medicine (Wu et al., 2024), serving as powerful 

assistants across different domains. Moreover, and on a specific 

note, LLMs show great potential for understanding of GIS and 

related fields [(Singh et al., 2024), (Huang et al., 2024), (Li & 

Ning, 2023)]. LLMs have facilitated intuitive question answering 

which made the gap between geospatial data and end-users to 

almost inexistent by making geospatial information more 

accessible to non-experts. However, in the context of smart cities, 

decision-making increasingly relies on Urban Digital Twins 

(UDTs), which host not only static geospatial data but also 

dynamic data, such as real-time sensor information. Many studies 

have focused on LLM integration with GIS data and workflows, 

however, there is a noticeable gap in research exploring how 

LLMs can interact with complex datasets including static and 

dynamic data within UDTs to support user interaction with UDTs 

and urban decision-making. 

 

Addressing these challenges requires the use of LLMs not only 

for natural language interaction but also customizing their 

capabilities to meet the particular needs of different stakeholders 

who are directly involved in smart city projects. In this paper, we 

apply the concept of Urban Digital Twins to the EU research 

project ASCEND, aiming at creating Positive Energy Districts 

for the use case of the Harthof district in Munich. This project 

involves various partners, including the City of Munich, the MGS 

as Partner A, which is the Society for Urban Renewal, the 

Stadtwerke München as Partner B, which is City Utilities, and 

local citizens. Each of these stakeholders has distinct interests 

and information needs. For instance, Partner A is primarily 

focused on identifying buildings that are less energy efficient and 

require refurbishment strategies, whereas Partner B is more 

concerned with monitoring the electricity demand and 

consumption of each building at specific times to optimize 

energy distribution. In contrast, citizens are interested in more 

localized queries, such as: “Show me the building on X Street 

with the number Y, provide the solar potential of its roof, and 

calculate how many photovoltaic panels I can install, the 

expected energy generation, and the associated costs.”  

 

To address these varied requirements, we aim to build a flexible 

framework capable of answering complex queries from different 

user groups, making it possible for each stakeholder to interact 

intuitively with the digital twin using natural text. Given the 

diverse needs and varying levels of expertise among our 

stakeholders, the key challenge is to develop a unified framework 

that allows each group to interact with the Urban Digital Twin 

using natural language, without requiring specialized knowledge 

of geospatial databases, data models, or query languages. To 

address this, our research focuses the following hypothesis:  

Integrating LLMs with the open geospatial standards CityGML 

and SensorThings API in the UDT enables the accurate 

translation of natural language into structured geospatial and 

temporal queries, allowing diverse user groups (e.g., city 

planners, utility providers, and citizens) to receive accurate 

relevant responses in different languages, including German 

and English.  

 

By addressing this hypothesis, this study aims to establish a 

scientific approach for employing LLMs to enable intuitive 

interaction with Urban Digital Twins, supporting complex urban 

data interactions across multiple stakeholder domains. The rest 

of the paper is structured as follows: Section 2 lists some recent 

advancements and identifies the research gaps in this area. 

Section 3 introduces the methodology of the framework. Section 

4 introduces the case study of the framework in the district 

Harthof in Munich, with the results. This section is followed by 

the evaluation section, where the framework is being evaluated 

using evaluation metrics. Section 6 discusses the framework 

result, followed by a conclusion for future work. 

 

2. Related Work 

Artificial intelligence (AI) has gradually been integrated into the 

study of geospatial research in recent years, giving birth to 

GeoAI. This multidisciplinary area of study analyzes very large 

and varied geospatial data using AI which ultimately improves 

our comprehension of urban environments. GeoAI has been 

utilized in many different fields, such as the generation of 3D city 

models from aerial data and object detection in satellite imagery 

((Biljecki & Ito, 2021), (Kang et al., 2020), (F. Zhang et al., 

2023), (Wu & Biljecki, 2021)). GeoAI has also significantly 
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changed 3D city modeling. Researchers have created novel ways 

to create realistic and intricate 3D representations of urban 

landscapes using AI approaches. For instance, (Pang & Biljecki, 

2022) worked on creating three-dimensional city models using 

aerial imagery. These advancements have set the stage for more 

sophisticated AI applications, particularly in the context of urban 

digital twins and dynamic urban environments. This however 

should make GeoAI go beyond merely applying AI and machine 

learning methods to geoscience use cases, and should also 

integrate spatial, temporal, and place-based aspects into the AI 

methods (Janowicz, 2023).  

