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Abstract

A large variety of sensors can be used for monitoring processes on the Earth’s surface. Different sensors can capture complementary
information of the same observed region. For instance, aerial images offer a high spatial resolution but at a low temporal resolution,
whereas satellite image time series (SITS) capture temporal variations with a high repetition rate, e.g. seasonal changes, but with
limited spatial resolution. This paper presents a method to jointly exploit the strengths of SITS and aerial images for land cover
classification. In this context, it is a challenge to train a classifier given the large difference in resolutions. We utilise convolutions
to extract spatial information and consider self-attention in the temporal dimension for SITS. Additionally, a multi-resolution
supervision strategy is proposed, applying auxiliary losses at different stages of the SITS decoder to enhance feature learning.
Features extracted from SITS data are fused via a cross attention module with features determined from aerial images at the same
spatial resolution by a SegFormer network before predicting land cover at the geometrical resolution of the aerial image. We
perform comparative experiments on an existing benchmark dataset, showing that the convolution- and attention-based fusion of a
SITS from Sentinel-2 with aerial image improves the classification results by +1.9% in the mean IoU and +2% in the OA compared
to a method based on aerial images only.

1. INTRODUCTION

Recent developments in remote sensing (RS) have significantly
encouraged the use of multi-sensor data for applications such
as land cover classification, i.e. the task of assigning a class la-
bel representing the physical material of the Earth’s surface to
each pixel of an image. Multiple sensors can be used to acquire
data with complementary information about the same observed
region. For example, aerial imagery delivers textural informa-
tion at very high geometrical resolution, but usually with high
revisit times, so that there is no information about the chan-
ging appearance of objects during the vegetation cycle. On the
other hand, satellite systems, such as Sentinel-2, have short re-
visit times, so that the resultant images can capture temporal
changes, but usually at a coarser spatial resolution, e.g. with a
ground sampling distance (GSD) of 10 m or more. This causes
problems in detecting smaller objects. Thus, it is interesting
to develop methods for combining such data for improved land
cover classification.

For several years, deep learning methods have been exploited
to process RS data. For aerial and satellite images of a single
epoch, Fully Convolutional Networks (FCNs) with encoder-
decoder architectures such as U-Net (Ronneberger et al., 2015)
are frequently used for land cover classification. For SITS data,
methods such as 3D-Convolutional Neural Networks (CNNs)
(Li et al., 2022) or Recurrent Neural Networks (RNNs) (Sharma
et al., 2018) have been used to extract spatial and temporal in-
formation. Methods based on 3D-CNNs consider time as an
additional dimension of the input data and learn 3D filter ker-
nels for a convolution in the spatial and temporal dimensions (Ji
et al., 2018; Li et al., 2022). RNNs are designed for sequential
data and capture temporal dependencies of the time series while
processing one image at a time, maintaining a memory of previ-
ous inputs and generating the output based on the memory and
the current input (Rußwurm and Körner, 2017). Recently, they

have been challenged by vision transformers (ViTs) (Dosovit-
skiy et al., 2021), which have been adapted to capture both spa-
tial and temporal long-range dependencies in SITS data, yield-
ing promising results in pixel-wise classification (Tarasiou et
al., 2023; MacDonald et al., 2024; Voelsen et al., 2024). How-
ever, the methods cited so far use a single input modality only.
They also convert the input images into sequences of patches,
resulting in a critical loss of spatial details for SITS.

The fusion of multi-source data has emerged as an approach
to improve the classification accuracy beyond what can be
achieved using single data modalities. Fusion methods can be
classified into early, mid, late and decision fusion (Garnot et
al., 2022), depending on the stage at which the fusion of multi-
modal input is performed. In early fusion, the raw features
from various sources are concatenated before being processed
by the network. In mid-level fusion (Garioud et al., 2024),
features are extracted from each modality before being com-
bined. This enables interaction between modalities, creating
richer, joint representations in subsequent network layers. In
late fusion, the integration is performed at high-level stages,
after independent feature extraction from each modality. This
is different from decision level fusion, in which each modal-
ity is processed independently and the final decision is determ-
ined based on the most confident predictions. In all of these ap-
proaches, the fusion itself involves either element-wise addition
or channel-wise concatenation before classification. Recently,
attention-based methods have been adopted, allowing one mod-
ality to weight the features of another. Ren et al. (2024) use a
cross-attention approach to fuse optical and synthetic aperture
radar (SAR) images, which improved the classification accur-
acy compared to element-wise addition fusion. However, to the
best of our knowledge, attention-based fusion approaches have
not been fully exploited to fuse aerial and Sentinel-2 images.

A common challenge in training multi-source classifiers arises
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when most discriminative information is consolidated in one
modality, leading to less relevant features and weaker predic-
tions from the other one. Consequently, multi-modal fusion
tends to prioritize the stronger modality, leading to a reduced
supervision signal for the weaker one. This can limit the net-
work from fully exploiting inter-modal relationships, poten-
tially limiting the performance of the multi-modal predictions.
To address this issue, a separate loss can be used to monitor
each modality. Existing approaches (Ienco et al., 2019; Bene-
detti et al., 2018) add auxiliary losses at the last layer of the
network to the main loss function to support the supervision of
each modality independently. Although this has been shown
to improve the overall network performance, the supervision at
various feature resolutions has not been investigated yet. We
hypothesize that multiscale auxiliary supervision improves the
semantical meaningfulness of features at earlier stages in the
network and thus, improves land cover classification.

