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Abstract

Accurate mineral identification on the Martian surface is critical for understanding the planet’s geological history. This paper
presents a UNet-based autoencoder model for efficient spectral preprocessing of CRISM MTRDR hyperspectral data, addressing
the limitations of traditional methods that are computationally intensive and time-consuming. The proposed model automates key
preprocessing steps, such as smoothing and continuum removal, while preserving essential mineral absorption features. Trained on
augmented spectra from the MICA spectral library, the model introduces realistic variability to simulate MTRDR data conditions.
By integrating this framework, preprocessing time for an 800× 800 MTRDR scene is reduced from 1.5 hours to just 5 minutes on
an NVIDIA T1600 GPU. The preprocessed spectra are subsequently classified using MICAnet, a deep learning model for Martian
mineral identification. Evaluation on labeled CRISM TRDR data demonstrates that the proposed approach achieves competitive
accuracy while significantly enhancing preprocessing efficiency. This work highlights the potential of the UNet-based preprocessing
framework to improve the speed and reliability of mineral mapping on Mars.

1. Introduction

Mineral identification on Mars is essential for understanding
the planet’s geological history, assessing past habitability, and
identifying resources for future exploration and potential colon-
ization (Kumari et al., 2023b). The Compact Reconnaissance
Imaging Spectrometer for Mars (CRISM) aboard the Mars Re-
connaissance Orbiter captures hyperspectral data across visible
to infrared wavelengths, enabling detailed analysis of Martian
surface composition (Murchie et al., 2007). After necessary at-
mospheric and photometric corrections, CRISM provides high-
resolution spectral data, specifically the Map-Projected Tar-
geted Reduced Data Record (MTRDR), which captures distinct
spectral signatures of various minerals essential for accurate
mineral mapping on the Martian surface (Viviano et al., 2014).

The raw spectral data from MTRDR are inherently complex
and require extensive preprocessing to transform them into a
format suitable for mineral identification. This preprocessing
addresses various challenges such as noise, baseline curvature,
and distortions that obscure diagnostic absorption features crit-
ical for identifying minerals:

1. Wavelength range selection and scaling: Hyperspectral
data from CRISM spans a wide range of wavelengths.
However, not all wavelengths contribute meaningful in-
formation for mineral identification, and some may in-
troduce noise or redundancy. Selecting an optimal
wavelength range ensures that only the most informative
bands are retained. Scaling these bands normalizes the
data, ensuring consistency across different datasets, which

is critical when comparing or combining spectra from vari-
ous sources.

2. Spike removal and smoothing: CRISM data often contain
random spikes and fluctuations due to instrument noise or
external interference. These spikes can distort the spec-
tral shape, leading to misinterpretation of mineralogical
features. Spike removal techniques identify and elimin-
ate these anomalies, while smoothing algorithms refine the
spectral curve, reducing high-frequency noise while pre-
serving the integrity of key absorption features.

3. Continuum removal: The spectral baseline, or continuum,
represents the broad curvature of a spectrum caused by
factors like albedo variations or systematic instrument ef-
fects. This baseline can mask subtle absorption features,
which are crucial for mineral identification. Continuum re-
moval eliminates this curvature by fitting and subtracting
a continuum curve, leaving behind a spectrum that high-
lights distinct absorption bands. This step significantly en-
hances the visibility of mineralogical features, making it
easier to match the processed spectrum with reference lib-
raries like MICA (Saranathan and Parente, 2021).

These steps, typically part of a preprocessing pipeline (Kumari
et al., 2023a), are crucial but computationally expensive, of-
ten taking over an hour for large MTRDR scenes on standard
hardware. As data volume increases, the time required for tra-
ditional preprocessing becomes a significant bottleneck. Min-
eral classification on Mars is further complicated by the lack
of ground-truth data, as field samples are unavailable. Instead,
training data are derived from spectral libraries, with the MICA
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spectral library (Viviano et al., 2014) providing known signa-
tures for expected Martian minerals. For realistic training, the
MICA spectra are augmented to introduce noise and baseline
curvature similar to real MTRDR data, preserving key absorp-
tion features while enhancing model robustness against natural
data variability.

This study proposes a UNet-based neural network model (Ron-
neberger et al., 2015) to streamline the preprocessing of
MTRDR hyperspectral data. By integrating essential prepro-
cessing steps within a single model, the proposed approach by-
passes the need for a separate pipeline, significantly improving
processing efficiency. The primary objectives are:

• To replace traditional preprocessing pipelines with a
neural network model capable of directly enhancing spec-
tral clarity.