In this regard, using LLMs opens up additional GeoAI 

possibilities. It provides the capacity to handle and comprehend 

complex geospatial data by fusing natural language with spatial 

data. Many researchers investigated the use of LLMs with GIS in 

various ways, even though it's still in the early stages of 

development and deployment. For example, (Mooney et al., 

2023) evaluated ChatGPT’s understanding of GIS concepts by 

having it take an exam based on GIS textbooks without any 

prompting or finetuning. They found out that even though GPT 

showcased a very promising understanding of geospatial 

concepts, there is still room for improvement. (Li & Ning, 2023) 

went one step further with their prototype, LLM-Geo, which uses 

the GPT-4 API to conduct spatial analysis in an autonomous 

manner. The findings demonstrate how automating spatial 

analytic operations and improving the usability of GIS 

technology for non-specialists in the field could revolutionize the 

GIS industry. Similar to this, (Y. Zhang, Wei, et al., 2024) created 

the user-friendly framework GeoGPT, which blends LLMs with 

established GIS community tools to tackle a variety of 

geographic jobs and GIS analysis independently. 

Few other works focused on creating innovative user-interfaces. 

For instance, (Census GPT, 2023) created a user interface that 

takes natural language questions, converts them to SQL using 

GPT-3.5, then queries an SQL database, and finally provides 2D 

data visualization using tools such as Mapbox and Plotly. 

ChatGeoGPT (Strong, 2023) is another initiative of using 

ChatGPT to talk to the Open Street Map and query geographical 

information. The authors found out that ChatGPT was trained on 

the Overpass API (which is an API to interact with OSM map 

data) and can construct queries better than humans do. 

ChatGeoGPT uses GPT-3’s knowledge to convert natural text to 

Overpass QL queries and translate API responses back into easy-

to-understand, actionable summaries. The authors however 

pointed out that ChatGPT has limitations for more sophisticated 

Overpass QL queries.  

LLMs still face many challenges and obstacles on its way, 

distinctly when it comes to discipline-specific knowledge, 

despite all these promising results and achievements. This 

limitation often results in hallucinations, where the models 

produce incorrect or misleading information. Nevertheless, fine-

tuning LLMs for GIS-specific tasks enhances their accuracy and 

reliability. For instance, BB-GeoGPT (Y. Zhang, Wang, et al., 

2024) is a fine-tuned LLM for GIS-specific knowledge. BB-

GeoGPT was developed on the LLaMA-2-7B model using 

thousands of GIS datasets. While BB-GeoGPT exhibits 

promising results, it lags behind more advanced commercial 

models like GPT-3.5-turbo. LAMP (Balsebre et al., 2024) is 

another fine-tuned LLM for GIS specific knowledge. It was 

developed on the LLaMa-2-7B-Chat model. The authors 

compared the model to famous LLMs such as LLaMa-2-70B, 

GPT-3.5 and GPT-4, and the results were promising, however, 

hallucination problems were still frequent as the authors pointed 

out, and the lagging behind commercial models such as GPT-4 is 

still prominent. 

In general, LLMs can help in making the transition toward a 

world where users do not need to be experts in specific fields. 

This can free up time for users to focus on decision-making 

instead. However, due to the complexity of data sources 

including static 3D city models and dynamic IoT datastreams, 

integrating LLMs into complex ecosystems such as UDTs 

becomes very challenging. To address the heterogeneity of these 

data sources, open standards developed by the Open Geospatial 

Consortium (OGC) are important. For instance, SensorThings 

API (Liang, Khalafbeigi, et al., 2021) is used for managing 

dynamic IoT data, while CityGML (Gröger et al., 2012) provides 

a standardized format for representing 3D city models. The OGC 

standard CityGML is the most widely adopted open standard for 

the exchange and representation of semantic 3D City Models. 