This paper presents a hybrid convolution- and attention-based
method with the goal to learn a joint representation of aerial and
co-registered SITS data to obtain a land cover map at the GSD
of the aerial image. We hypothesize that, for low-resolution
SITS, convolutions may learn spatial information more effect-
ively, and attentions can be more useful for extracting temporal
information. We present an end-to-end learning procedure that
in principle can deal with all types of multiscale RS data. This
is achieved by designing a two-branch architecture which learns
sensor specific properties independently. The combination of
the features from the aerial and SITS branches is based on
a fusion module which enables mutual information exchange
between the two modalities. Additionally, we introduce auxili-
ary loss functions at multiple resolutions of the SITS branch de-
coder to allow the SITS branch network to capture semantically
meaningful features at multiple scales. We train and evaluate
our method on an existing benchmark dataset (Garioud et al.,
2024), showing the benefits of introducing multi-temporal in-
formation from Sentinel-2 compared to uni-modal aerial image
classification. The scientific contributions of this paper can be
formulated as follows:

• We propose a new method for the fusion of aerial images
and SITS of varying length for land cover classification
based on convolutions for spatial feature extraction and us-
ing self-attention in the temporal dimension.

• We introduce intermediate auxiliary losses at various
levels of the SITS decoder branch to help the network to
learn to capture features at different resolutions.

• We introduce a fusion module based on cross-attention
to facilitate the exchange of complementary information
between aerial and SITS data.

• We present the results of extensive experiments to evalu-
ate our method, assess the impact of various components
on the quality of the results, and compare our method to
baselines from the literature.

2. RELATED WORK

We start this review by discussing related work that uses CNNs
to integrate and fuse multiscale data for pixel-wise classifica-
tion. Next, we review transformer models for semantic seg-
mentation of RS data, particularly SITS, and we discuss ex-
isting multiscale fusion approaches. Finally, we review ap-
proaches for multiscale supervision.

CNN-based models for multiscale data: The integration of
multiscale RS data has been investigated in several works.
Benedetti et al. (2018) use a Gated Recurrent Unit network
to process Sentinel-2 time series (10 m GSD) and a 2D-CNN
branch to extract features from mono-temporal SPOT-6 im-
ages (2 m GSD). The resultant features are concatenated and
provided to a decoder to predict land cover at the GSD of SPOT-
6. Gbodjo et al. (2021) combine Sentinel-2 and SPOT-6 data
with SITS from Sentinel-1. The Sentinel-1 and SPOT data are
processed by 2D-CNN encoders, while the Sentinel-2 data are
analyzed in an encoder applying a convolution only in the tem-
poral dimension. The resultant features are also concatenated
and used to predict land cover at the GSD of SPOT-6. Both ap-
proaches are limited to a fixed number of timesteps. Also, the
difference in the GSDs is relatively small (10 m vs. 2 m).

There are not many CNN-based approaches that combine SITS
with aerial data. Bergamasco et al. (2023) use a 3D-CNN
to extract spatial and temporal features from Sentinel-2 SITS,
concatenating them with features extracted from aerial images
(0.2 m GSD) using a residual network. After reducing the num-
ber of features by a 1 × 1 convolution, they are fed to a decoder
to classify different types of pasture at the GSD of the aerial
images. The combined method is shown to achieve better clas-
sification results compared to an uni-modal approach. How-
ever, the method has limitations in differentiating classes that
are semantically similar. This can be due to a small temporal
receptive field in 3D-CNN, which is determined by the depth
of the network and the size of the convolutional filters. Though
increasing network depth expands the temporal receptive field,
3D-CNNs may still struggle with long-range dependencies, as
each layer captures only local information.

Attention-based models for multiscale data: Transformer
models (Vaswani et al., 2017) are based on self-attention mod-
ules to model long-range dependencies in input sequences.
They have been adapted to various applications in computer
vision (Dosovitskiy et al., 2021; Liu et al., 2021; Strudel et
al., 2021; Wang et al., 2021; Xie et al., 2021). Compared to
3D-CNNs, typically requiring fixed input dimensions, they can
cope with varying sequence lengths. Several works have ad-
apted attention-based models to the extraction of spatial and
temporal information from SITS (Garnot et al., 2020; Tara-
siou et al., 2023; MacDonald et al., 2024; Voelsen et al., 2024).
Voelsen et al. (2024) extended the Swin transformer (Liu et al.,
2021) for processing SITS. For each image of the SITS, Swin
transformer blocks are executed in parallel to extract spatial fea-
tures, and the outputs are processed jointly by a temporal atten-
tion block. The modified Swin transformer outperforms purely
CNN-based models for the task of generating multi-temporal
land cover maps from Sentinel-2 time series. Tarasiou et al.
(2023) adapted the ViT (Dosovitskiy et al., 2021) for crop clas-
sification based on SITS data. They first compute attentions
between all timesteps of corresponding patches at the same spa-
tial location. After that, the outputs are reshaped and the atten-
tions are computed between all patches of the same timestep.
Though this model was shown to achieve better results with
fewer parameters compared to hybrid convolution-attention ap-
proaches (Garnot and Landrieu, 2021), it has a quadratic com-
plexity w.r.t. to the input size, leading to higher hardware de-
mand when working with larger inputs. Neither Voelsen et al.
(2024) nor Tarasiou et al. (2023) combine multiple modalities
at different GSDs.