• To accelerate the preprocessing phase, reducing total time
required from hours to minutes.

• To retain the accuracy of mineral classification by pre-
serving critical spectral features essential for Martian min-
eral identification.

To assess its effectiveness, the model’s preprocessed output is
evaluated on MICAnet (Kumari et al., 2024), a mineral classi-
fication model, using labeled data from (Plebani et al., 2022).
This approach allows an indirect measure of model accuracy
in identifying minerals across Martian locations. Compared to
traditional preprocessing, the proposed UNet-based model re-
duces processing time by approximately 90%, with significant
reductions in pipeline complexity and achieves around 5% en-
hancement in mineral identification accuracy.

The structure of this paper is organized as follows. Section
1 introduces the study, covering its significance, related ter-
minologies, and relevant past work in this domain. Section 2
presents the methodology, detailing data preparation in Section
2.1, the UNet-based model architecture in Section 2.2, and a
comprehensive model specification and ablation study in Sec-
tion 2.3. Section 2.4 provides a performance analysis, compar-
ing the proposed model’s efficiency and accuracy against tradi-
tional preprocessing pipelines. Section 3 demonstrates mineral
mapping outcomes on the Martian surface. Finally, Section 4
summarizes the key findings, offers concluding remarks, and
suggests future directions for this research.

2. Methedology

2.1 Data Preparation

The training data for this study is generated from the MICA
spectral library, which includes 31 mineral spectra across six
major groups: iron oxides, primary silicates, ices, sulfates,
phyllosilicates, carbonates, and hydrated silicates and halides.
Table 1 provides the mineral classes and their corresponding
groups. For testing the model, we use CRISM’s Targeted
Remote Sensing Data Record (TRDR), which provides high-
resolution spectral data of the Martian surface, accessible via
NASA PDS (Maki, 2004). Authors in (Plebani et al., 2022)
classified a substantial set of 592,413 TRDR spectra from over
70 images into 39 mineral categories, of which 28 match those
in the MICA library. We randomly sample 200 spectra per la-
bel from this TRDR dataset, focusing on the wavelength range

1–2.6 µm from the available 1–3.47 µm, as most distinct min-
eral absorptions occur within this range, with data beyond it
often exhibiting high noise levels.

Table 1. Mineral Classes and Groupings Considered in the
MICA Spectral Library

Mineral Groups Mineral Classes
Iron Oxides
and
Primary Silicates

hematite, mg olivine, fe olivine,
low calcium pyroxene,
high calcium pyroxene

Ices CO2 ice, H2O ice

Sulfates
alunite, poly hydrated sulfate ,
mono hydrated sulfate, bassanite,
jarosite, gypsum, Fehydoxysulfate

Phyllosilicates
kaolinite, Al smectite,
illite muscovite, Fe smectite,
Mg smectite, serpentine, chlorite

Carbonates Fe/Ca carbonate carbon, Mg carbonate
Hydrated Silicates
and Halides

prehnite, epidote, hydrated silica,
analcime, chloride

Since there is no labeled training data available to supervise
mineral identification on the Martian surface, training data is
synthesized from the MICA library through data augmentation.
In natural CRISM MTRDR datasets, spectra within a single
pixel often result from mixtures of multiple minerals. To align
with this phenomenon, we create augmented data by generating
synthetic spectra that simulate these mixtures.

To create an augmented spectrum, a random mineral m1 is ini-
tially selected and assigned a random proportion p1 in the range
[0, 1]. For subsequent minerals, proportions are assigned based
on the remaining proportion of 1. The mixing proportions for
each mineral i can be defined as:

pi =

{
U(0, 1) for i = 1

U(0, 1−
∑i−1

j=1 pj) for i > 1

where U(a, b) represents a uniform distribution between a and
b, and

∑n
i=1 pi = 1.

Once proportions are determined, the mixed spectrum Smix(λ)
at each wavelength λ is calculated as:

Smix(λ) =

n∑
i=1

pi · Si(λ)

where Si(λ) is the spectrum of mineral i at wavelength λ.

To account for real data noise, Gaussian noise is added to each
augmented spectrum:

Saug(λ) = Smix(λ) +N (0, σ)

where N (0, σ) represents Gaussian noise with mean 0 and
standard deviation σ ∈ [0, 0.1], as higher values obscure the ab-
sorption features. The augmented spectra are also scaled within
the selected wavelength range of 1 to 2.6 micrometer, as most
minerals fall within this range, by setting the minimum value to
0 and the maximum to 1.