CityGML enables both geometrical and semantic representations 

of urban objects at multiple levels of detail, ranging from 

windows and building units to entire districts and cities. For 

managing CityGML datasets, several free and commercial tools 

are available. One of the most prominent is 3DCityDB (Z. Yao 

et al., 2018), an open-source software suite designed for spatial 

relational database management systems (SRDBMS) such as 

Oracle Spatial and PostGIS. CityGML is widely used by many 

cities around the world for urban planning, management, and 

Figure 1. The overall methodology of the framework 
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analysis. However, its complexity poses a challenge and a 

difficulty for non-experts or professionals from other domains. It 

is designed in such a way to fully support all aspects of urban 

object representation, which renders it somewhat difficult to 

navigate without specialized knowledge and guidance. While 

visualization through 3D viewers can make CityGML data more 

accessible by allowing users to interact with urban objects and 

view their attributes, complex and nested queries still require the 

expertise of a GIS professional to extract meaningful insights 

from the semantic model. This makes it difficult for non-GIS 

experts to interact with the 3D City model. 

 

UDTs are not only static, they also include dynamic data from 

IoT sensors or simulations. One widely used way of representing 

dynamic data is the OGC SensorThings API standard (Liang, 

Khalafbeigi, et al., 2021).  The SensorThings API is a RESTful 

and lightweight API that uses JSON data encodings for 

representing sensors and their data in a standardized and unified 

format. Integrating dynamic data with 3D city models is 

challenging but has been approached through various methods. 

For instance, CityGML 3.0 introduces the Dynamizer module, 

which enables the integration of time-series data with CityGML 

(Kutzner et al., 2020). Another approach, proposed by 

(Santhanavanich & Coors, 2021), is CityThings, which integrates 

CityGML with the SensorThings API. The idea behind 

CityThings is to include the gml_id, which is the unique identifier 

of the urban object, in the properties of the Thing entity in the 

SensorThings API. This allows dynamic data to be queried using 

the gml_id of the corresponding CityGML feature, establishing a 

direct link between static 3D models and real-time sensor data. 

For implementing the SensorThings API in this context, the 

FROST Server (Fraunhofer IOSB, 2019) is a widely used 

solution. It provides very efficient and scalable web platform to 

help manage IoT data streams given the fact that it's an open-

source implementation of the SensorThings API. The FROST 

Server ensures continuous dynamic data retrieval and allows the 

UDTs to include real-time or simulated dynamic data alongside 

their static 3D models. 

 

In this paper, we propose a framework for interacting with an 

UDT of a district. The UDT integrates a CityGML model with 

dynamic time-series data such as monthly heat demand and 

hourly electricity consumption per building, managed using the 

3DCityDB and the SensorThings API. The LLM determines the 

suitable action to take and outputs the results in a clear, user-

friendly format, all based on the user's query. In our framework, 

the LLM acts as the 'brain,' while the functions and tools are the 

'hands' (Li & Ning, 2023). The results are visualized in a 3D 

environment using CesiumJS with OGC 3D Tiles (Cozzi et al., 

2019), to render and highlight specific objects in the digital twin. 

The entire framework is built on OGC standards (CityGML, 

SensorThings API, and 3D Tiles), ensuring scalability and 

compatibility for diverse applications.  

 

3. Methodology of the research 

This section presents the methodology behind our framework, 

which is designed to enable intuitive interaction with UDTs using 

LLMs. The system allows users to ask questions, which are 

interpreted and translated into structured data requests to retrieve 

geospatial and temporal information. Figure 1 shows the overall 

methodology of the framework. The framework is designed in 

three parts: the input that the LLM takes in, the geospatial data 

pool that the LLM needs to get data from, and the output that the 

LLM delivers. The input is of two types: the context prompt, 

which contains predefined instructions and context provided to 

the LLM to guide its behavior during interactions, and the user 

prompt. The user prompt can be of any type: text, voice or 

document. Second, the geospatial data pool is where the UDT 

data is stored. It includes the 3D city model in CityGML 

standard, which is stored and managed in the 3DCityDB. 

Moreover, all the dynamic data is stored in the FROST-Server, 

which is an implementation of the SensorThings API using the 

CityThing approach (Santhanavanich & Coors, 2021). Each 

urban object (apartment, building, street, district, or city) can be 

modelled as a Thing in the SensorThings API, and its unique 

identifier (gml_id) will be stored in the properties of the Thing. 