Very few approaches have used attention-based models to com-
bine SITS data with aerial images. Garioud et al. (2024) pro-
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posed a two-branch U-Net-based architecture to fuse Sentinel-
2 SITS with aerial images. They adopt the U-TAE model of
Garnot and Landrieu (2021), a modified U-Net with a Temporal
self-Attention Encoder (TAE), to extract temporal information
from a SITS. The aerial images are processed by a U-Net to
produce pixel-wise class predictions; in order to fuse the two
modalities, the SITS features are added element-wise to the en-
coder features of all levels in the skip connections. Temporal
attention is only considered at the lowest resolution and the res-
ultant features are upsampled to higher resolutions. This might
not fully capture temporal variations at different spatial resol-
ution levels. Moreover, the element-wise addition used for fu-
sion in (Garioud et al., 2024) might not be optimal in situations
in which certain modalities are more relevant for specific land
cover types. Kanyamahanga and Rottensteiner (2024) extend
(Garioud et al., 2024) by introducing transformers from (Tara-
siou et al., 2023; Voelsen et al., 2024) into the SITS branch.
Similarly, Heidarianbaei et al. (2024) introduced a variant of
ViT model to simultaneously extract spatial and temporal in-
formation from SITS data. They show that using transformer
models to learn spatial and temporal information barely im-
proves the classification. Their approaches also rely on patchi-
fication of the SITS, which could be problematic given the low
resolution of these data.

Deep multiscale network supervision: A typical way to
train a deep neural network involves minimizing a loss func-
tion, measuring the discrepancy between the output of the last
layer of the network and reference labels. For multiscale fu-
sion methods, it is preferred to have a separate loss function for
each modality, training the network by a joint loss that is a lin-
ear combination of the individual terms (Garioud et al., 2024).
Some works add auxiliary loss terms to each network branch
on the top of the main objective loss to boost the prediction per-
formance of each branch prior to final classification (Benedetti
et al., 2018; Ienco et al., 2019). Again, the supervision is ap-
plied at the last layer of the network; this does not allow the
intermediate layers to learn how to refine the features. Nev-
ertheless, this is assumed to be useful for complex land cover
types where different features may occur at different spatial res-
olutions.

The approach presented in this work aims to address the afore-
mentioned limitations of existing approaches for the integration
of SITS and aerial image for pixel-wise classification (Berga-
masco et al., 2023; Garioud et al., 2024; Kanyamahanga and
Rottensteiner, 2024; Heidarianbaei et al., 2024). Similar to
(Voelsen et al., 2024), we use both convolutional and attention-
based models to extract spatial and temporal information from
the SITS data, but we combine this information with high-
resolution features extracted from an aerial image (Xie et al.,
2021). We introduce auxiliary losses at different stages to be
able to exploit the multi-temporal information contained in the
SITS data across multiple resolutions in a better way. The
multiscale classification method proposed in this work is de-
signed to solve complex land cover classification tasks, espe-
cially when the difference in the GSDs of the given imagery is
large (e.g., 10 m vs. 0.2 m).

3. METHODOLOGY

The goal of our method is to exploit the complementary
strengths of SITS and aerial data acquired over the same area
to predict the land cover of the depicted scene at a pixel-level
at the GSD of the aerial image. For that purpose, a network

architecture consisting of two branches is proposed: The SITS
branch is designed for extracting features from the given SITS,
whereas the aerial branch extracts features from the aerial im-
age. Inspired by (Voelsen et al., 2024), the SITS branch relies
on convolutions for spatial feature extraction and considers self-
attention in the temporal dimension. However, unlike (Voelsen
et al., 2024), our method computes temporal attentions at a
pixel-level, mitigating the problem of the patchification pro-
cess of transformer models (Dosovitskiy et al., 2021) which
can lead to a loss of spatial detail. In addition, we introduce a
new multi-resolution supervision approach in the SITS branch,
adding auxiliary loss terms at different stages of that branch.
For the aerial branch, we use the SegFormer network (Xie et al.,
2021), which has shown to be efficient in learning multiscale
features with a small number of parameters. We introduce a
cross-attention approach for fusing features extracted from the
SITS branch with features determined in the aerial branch, al-
lowing the network to learn on which features to focus in the
classification. Details about the network architecture and the
training procedure are given in the subsequent sections.

3.1 Network Architecture

An overview of our proposed network architecture is presented
in Figure 1. The input consists of a georeferenced SITS XS

with T timesteps, each image having CS spectral bands and
covering an area of HS × WS pixels at the GSD of the SITS,
along with an aerial image XA with CA spectral bands and cov-
ering an area of HA × WA pixels at a higher spatial resolution.
The area covered by the aerial image corresponds to a subset of
the area covered by the SITS. The output is a land cover map of
dimension HA × WA at the GSD of the aerial image.

3.1.1 SITS Branch: The SITS branch uses an encoder-
decoder architecture (cf. Figure 2). The encoder is based on a
modified version of (Voelsen et al., 2024), which uses the Swin
Transformer (Liu et al., 2021) and processes patches of 4 × 4
pixels. To avoid this patchification, which reduces the spatial
resolution of the SITS, we remove the patch partitioning step
and use convolutions for spatial feature extraction while con-
sidering self-attention in the temporal dimension at pixel level.
We refer to this encoder as T-ConvFormer. Its output is pro-
cessed by a decoder based on UPerNet (Xiao et al., 2018).