The generated dataset, therefore, closely represents the nat-
ural variability of mineral spectra in CRISM data, enabling the
model to learn from realistic Martian surface spectral character-
istics.
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Figure 1. The U-net architecture used in this study. The
architecture (IV-B) is fixed by an ablation study which is

detailed in section 2.3.

2.2 Model Architecture

The proposed model architecture is a 1D UNet designed to pre-
process CRISM MTRDR hyperspectral data, with 240 spectral
bands within the 1 to 2.6 µm wavelength range, corresponding
to the input dimension of 240×1. The UNet model includes an
encoder-decoder structure with skip connections, allowing for
detailed feature extraction and efficient upsampling.

Input Layer

The input layer, X, represents the hyperspectral data for each
pixel, given by:

X ∈ R240×1 (1)

Encoder Blocks

Each encoder block comprises two convolutional layers. The
first convolutional layer maintains the feature dimensionality
while the second reduces the spatial resolution, thus down-
sampling the spectral information.

For the i-th encoder block, let Ei denote the feature map output:

Ei = f(W
(1)
i ∗Ei−1 + b

(1)
i ) (2)

Ei = f(W
(2)
i ∗Ei + b

(2)
i ) (3)

where W
(1)
i and W

(2)
i are the weights for the first and second

convolutional layers in the i-th encoder block, b(1)
i and b

(2)
i are

the corresponding biases, and f denotes the activation function.
Each convolutional layer is followed by a Batch Normalization
layer, and the second layer has a stride of 2 to reduce dimen-
sionality by half.

Bottleneck Block

The bottleneck block connects the encoder and decoder sec-
tions. It consists of two convolutional layers followed by an
upsampling layer to enable feature expansion for the decoder.

Let B denote the bottleneck output:

B = f(W
(1)
B ∗EN + b

(1)
B ) (4)

B = f(W
(2)
B ∗B+ b

(2)
B ) (5)

B = f(Upsample(B)) (6)

where W
(1)
B and W

(2)
B are weights of the bottleneck block’s

convolutional layers, b(1)
B and b

(2)
B are biases, and Upsample

denotes the Conv1DTranspose layer that doubles the feature
map resolution.

Decoder Blocks

The decoder blocks receive input from the bottleneck block and
include concatenation layers for the skip connections from the
encoder. Each decoder block has two convolutional layers that
process the concatenated features, followed by an upsampling
layer to increase resolution.

For the j-th decoder block, the feature map Dj is defined as:

Dj = Concat(Bj−1,EN−j) (7)

Dj = f(W
(1)
j ∗Dj + b

(1)
j ) (8)

Dj = f(W
(2)
j ∗Dj + b

(2)
j ) (9)

Dj = f(Upsample(Dj)) (10)

where Concat denotes the concatenation operation for the skip
connections, and Upsample refers to the Conv1DTranspose op-
eration.

Output Layer

The output layer produces a final 1D representation with the
same dimensionality as the input, ensuring compatibility with
subsequent analysis tasks. The output, Y, is expressed as:

Y = Wout ∗D1 + bout (11)

where Wout and bout are the weights and biases of the output
layer, respectively.

This architecture leverages the hierarchical feature extrac-
tion capabilities of the encoder-decoder structure. By using
Conv1D layers, the model can capture spectral variations across
wavelengths. The skip connections ensure that fine-grained
spectral information is preserved across layers, critical for ac-
curate mineral identification. This design balances feature re-
duction and preservation, optimizing computational efficiency
and accuracy in mineral classification on the Martian surface.

2.3 Model and Training Specifications

In our proposed 1D-UNet model, each convolutional layer is
equipped with a Rectified Linear Unit (ReLU) activation func-
tion to introduce non-linearity while maintaining computational
efficiency. The ReLU activation function is defined as:

f(x) = max(0, x) (12)

which enhances the model’s capacity to learn complex repres-
entations in the spectral data.

The training parameters are set to optimize model performance
while controlling computational overhead:
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• Batch Size: The batch size is set to 50, allowing balanced
updates to model weights per iteration. For the synthetic
dataset, 100 steps per epoch are used to ensure robust
learning with sufficient data diversity. The data generator
applies data augmentation techniques to the synthetic data-
set to increase generalizability.