This creates a direct link between the CityGML and the 

SensorThings API. Additional contextual information, such as 

streets, restaurants, and building usage, data is retrieved from 

OpenStreetMap (OSM) using the Overpass API. The 

visualization of the 3D city model is enabled through the 

CesiumJS Web Viewer using the 3D Tiles format. The output 

that the LLM delivers is a text with the information the user asked 

for, and a visualization of the highlighted objects in the 3D 

Viewer. 

In order for the LLM to interact with these external geospatial 

databases, it needs some ‘hands’ for that. In fact, the LLMs 

naturally function as a closed "black box," meaning their built-in 

knowledge is static and outdated, and they cannot interact 

directly with dynamic external systems without additional 

components. This limitation in our framework is addressed 

through the Orchestration Layer, which enables the LLM to 

access external data sources and APIs, thereby augmenting its 

capabilities at runtime. In the Orchestration layer, the LLM can 

connect to external tools using its reasoning ability.  For example, 

LLMs can call functions and use the function outputs in to solve 

the task. A notable and famous approach for function calling is 

ReAct (S. Yao et al., 2023), where LLMs invoke a function, 

analyze the outputs, and reason about the next action. The 

Retrieval-Augmented Generation or RAG for short (Lewis et al., 

2020) is also an approach that enable the LLM to access external 

documents or databases dynamically, retrieving context-specific 

information before generating the final response. Common 

implementations of the Orchestration layer are LangChain and 

Figure 2. Excerpt of the 3DCityDB relational schema, which 

includes 60 tables. The schema was provided to the LLM as a 

JSON file containing 758 lines. 
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the OpenAI’s API. Both of them support RAG and Function 

Calling.  

Table 1. The defined functions for the AI Assistant to interact 

with the UDT. 

Our methodology uses the RAG and Function Calling tools in the 

Orchestration Layer to enable direct interaction between the 

LLM and the UDT. Specifically, RAG is employed to access the 

relational database schema of the 3DCityDB, which is storing the 

semantic 3D city model. To facilitate the LLM’s understanding 

of the complex schema, the 3DCityDB schema was exported in 

JSON format, enriched with detailed descriptions for each table 

and their relationships. Each table in the schema includes its 

primary key, along with foreign keys that define the relationships 

between tables. Figure 2 lists an excerpt of the schema of the 

3DCityDB and shows the building table, which contains detailed 

information about buildings, their classifications and functions 

according to the CityGML standard. The building table has 

columns such as id (primary key of the building table), 

storeys_above_ground (which represents the number of storeys 

of the building), and objectclass_id (foreign key linking the 

building table to the objectclass table), among many other 

columns. By incorporating the column description, the primary 

key and the foreign keys with the relationships to the other tables, 

the LLM is able to accurately navigate and query the 3DCityDB, 

facilitating writing complex geospatial queries. The RAG can 

also be used if the user input includes a document and shall 

enable the LLM to go through the document and analyze it to 

answer the user question. 

Indeed, the LLM is able to generate even very complex SQL 

queries based on the user input and the database schema, but to 

run the SQL query on the database, the LLM needs to call a 

specific function. For this reason, Function Calling was used to 

allow the LLM invoke functions and access additional resources 

and data. Technically, the LLM analyses the user input and 

decides which function to call based on the user’s prompt, and 

call the function. An example would be calling a weather API to 

get current weather of a specific city. LLMs such as GPT-4 and 

GPT-3.5 are trained to recognize when a function should be 

invoked and then generate a JSON object with the necessary 

arguments for that function call. The functions triggered by this 

process serve as tools within the AI application, and multiple 

functions can be defined and utilized in a single request. Table 1 

enumerates the functions used in our framework.  

For example, if a user asks: “Show me all the buildings in 

street_name that have more than 7 storeys.”, this requires the 

LLM to write a SQL query that would answer this question 

according to the 3DCityDB schema. In this case, the gml_ids are 

stored in the cityobject table, where the buildings have an 

objectclass_id of 26. This should be joined with the address and 

address_to_building tables where the street_name is stored. The 

generated SQL query is as follows:  

SELECT DISTINCT co.gmlid  

FROM cityobject co  

JOIN building b ON b.id = co.id  

JOIN address_to_building ab ON b.id = ab.building_id 

JOIN address a ON ab.address_id = a.id  

WHERE a.street ='street_name'  

 AND b.storeys_above_ground > 7 

 AND co.objectclass_id = 26; 

The LLM then generates this SQL query based on the table and 

column descriptions and primary/foreign keys information. 