The input to the T-ConvFormer encoder is a SITS organized
into a four-dimensional tensor of shape T × CS × HS × WS .
The encoder extracts spatial and temporal information from the
given SITS at every position (hS , wS). It consists of four pro-
cessing stages, each generating a feature map at a different res-
olution (feature maps Fi with dimensions CS

i × HS/2i−1 ×
WS/2i−1, i representing the stage index). One stage consists of
several spatial temporal blocks with convolution and attention
(STB-CA) as introduced in (Voelsen et al., 2024). Stage 1 con-
sists of two such blocks (cf. Figure 2); the output F1 is passed
to the decoder before being downsampled to serve as an input
for encoder in stage 2. In the subsequent stages, multiple STB-
CA blocks are applied (two in stages 2 and 4, six in stage 3) to
extract multiscale features from the SITS.

The components of the STB-CA blocks are shown in Figure 3.
First, convolutions are executed in parallel for each time step to
extract spatial features (violet boxes in Figure 3). These feature
maps are stacked along the temporal dimension before being
processed by a temporal attention block only considering at-
tention in the temporal domain (red box in Figure 3). As no
patchification is performed, at stage 1 the temporal attention is
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Figure 1. Network architecture for the joint classification of SITS and an aerial image. The SITS branch encoder uses convolutions in
the spatial dimension and self-attention in the temporal dimension. The aerial branch processes the aerial image using a SegFormer
encoder. The SITS feature map is cropped and upsampled to the lowest resolution feature map of the aerial branch and the SITS and

aerial features are combined in the fusion module (FM). A decoder, consisting of a stack of MLP layers, uses the combined features to
predict the land cover map. In training, a classification loss is minimized for both the SITS and the aerial branches, with auxiliary

losses added at various stages of the SITS branch. At test time, no labels are predicted for the SITS.

Figure 2. The SITS branch. The feature maps F1, F2, F3, F4

produced by T-ConvFormer are used by UPerNet to generate a
feature map FS of size CS

O ×HS ×WS that is integrated into
the aerial branch. PPM: Pyramid Pooling Module, light blue

rectangle: linear embedding, blue arrows: bilinear upsampling
by a factor of 2, magenta rectangles: down-sampling, green

boxes: softmax outputs. STB-CA as in Figure 3.

applied at pixel level at the original resolution of the SITS. The
temporal dimension is considered in all stages. After stage 4,
the temporal dimension is discarded by computing the average
of the features of each time step for each pixel to achieve the
same extent in temporal dimension like the uni-temporal aerial
features for the fusion module (details in Section 3.1.3).

The feature maps Fi produced by the four stages of the encoder
are mapped to a feature map FS of dimensions CS

O × HS × WS

using the UPerNet (Xiao et al., 2018) decoder (yellow-orange
box in Figure 2). FS represents the multi-temporal information
and has the same spatial resolution as the input XS . In training,
the lower-resolution features from UPerNet are upsampled to
the spatial resolution of the input XS , and a softmax layer is
applied to the upsampled features to generate pixel-wise class
scores Ei : NK × HS × WS (green boxes in Figure 2), used to
compute auxiliary losses (cf. Section 3.2).

Figure 3. Spatio-temporal block STB − CA adapted from
(Voelsen et al., 2024): parallel blocks (violet boxes) extract

spatial features for all timesteps based on convolutions; this is
followed by a temporal attention block (red box). All of these
sub-blocks form one STB − CA block l. Zl−1 and Zl: input

and output to the STB − CA module l, respectively. LN: layer
normalization, CONVS : depthwise separable convolutions (3 x
3 depthwise conv., 1 x 1 pointwise conv.). MHSAT : multi-head

self attention in the temporal domain, MLP: Multilayer
Perceptron, +: element-wise addition, S: stacking of outputs.
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3.1.2 Aerial Branch: This branch combines a SegFormer
encoder and a MLP-based decoder, both from (Xie et al., 2021).
Before the SegFormer output is processed by the decoder, our
new fusion module (cf. Section 3.1.3; FM in Figure 1) integ-
rates the output of the SITS branch with the feature map gen-
erated by SegFormer having the lowest spatial resolution. The
input of the aerial branch is an image organized into a tensor
of shape CA × HA × WA, and the output is a pixel-wise land
cover map NK × HA × WA.

The SegFormer encoder is presented in Figure 4. It consists
of four processing stages. In stage 1, the aerial image is di-
vided into overlapping patches of size 7 × 7, where each patch
overlaps with its adjacent patches by 3 pixels. These patches
are flattened into 1D vectors and are linearly projected to high-
dimensional vector embeddings. Two transformer blocks are
applied to compute spatial attentions between all embeddings,
resulting in a feature map G1 which is downsampled to form
the input of stage 2. In the subsequent stages, two transformer
blocks are applied per stage. Each of them includesefficient self-
attention layers (Efficient-Self-Att in Figure 4), reducing the
computational complexity compared to standard self-attention
(Xie et al., 2021). Instead of positional encodings, SegFormer
combines 3 × 3 convolutions with MLPs (Mix-FFN in Fig-
ure 4) to encode the positional information of each patch. We
direct the reader’s attention to (Xie et al., 2021) for more de-
tails about SegFormer. The output of each stage is a three-
dimensional tensor Gj : CA

j × HA/2j+1 × WS/2j+1), where j
∈ {1, 2, 3, 4} denotes the stages of the SegFormer.

Figure 4. Architecture of the aerial branch. It produces four
feature maps G1 - G4; the fusion of G4 with the SITS features
in the fusion module is not shown for simplicity. The resultant
features are provided to a decoder to produce a land cover map.

Efficient Self-Attn combines standard self-attention with a
sequence reduction process (Wang et al., 2021). Mix-FFN:

Mix-feed forward network combining 3 × 3 convolutions with a
multilayer perceptron (MLP) to encode the spatial position of

each patch. NK : number of classes.

The outputs of the SegFormer encoder are fused with features
from the SITS branch via a cross-attention layer, as described in
Section 3.1.3. The fused features serve as inputs to a decoder,
consisting of a stack of MLP layers. First, a MLP is used to
reduce the channel dimension of the four feature maps. These
feature maps are upsampled to the same spatial dimension (CA

× HA/4 × WA/4, i.e. 4 times the GSD of the aerial image) by
bilinear interpolation before being concatenated. Next, a MLP
layer is used to fuse the concatenated feature maps. Finally,

another MLP takes the fused feature maps to predict the class
scores, on the basis of which the land use map is generated.

3.1.3 Fusion with cross-attention: The features FS extrac-
ted from the SITS are fused with the feature map G4, i.e.
the one with the lowest resolution determined in the aerial
branch. Fusion is based on the standard multi-head cross-
attention (Vaswani et al., 2017). It is applied two times to gen-
erate new SITS (WFS) and aerial (WGA) features:

WFS = MHA (QA,KS ,VS)

WGA = MHA (QS ,KA,VA) , (1)

where MHA denotes multi-head attention according to
(Vaswani et al., 2017) and QS , KS , VS and QA, KA, VA are
the query, key and value matrices generated by a linear projec-
tion from the SITS and aerial features, respectively. Note that
in the cross-attention for computing new features for one of the
modalities, this modality is used to generate the key and value
matrices, whereas the query matrix is generated from the other
modality. The new features WGA and WFS are concatenated
and a 1 × 1 convolution CONV1 × 1 is applied to reduce the
channel dimension:

M4 = CONV1 × 1(Concat(WGA,WFS)). (2)

The combined features (M4), which now contain both spatial
and multi-temporal information from the aerial image and the
SITS; they are substituted for the lowest-resolution feature map
G4 of the aerial branch before being presented to the decoder.

3.2 Training with main and auxiliary losses

Training is based on minimizing a loss function consisting of
one term per branch. We additionally introduce intermediate
auxiliary losses (LS,Si, one term for each decoder level of the
SITS branch) to support the generation of meaningful features
during network training. The weighted sum of those auxiliary
losses is added to the main loss (LS,main) monitoring the SITS
branch. By applying supervision at multiple levels, we try to
support the SITS network to learn more discriminative features
and, thus, ultimately to provide more useful information for the
classification task. All losses are based on the categorical Cross
Entropy (CE) loss:

LCE = −
NP∑
v=1

NK∑
u=1

tuv log(puv), (3)

where NP is the number of pixels of the output label image, v
is the index of a pixel, NK is the number of classes, and u is the
index of a specific class. The indicator variable tuv indicates
whether the reference class label of pixel v is u (tuv = 1) or
not (tuv = 0), and puv is the softmax output for pixel v to
correspond to class u. The loss for the SITS branch becomes

LCE,S = α0 · LCE,S,main +

NS∑
i=1

αi · LCE,S,Si, (4)

where LCE,S,main is the cross-entropy loss defined in equa-
tion 3 applied to the output of a softmax layer used to predict
class scores from the feature map FS and LCE,S,Si are auxil-
iary CE loss terms applied to different auxiliary softmax out-
puts Ei of the SITS branch (cf. Section 3.1.1). NS denotes the
number of stages of the SITS branch. The weights α0 and αi
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modulate the influence of the respective losses on the training
procedure. Denoting the CE loss computed on the basis of the
output of the aerial branch by LCE,A, the total loss is

L = λS · LCE,S + λA · LCE,A, (5)

where LCE,S is defined according to equation 4 and λS and
λA are weights of the two loss terms. To compute the auxiliary
losses (LCE,S,Si) as well as the main loss (LCE,S,main), the
SITS branch has to predict class probabilities. Thus, a softmax
layer is applied to each feature map generated by that branch
when the network is trained. As a reference is only provided for
the aerial image, which covers a smaller area than the SITS, the
class scores are cropped to the area of overlap. In order to calcu-
late the LCE,S,main, the cropped class scores are upsampled to
the spatial resolution of the aerial image. To compute the auxil-
iary losses (LCE,S,Si), the reference labels are downsampled to
the GSD of SITS using majority vote. The loss in equation 5 is
minimized using the Adam optimizer (Kingma and Ba, 2015).
For the SITS branch, the network weights are randomly ini-
tialized based on (He et al., 2015), while the parameters of the
aerial branch are initialized by weights pre-trained on ImageNet
(Xie et al., 2021).