Afterwards, the LLM calls the run_sql_query function and passes 

the generated SQL query to run it on the 3DCityDB. Given that 

the 3DCityDB is based on PostgreSQL with PostGIS extension, 

the LLM can also call PostGIS functions such as ST_3DAREA 

to calculate areas and ST_VOLUME to calculate volumes of 

buildings if required. The LLM then analyzes the output and 

decides on the next action. If the run_sql_query function returns 

an error from the database, the LLM analyzes the error and 

run_sql_query(query) The LLM passes the 

generated SQL query from the 

user input and connects to the 

3DCityDB to run the query. 

query_timeseries 

(gml_id, 

observedProperty, 

phenomenonTime) 

The LLM generates the 

SensorThings API query and 

send a request to the 

SensorThings API using the 

parameters of the function. 

show_results 

(gmlids) 

This function is designed to 

highlight specific objects in 

the Cesium Viewer. 

query_OSM_data 

(overpass_query) 

The LLM can find specific 

objects in the OSM 

(restaurants, transports, 

streets) using the Overpass 

QL language.  

show_marker 

(latitude, longitude) 

Shows a marker on the viewer 

using coordinates of a place. 

Usually used after querying 

from the OSM. 

calculate_distance 

(lat1, long1, lat2, long2) 

This function calculates the 

distance between two objects 

using their coordinates. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-469-2025 | © Author(s) 2025. CC BY 4.0 License. 472

Figure 3. The User Interface of the UDT of Harthof 

Function Explanation 



 

corrects the SQL query accordingly. If there is no error, the LLM 

calls the show_results function and passes in the building 

gml_ids returned from the database, then highlights the results 

using the styling functions of CesiumJS to show the buildings to 

the user. If the user query includes questions about dynamic data, 

the LLM uses the gml_ids to generate the SensorThings API 

query accordingly and call the query_timeseries function. Places 

from OSM can also be fetched using generated Overpass queries 

by the LLM.  

 

4. Case Study 

4.1 Case Study context 

The framework was developed within the scope of the European 

project ASCEND. The project aims to mitigate the effects of 

climate change through the creation of Positive Clean Energy 

Districts in Europe. The project area in Munich is the Harthof 

district. The Harthof district exemplifies many of Munich’s 

residential areas, with most buildings constructed between the 

1940s and 1970s. It covers 56 ha and is home to 11,500 

inhabitants. It is a primarily residential area with 119 residential 

buildings and 5500 residential units. The ASCEND EU-Project 

aims to develop, test, and implement various initiatives, 

including technical and digital requirements, building 

refurbishments, PV panels installations and new constructions 

and mobility concepts, while measuring the impact of these 

actions to facilitate replication on other districts and European 

cities. To achieve these goals and make the Harthof district a 

positive clean energy district (PCED), it is essential to calculate 

and monitor various social, energetic, and financial Key 

Performance Indicators (KPIs) at different levels and with 

different time resolution. In fact, most KPIs are time-dependent. 

Examples of KPIs are the monthly heat energy demand of each 

building, hourly electricity consumption of the apartments within 

each building, and monthly roof and façade solar irradiation of a 

building.  

 

4.2 Data preparation 

To calculate the energy KPIs in the Harthof district, two 

categories of data were included: publicly available data and 

private data. The publicly available data consists of CityGML 

data in Level of Detail 2 (LoD2), made accessible by the State 

Office for Digitization and Surveying in Bavaria. The LOD2 

downloaded data includes information such as the number of 

storeys above ground, roof type, measured height, building 

usage, building type, etc. Complementary data such as the year 

of construction, number of residential units per building, number 

of inhabitants per building, and the heating system (gas, oil, 

district heating) was obtained from the city of Munich in a 2D 

format and merged with the LOD2 CityGML data. The resulted 

CityGML dataset was then stored in the 3DCityDB, using the 

software 3DCityDB Importer/Exporter. Afterwards, the software 

SimStadt (HFT Stuttgart, 2015), which is an energy urban 

simulation environment, was used to calculate energy indicators 

in the Harthof district using the CityGML dataset. Additionally, 

solar potential analysis was also calculated for roofs and facades 

of each building using the 3D city model (Willenborg et al., 

2018). All the time-series indicators were then stored according 

to the SensorThings API in the FROST Server using the 

CityThings approach.  