4. EXPERIMENTS

4.1 Test Dataset

In our experiments, we use the French Land cover from
Aerospace ImageRy (FLAIR) #2 Challenge dataset (Garioud
et al., 2024), consisting of mono-temporal multispectral aerial
image and height data acquired between 04/2018 and 11/2021
and SITS acquired by Sentinel-2 over a period of one year in
France. The dataset contains imagery and reference data from
916 areas in France, with a total area of about 817 km2. All
images and label maps are georeferenced in the same coordin-
ate system. The aerial images have 4 channels (RGB, near
infrared) at a GSD of 20 cm. A normalized digital surface
model is available as an additional input band, thus CA = 5.
The SITS data consist of Sentinel-2 L2A images containing
bottom-of-atmosphere reflectance values, and cloud and snow
masks (Drusch et al., 2012). We use CS = 10 channels at a
GSD of 10 m, upsampling the six bands with a GSD of 20 m by
nearest neighbour resampling. Images having more than 5% of
cloud cover according to the cloud masks are eliminated, so that
the number of satellite images per test varies between 20 and
110. We follow the procedure used in (Garioud et al., 2024),
which requires a fixed-length input, and preprocess the SITS by
computing monthly average reflections considering cloud-free
pixels in the satellite images, so that the maximum number of
timesteps available for an area is 12. However, the number of
timesteps might vary because there are months for which there
is not a single cloud-free image of a test area. There is a pixel-
wise reference at the GSD of aerial images which differentiates
13 land cover classes: building (bld.), pervious surface (pvs.),
impervious surface (ips.), bare soil (bs.), water (wt.), conifer-
ous (cfs.), decidous (dcs.), brushwood (bsd.), vineyard (vyd.),
herbaceous vegetation (hvg.), agricultural land (agr.), plowed
land (pld.) and other. The class other corresponds to unknown
land cover. The class distribution is very imbalanced, with class
frequencies varying between 1.1% (other) and 19.8% (hvg).

Each area is split into subsets (referred to as tiles) covering 512
x 512 pixels at the GSD of the aerial image. The SITS of each
tile is sampled so that it covers a larger area than aerial with

aerial patch in the center, resulting in a size of 40 × 40 pixels at
the GSD of 10 m. Altogether there are 77,762 tiles, each with an
aerial image, a SITS (with the number T of timesteps varying
between 1 and 12) and a reference label map. Garioud et al.
(2024) defined a training set consisting of 61,712 tiles and a test
set consisting of the remaining 16,050 tiles. More details can
be found in (Garioud et al., 2024). We use the same definition,
further splitting the training set into a set of 48,812 tiles to be
used for updating the parameters (we will call this set training
set in the rest of the paper) and a validation set consisting of
12,900 tiles.

4.2 Experimental Protocol

We apply the methods described in Section 3 to the data de-
scribed in 4.1, where the input dimensions for the aerial and the
SITS data are HA × WA = 512 and HS × WS = 40, respect-
ively. The patch size for the tokens in the SegFormer model for
aerial branch of the network is set to [7, 4, 4, 4] for the four
stages (Xie et al., 2021). The training procedure is described
in Section 3.2. In training, we also applied data augmentation,
using random rotations by 90◦, 180◦, 270◦, horizontal and ver-
tical flipping. Training is carried out for a maximum of 100
epochs, but training is stopped if the validation accuracy does
not increase for 15 epochs (early stopping), which is the case
before the maximum of 100 epochs is reached. We used the
Adam optimizer (Kingma and Ba, 2015) with the parameters
β1 = 0.9 and β2 = 0.999. The batch size is set to 4, the learning
rate is set to 6e−5 and is decreased by a factor of 0.7 every 10
epochs. The weights for the loss terms in equations 4 and 5 are
set to α0 = 0.6, αi = 0.4, λA = 0.7 and λS = 0.3. We selected
these values based on their best performance on the validation
dataset. Training is carried out on a cluster with two NVIDIA
A100 80GB GPUs. All the models are implemented using the
PyTorch Lightning Framework.

We conducted several sets of experiments, comparing our
method to five other methods and performing an ablation study
with respect to the components of our method (cf. Table 1).
The first baseline method (referred to as U-Net) uses the U-
Net of (Garioud et al., 2022) to predict land cover only based
on the aerial image. This is also true for the second baseline,
SegFormer (Strudel et al., 2021); the results from these two
methods are compared with those of methods also using SITS
to assess the contribution of the SITS to the classification ac-
curacy. The third method (U-T&T) integrates the areal image
with a SITS based on (Garioud et al., 2024). The fourth and
fifth method (Swin and TSViT, respectively) are described in
(Kanyamahanga and Rottensteiner, 2024). They both integrate
SITS, using U-Net (Garioud et al., 2022) for the aerial branch.
Our own method, described in Section 3, is referred to as T-
ConvFormer. We also conduct an ablation study to assess the
impact of different components on the design choices of our ap-
proach. We compare the results of T-ConvFormer with two of
its variants. The first one, referred to as T-CF-0, uses element-
wise addition of features instead of the cross-attention fusion
module, and it does not consider the auxiliary losses in training.
The second one (T-CF-1) is based on cross-attention fusion, but
still does not consider the auxiliary losses.

Each experiment was repeated three times, each time starting
from a different random initialization of the weights and using
random shuffling for batches. The classification results on the
test images are compared to the reference. We report the inter-
section over union (IoU) for each class k:
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Name Aerial SITS CAF AUX
U-Net U-Net ✘ ✘ ✘

SegFormer SegFormer ✘ ✘ ✘
U-T&T U-Net U-TAE ✘ ✘
TSViT U-Net TSViT ✘ ✘
Swin U-Net Swin ✘ ✘

T-CF-0 SegFormer T-FC ✘ ✘
T-CF-1 SegFormer T-FC ✔ ✘

T-ConvFormer SegFormer T-FC ✔ ✔

Table 1. Overview of the experiments conducted to evaluate our
method and compare it to the state of the art. Name: name by

which an experiment is referred to. Aerial / SITS: architectures
used for processing the aerial image and the SITS; please refer

to the main text for a description of methods and acronyms. Our
method based on the T-ConvFormer encoder is denoted by T-CF.

Columns CAF and AUX indicate whether the cross-attention
fusion module and auxiliary supervision were applied.

IoUk =
TPK

TPk + FPk + FNk
, (6)

where TPk, FPk, and FNk, denote the number of pixels that
are true positives, false positives and false negatives, respect-
ively, for a class k. The mean intersection over union (mIoU)
is also computed by taking the average of the IoUk values for
all classes except other, following the protocol in (Garioud et
al., 2024). We also compute the overall accuracy (OA), i.e. the
proportion of correctly classified pixels. For these two com-
pound metrics, we report the average and the standard devi-
ations over the three test runs. We also report the inference
time (IT) per aerial image tile in milliseconds. The FLAIR #2
challenge required this inference time of any approach to re-
main within 2.5 times the one of the U-T&T, claiming that this
was a prerequisite for practical relevance (Garioud et al., 2024).

5. RESULTS

A summary of the average quality metrics achieved by all
trained methods is presented in Table 2. As expected, the
use of SITS data as an additional source of information leads
to an increase in the overall performance w.r.t to the mIoU
and OA. The U-Net, which uses only aerial images, achieved
the lowest mIoU of 55.2%. Introducing SegFormer, another
model which also uses aerial images, leads to a significant in-
crease of 3% in the mIoU (55.2% vs 58.2%). By considering
SITS, the U-T&T (Garioud et al., 2024), slightly improves the
mIoU (56.8% vs 55.2%). The method based on Swin trans-
former model (Swin) achieved similar performance. The TS-
ViT model performs slightly better, with a 0.2% improvement
over the U-T&T model. Our method T-ConvFormer achieved
the best mIoU score of 60.1% and complies with the compu-
tational cost constraint of FLAIR #2 competition, with an in-
ference time being about 40% larger than the one of U-T&T.
It can be seen that using SITS and combining convolutions and
attention-based methods in the corresponding network branch
leads to a significant improvement in the mIoU (+4.9%) com-
pared to a U-Net model using a single-date aerial data, but
also of +1.9% compared to SegFormer, which otherwise outper-
forms the compared methods based on SITS. Our method also
shows an improvement of about +3% in mIoU over transformer-
based approaches for processing SITS. T-ConvFormer also out-
performs all other methods by a margin of about 2-3% in OA.
This achievement can be attributed to various components intro-
duced by our method which includes the attention based fusion

Method mIoU [%] OA [%] IT [ms]
U-Net 55.2 ± 0.0 71.3 ± 0.0 22.6

SegFormer 58.2 ± 0.0 72.3 ± 0.0 42.3
U-T&T 56.8 ± 0.7 71.7 ± 0.0 64.7
Swin 56.9 ± 1.1 72.1 ± 0.1 45.6

TSViT 57.0 ± 0.0 71.9 ± 0.0 80.0
T-ConvFormer 60.1 ± 0.0 74.3 ± 0.0 90.0

Table 2. Mean IoU (mIoU) and Overall Accuracy (OA) for land
cover classification [%] on the test set of the FLAIR #2 dataset

achieved by different approaches. The numbers are the averages
and standard deviations achieved in three independent test runs.

Column Method gives the name of a method as defined in
Table 1. IT: inference time in milliseconds [ms] per aerial image

tile. Best results are indicated in bold.

and the multiscale supervision in leveraging the complementary
strengths of multi-temporal information from SITS and spatial
details from aerial images, as will be analysed below.

Table 3 presents the class-specific IoU scores achieved on the
test set of the FLAIR #2 dataset by all compared method. The
numbers presented in the table do not show a very clear trend,
but they do show that our method (T-ConvFormer) performs
best on nine out of twelve classes, in case of bs by a large mar-
gin (+5.6% compared to the second best method). For the other
eight classes, the margin by which our method outperforms the
others is in the order of 1%-4% across classes. The only class
for which our method is outperformed by a relatively large mar-
gin is hvg, and even more astonishingly, that class is differenti-
ated best by U-Net, which achieved a relatively weak perform-
ance for most other classes. This might be the case because,
despite being a vegetation class, hvg (e.g., parks or sport fields)
does not show strong temporal variations compared to other ve-
getation classes, making SITS less beneficial. These results in-
dicate that the impact of using SITS cannot be described simply
as leading to an improvement for the vegetation classes.

Table 3 also indicates that some classes are easier to differen-
tiate than others. The class frequency in the dataset appears to
play a significant role, as some of the highest IoU scores (57%-
88%) are obtained for classes that occur frequently (e.g., ips,
dcs, bld, and agr), whereas some of the lowest scores are asso-
ciated classes occurring less frequently (e.g., bsd, pld). In con-
trast, hvg, a class with a high frequency of occurrence, achieves
a very low IoU score, while vyd, an underrepresented class,
achieves a relatively high score. The poor performance for hvg
may be attributed the high similarity between the appearance
of some classes. For instance, distinguishing herbaceous ve-
getation areas (e.g. gardens, public parks, sport fields) from
agricultural land, which partly corresponds to pastures, may be
challenging.

Figures 5 and 6 show some qualitative results of the four ap-
proaches considering SITS for areas of different characteristics
(urban and rural, respectively). The figures indicate that in these
areas agr, vyd, and cfs are classified better by our approach (T-
ConvFormer) (cf. the regions in the black circles). Overall, all
compared models show similar performance on classes such as
bld, ips, and pvs, which are not affected by seasonal variations.
The numbers in Table 3 show that those classes can be eas-
ily identified by all the models. This is further supported by a
visual inspection of Figure 5, illustrating how most of the ob-
ject types are clearly detected, e.g. buildings with the roads
connecting them. Figure 6 also shows that all compared mod-
els exhibit a certain level of uncertainty in classifying natural
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Models IoU [%]
bld. pvs. ips. bs. wt. cfs. dcs. bsd. vyd. hvg. agr. pld.