 

4.3 Implementation of the solution 

The implementation of the system consists of two main 

components: A Cesium Viewer, where the LOD2 model and the 

calculated KPIs can be visualized, and a chat widget that allows 

users to interact with the AI Assistant. The user interface is 

shown in Figure 3. In the Cesium Viewer, users can explore 

LOD2 buildings of the Harthof district. Additionally, clicking on 

a building reveals all its attributes stored in the 3DCityDB, 

together with the KPIs as time-series data. The time-series data 

are queried using the building’s gml_id directly from the 

SensorThings API. To the left, we have added a chat window 

where users can communicate directly with the AI Assistant. 

 

To implement the AI Assistant, the OpenAI’s Assistant API was 

used. The Assistant API allows developers to create customized 

agents that are capable of assisting and automating complex 

tasks. Moreover, in order for the LLM to interact with external 

knowledge, the API is currently supporting three types of tools: 

Code Interpreter, File Search, and Function calling. These tools 

can be considered as the implementation of the Orchestration 

Layer. The Code Interpreter tool allows the assistant to execute 

scripts (e.g. running complex mathematical calculations using 

Python). The File Search allows developers to retrieve relevant 

information by searching through documents using the Retrieval 

Augmented Generation (RAG) framework. And with Function 

Calling, the LLM can invoke functions if required after analyzing 

the user’s input.  

 

4.4 Results 

To interact with the system, we have tried different queries. 

Initially, we prompted simple queries, such as “Show me the 

buildings in Röblingweg Street.” This request required a basic 

SQL query to the 3DCityDB to retrieve and highlight the 

Figure 4. Examples of user questions to the Assistant. 
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specified buildings. Next, we asked about specific indicators for 

individual buildings. For example, “Which building in 

Röblingweg Street had the highest heat demand in January 

2024?” and “What is the total heat demand for all buildings in 

Röblingweg Street in January 2024?” The Assistant responded 

to these queries with a high degree of accuracy within a few 

seconds. It was able to achieve this by retrieving building IDs 

from the 3DCityDB and subsequently querying the SensorThings 

API to access the relevant data. Figure 4 illustrates a query in 

which the Assistant was asked to highlight the building with the 

highest heat demand in February 2024 among those on a specific 

street with more than five apartments.  

We also tested more advanced queries that involved joining 

different tables within the 3DCityDB. Examples of such queries 

include, “How much living space do the buildings in Röblingweg 

street have per resident?” and “What is the oldest building in the 

Röblingweg Street, and what is the distance of this building to the 

nearest metro station?”. The Assistant was able to find the 

correct SQL query and fetch the corresponding data. It was also 

able to generate the correct Overpass QL query to find nearby 

metro stations and calculate the distance to these stations using 

the calculate_distance function. 

Additionally, we tested the system’s ability to process 

documents. We uploaded an energy certificate for a random 

building and asked the Assistant to locate the building and 

summarize the information contained in the document (as shown 

in Figure 5).  In this case, the Assistant used the RAG to navigate 

the uploaded document, extract the building’s address, search for 

it in the 3DCityDB, and locate it in the 3D viewer. 

However, the system faced challenges with complex requests. In 

this case, the user should bring the request down to smaller steps 

to avoid such issue. For example, instead of asking: “Which 

building in Röblingweg Street with more than 6 apartments has 

the highest electricity consumption in the last 24h?”, the user 

could ask first for “Which buildings in Röblingweg Street have 

more than 6 apartments?”, then “Which of these buildings above 

had the highest electricity consumption in the last 24h?”.  

In our experiment, two OpenAI models were employed: GPT-

3.5-turbo and GPT-4o. For simple queries and tasks, such as 

highlighting specific buildings, both models performed 

comparably. However, as the complexity of the requests 

increased, GPT-4o consistently outperformed GPT-3.5-turbo on 

nearly all queries. This can be attributed to GPT-4o's superior 

knowledge of SQL and its enhanced ability to handle complex 

tasks. Consequently, GPT-4o was more effective in addressing 

complex user queries compared to other models. If the SQL 

query happens to be wrongly generated by the model, we 

automatically forward the error from the database to the model to 

analyze it and re-write the SQL query accordingly. For example, 

the model might have looked for a column name that does not 

exist. The model gets the error from the database that this column 

does not exist, which makes the model go back and search in the 

database schema for the right column.    

5. Evaluation of the framework

In this chapter, we evaluate the proposed framework to validate 

the research hypothesis outlined in the introduction. The goal is 

to assess whether our framework can accurately interpret 

complex queries from diverse user groups and produce 

meaningful outputs using the open standards CityGML, 

SpatialSQL, and SensorThings API. To evaluate our framework, 

we have collected 71 queries in both German and English. 

Examples of these queries and the generated SQL queries can be 

found here: https://github.com/tum-gis/ai_assistant_queries. As 

our framework intends to serve as an assistant for the UDT of the 

Harthof district, these queries were collected from the partners of 

the project that have different backgrounds and interests. For 

example, the Partner A (Society for Urban Renewal) is more 

interested in renovation-related queries. They would like to know 

which buildings are already renovated, and which buildings need 

a refurbishment based on the energy consumption of the 

buildings. The Partner B (the City Utilities) do have questions 

regarding the buildings attached to the district heating and the 

grid. Citizens have specific questions about the buildings they 

live in, such as building energy consumption, energy 

management, refurbishment strategies, costs, etc. We also 

collected queries from GIS experts to evaluate the framework’s 

capability with complex geospatial tasks. 

As mentioned previously, we have used two models for 

implementing the framework: GPT-3.5-turbo and GPT-4o. To 

measure the relevance, accuracy and completeness of the 

generated outputs, we use three metrics: Precision, Recall and 

F1-Score. Precision is the proportion of true positive predictions 

over true positive and false positive predictions made by the 

model. Recall which is also known as true positive rate, is equal 

to true positives divided by the sum of true positives and false 

negatives. Lastly, the F1-Score balances the two metrics to 

ensure both relevance and completeness. It can be calculated as 

follows:  

𝐹1_𝑆𝑐𝑜𝑟𝑒 = 2 
Precision x Recall

Precicion+Recall
 (1) 
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Figure 5. Example of a user request to the Assistant joining in an energy certificate of a random building 

and asking the Assistant to locate the building and to summarize the important information mentioned in the 

document. 



 

The Precision, Recall and consequently the F1-Score metrics 

were calculated 10 times for each single query. Each query was 

asked to 10 different GPT-3.5-turbo-based AI Assistants, and to 

10 different GPT-4o-based AI Assistants. Then, we calculated 

the average Precision and Recall for each query and for each 

LLM.  

 

Table 2. The evaluation results obtained by using our 

framework based on two large language models (gpt-3.5-turbo 

and gpt-4o) on 8 example queries out of 71 queries. 

 

Let’s take the query “Show all buildings in Röblingweg Street” 

as an example. This query was asked to 10 different GPT-3.5-

turbo-based Assistants. Each time, we divide the true positives 

(TP) (in this case, all the buildings correctly identified as being 

in the Röblingweg Street), by the sum of true positives (TP) and 

false positives (FP) to calculate Precision. A false positive occurs 

when the model returns buildings that are not actually located in 

Röblingweg Street but are by mistake included in the result set. 

Similarly, Recall is calculated by dividing the true positives (TP) 

by the sum of true positives (TP) and false negatives (FN). A false 

negative in this scenario would be any building that is located in 

Röblingweg Street but was not retrieved by the model in the 

results. For the GPT-3.5-turbo model, while it achieved relatively 

high precision, it occasionally included a few buildings that were 

not in Röblingweg Street (false positives), and in some cases, it 

missed a few relevant buildings (false negatives). This caused 

minor drops in both Precision and Recall, which resulted in an 

average F1-Score of 0.94. On the other hand, GPT-4o 

consistently returned the correct set of buildings in every time. 

There were no false positives or false negatives, leading to 

perfect Precision and Recall values of 1.0, and consequently an 

F1-Score of 1.0.  

 

Table 2 shows the calculated F1-Score for 8 example queries out 

of 71 queries. From the results, it can be seen that GPT-3.5 

performed well on most simple queries, with some errors for the 

complex queries. On the other hand, GPT-4o performed very 

well on most queries, even the complex ones. Our framework 

achieved an overall accuracy rate of 62% with GPT-3.5-turbo and 

81% with GPT-4o. The average response time for simple queries 

was 1.2 seconds, while more complex queries took 3.4 seconds 

on average.  