U-Net 81.8 49.2 72.8 40.5 85.0 41.1 68.7 23.9 62.2 48.4 53.0 35.5
SegFormer 81.1 52.2 71.8 50.5 87.0 60.1 72.1 25.4 63.2 41.0 56.0 35.5

U-T&T 81.9 48.6 71.9 43.4 83.2 56.9 69.8 25.6 65.1 46.0 53.3 36.6
Swin 81.3 50.6 73.0 42.4 80.5 55.4 71.2 23.9 65.2 45.5 54.1 38.9

TSViT 78.7 48.7 68.8 51.5 85.2 62.4 69.7 21.5 64.2 41.0 55.8 36.3
T-ConvFormer (Ours) 81.0 55.2 73.2 57.1 88.4 64.1 73.1 25.8 65.3 42.2 57.1 37.1

Table 3. Class-wise IoU values [%] on the test set of the FLAIR #2 dataset achieved by different approaches. The compared methods
are those defined in Table 2. The numbers are averages achieved by three independent test runs. Best results are indicated in bold.

Figure 5. Aerial image of an urban test area, the corresponding
reference and the land cover maps predicted by four selected

methods. The area corresponds to multiple tiles that were
classified independently. Blue circles show areas that are

misclassified by all approaches. The acronyms for (c) – (f)
correspond to the compared methods. Colours: magenta - bld,

grey - pvs, red - ips, brown - bs, blue - wt, dark green - cfs,
acquamarine - dcs, orange - bsd, purple - vyd, bright green - hvg,

yellow - agr, dark yellow - pld.

areas such as bs and bsd, perhaps because they look similar to
other object types, even when considering an entire vegetation
cycle. Overall, despite remaining problems with certain classes
or classification uncertainty near class boundaries, our results
show the benefits of our method compared to methods from the
state-of-the-art.

Table 4 presents the results of our ablation study, comparing our
method to two variants as described in Table 1. The table shows
that the integration of both components, cross-attention fusion
and auxiliary supervision, improves the performance. We found
that using a cross-attention approach in the fusion of SITS and
aerial data improves the mIoU in the order of 0.8% compared
to an element-wise addition approach (compare T-CF-1 to T-

Figure 6. Aerial image of a rural test area, the corresponding
reference and the land cover maps predicted by four selected

methods. The area corresponds to multiple tiles that were
classified independently. Black circles highlight regions that are

classified better by approaches which integrate SITS. The
acronyms for (c) – (f) correspond to the compared methods.

Colour code: cf. Figure 5

CF-0). Introducing intermediate auxiliary losses at all stages
of the SITS branch decoder increases the model performance
by another 1.0% in mIoU (T-CF-1 vs. T-ConvFormer). Sim-
ilar improvements can be observed in the OA. In particular, the
variant T-CF-0 not using the two components achieves a similar
performance as the second best method according to Table 2,
SegFormer, which does not use SITS. Our ablation study shows
that the use of SITS in combination with our proposed new
components leads to a significant performance improvement of
about 1.7-1.8%.

6. CONCLUSION

In this paper, we presented a new method that combines convo-
lutional and attention-based fusion networks to jointly use aer-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-477-2025 | © Author(s) 2025. CC BY 4.0 License.

 
484



Name mIoU [%] OA [%]
T-CF-0 58.4 ± 0.0 72.5 ± 0.1
T-CF-1 59.2 ± 0.0 73.3 ± 0.2

T-ConvFormer 60.1 ± 0.1 74.3 ± 0.0

Table 4. Comparison of different variants of our approach. The
variants are those defined in Table 1.

ial and SITS images for land cover classification. Overall, our
results indicate that the integration of SITS improves the results,
achieving an improvement of up to 1.9% in the mIoU compared
to an approach only relying on aerial images and applying a
SegFormer (Strudel et al., 2021). A comparison of the proposed
approach with other transformer-based approaches from the lit-
erature shows a significant advantage of the former with respect
to integrating the SITS and aerial data. The largest impact of
the proposed model were remarkably seen on classes such as
bare soil, coniferous, vineyard, agricultural land that particu-
larly change over time. This improvement can be attributed to a
combination of different components, including attention-based
fusion and network supervision. This shows the benefit of com-
bining multiscale data from multiple sensors as an efficient way
to improve the classification of land cover.

The results presented in this work also indicate that, whereas
SITS improve the classification accuracy significantly, the im-
provement is not very large in absolute terms, and some classes
are relatively poorly differentiated. One of the reasons could
be that the ratio between the GSD of the used data (a factor of
50 in this study) could be too large. Future work could look at
combining aerial imagery with other higher resolution satellite
images such as Planet Labs (Toker et al., 2022), which offer
more fine-grained details about the land cover up to 3 m GSD.
Another aspect to consider would be to investigate existing self-
supervised learning approaches, with the advantage of using
pre-trained models on large datasets. Beyond that, another topic
to be addressed could be to improve the resolution of the SITS
data using approaches for super-resolution (Okabayashi et al.,
2024), e.g. based on diffusion models (Moser et al., 2024).
Such methods could use the aerial data as additional input and
might help to generate higher-resolution SITS images so that
the gap between the spatial resolutions becomes smaller.
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