 

Based on these results, our framework successfully answered 

typical queries by different user groups using the semantic and 

geometric richness of CityGML, its systematic mapping onto a 

well-documented 3D geodatabase schema, and the well-

structured dynamic data from the SensorThings API. This 

demonstrates the usability and relevance of the system and 

validates the research hypothesis. However, there were some 

incorrect outputs and hallucinations generated by the model. This 

usually happens when the model is faced with complex scenarios 

and cannot solve the task. The hallucination problem is a 

common limitation that the user should be aware of. To reduce it, 

we need to implement additional guidance mechanisms to control 

the behavior of the LLM in such cases. For example, the LLM 

could ask for more clarification from the user or provide step-by-

step instructions to solve the task. 

 

6. Discussion  

In this paper, we demonstrated the potential of integrating Large 

Language Models with semantic 3D City Models for enabling 

intuitive interaction with Urban Digital Twins. Our evaluation 

results showed that the framework could accurately interpret and 

respond to a variety of stakeholder queries, using the integration 

of LLMs with the open standards CityGML and SensorThings 

API. This enabled effective mapping of natural language queries 

onto structured geospatial and temporal data, therefore 

supporting our research hypothesis. The system successfully 

used CityGML’s semantic structure to retrieve static attributes 

and utilized SensorThings for dynamic data, achieving a 

significant accuracy boost. The use of these open standards 

enables the system to directly be applied to others districts and 

cities when their data is given in the standardized format. 

However, challenges like inconsistency in outputs and 

limitations in arithmetic reasoning were noted, especially with 

GPT-3.5-turbo. Moreover, performance dropped with more 

complex queries, indicating that while the framework is usable 

for most stakeholders, it still struggles with highly complex 

queries. 

 

It is also important to mention other potential challenges of the 

system. First, there is the issue of uncertainty and 

unpredictability. The system does not consistently provide the 

same outputs for identical inputs, particularly when handling 

complex tasks. This issue is more frequent with GPT-3.5-turbo 

and occurs less frequently with GPT-4o. Lastly, while 

commercial models like GPT-4o are among the most advanced 

LLMs available, their cost and usage fees are significantly high. 

For this reason, many researchers advocate for the usage of open 

source LLMs and their fine-tuning for specific use cases. In our 

case, we believe that fine-tuning an LLM to work efficiently with 

the 3DCityDB and SensorThings API would be advantageous for 

the GIS community.  

 

7. Conclusions and future work 

In this work, we presented an innovative framework for user 

interaction with the Urban Digital Twin using Large Language 

Models. The primary goal of this system is to enable citizens and 

non-GIS experts to engage with and evaluate complex geospatial 

data in a very interactive and intuitive way. In this framework, 

the LLM operates as the "brain," while the functions serve as the 

"hands". Using the LLM's interpretation capabilities of human 

language and its querying knowledge with highly structured 

geospatial data models like CityGML and stored in geospatial 

databases like 3DCityDB, users can navigate, interact with, and 

analyze complex geospatial data within seconds.  

Query Example GPT-3.5 

F1-Score 

GPT-4o 

F1-Score 

Show all buildings in Röblingweg 

Street 

0.94 1 

Which building in Parlestaße 

Street is the oldest? 

0.81 1 

Find all buildings with more than 

5 apartments 

0.75 0.92 

Which buildings in 

Weyprechtstraße street are not 

connected to the district heating? 

0.60 0.82 

Show buildings in Röblingweg 

Street with yearly global solar 

irradiation of more than 8000 

kWh 

0.42 0.67 

Which building in Röblingweg 

street had the highest heat energy 

demand in January 2024? 

0.82 1 

Locate the building named in the 

energy certificate 

0.81 1 

Calculate distance of this building 

X to nearest metro station 

0.80 0.92 
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The prototype and the study results are already usable and 

encourage further exploration of LLMs in geospatial 

applications. However, challenges such as uncertainty, 

hallucination, and cost were also identified. This requires further 

attention and investigation. In the future, we would like to 

address these issues by implementing control mechanisms to 

enhance the user experience and employ open LLMs that run 

locally on computers to reduce the costs. We also plan to explore 

and test fine-tuning strategies with local LLMs to interact with 

3D models more effectively and intuitively. 
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