• Optimizer: We use the Adam optimizer, which combines
the benefits of Adaptive Gradient Algorithm (AdaGrad)
and Root Mean Square Propagation (RMSProp) by adapt-
ing the learning rate based on the first and second moments
of the gradients. Adam is chosen for its adaptive capability
and faster convergence, given by:

mt = β1mt−1 + (1− β1)∇L(θt−1) (13)

vt = β2vt−1 + (1− β2)∇L(θt−1)
2 (14)

θt = θt−1 −
α√

vt + ϵ
mt (15)

where α is the learning rate, β1 and β2 are decay rates, and
ϵ is a small constant.

• Learning Rate and Scheduler: The initial learning rate
is set to 0.0001, with a learning rate scheduler that reduces
the rate by a factor of 0.1 if validation loss does not im-
prove for 10 consecutive epochs. This helps in refining
the learning pace as training progresses, thereby prevent-
ing oscillations and local minima trapping.

• Loss Function: The mean squared error (MSE) loss is
used to measure the error between the predicted and tar-
get spectra, as given by:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (16)

where yi represents the target spectrum and ŷi represents
the predicted spectrum. MSE is chosen for its effective-
ness in penalizing large errors, thus encouraging the model
to enhance preprocessing for each spectral feature.

• Training data specification: To train the proposed model,
synthetic data were generated by mixing spectra from the
MICA spectral library with TRDR CRISM hyperspectral
data in varying proportions. The mineral with the highest
proportion in the mixed spectra was labeled as the true
class. Pure spectra of the true class mineral were processed
using the classical preprocessing pipeline to generate the
target preprocessed spectra. Gaussian noise was incre-
mentally added to the synthetic mixed spectra to simulate
real-world variability. During the initial 20 epochs, noise
with a random standard deviation between 0 and 0.02 was
applied. As training progressed, the noise level was gradu-
ally increased, with the final 20 epochs (81–100) incorpor-
ating noise with a random standard deviation between 0
and 0.1. This augmentation strategy ensured the model’s
robustness to real-world spectral fluctuations. Training
was conducted for up to 100 epochs for each architec-
ture, with early stopping implemented if validation loss
did not improve over 10 consecutive epochs. Each syn-
thetic mixed spectrum is min-max scaled before processed
by the model.

Figure 2(a) displays the standard deviation values of Gaussian
noise added during training, grouped into five epoch segments,

(a)

(b)

(c)

Figure 2. (a) Standard deviation of fluctuation noises over the
epochs; (b) frequency of different mineral classes having top K

proportions in the mixed spectra; (c) Distribution of top 3
proportions of the combined spectra in the dataset. These
distributions were observed during the training of the best

architecture (IV-B) and were consistent across all architectures.

highlighting the progressive increase in noise intensity. Figure
2(b) shows the frequency of each mineral class appearing in the
at ranks 1, 2, 3, 4, and 5 of the random proportions in the mixed
spectra. The uniform distribution at each rank by each of the 28
mineral classes demonstrate the unbiasedness and consistency
in the training data across classes. Figure 2(c) shows the his-
togram of highest, second-highest, and third-highest probabilit-
ies in the proportions exhibit bell-shaped distributions for each
rank. These bell-shaped distributions show a smooth and con-
sistent decline away from their respective peaks, indicating the
gaussian variability in the proportions of mixed spectra across
the ranks.

Regarding the MICAnet classification model used for evalu-
ation, we adopt the same specifications and tuning parameters
as outlined in the previous work (Kumari et al., 2024). This en-
sures consistent evaluation metrics and allows a direct compar-
ison between the preprocessing effectiveness of the proposed
model and the conventional pipeline.

Ablation Study To determine the optimal configuration for
our 1D-UNet preprocessing model, we conducted an ablation
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Table 2. Ablation Study Results for Different Architectures on
Synthetic and TRDR Datasets

Model
Depth

Encoder
Block

FLOPs
(in Millions)

Accuracy
(Synthetic)

Accuracy
(TRDR)

I
A 0.18 85.2% 82.5%
B 3.12 86.3% 83.0%
C 6.11 85.9% 82.8%

II
A 9.07 88.1% 85.0%
B 16.45 89.2% 86.0%
C 20.93 88.5% 85.6%

III
A 13.51 89.5% 87.2%
B 23.11 90.3% 88.1%
C 28.34 89.8% 87.5%

IV
A 15.74 90.1% 87.8%
B 26.44 91.0% 89.0%
C 32.04 90.5% 88.5%

study using various architectural setups. Each configuration
consists of different numbers of encoder and decoder blocks,
denoted as N , as well as various arrangements within each
encoder block. The primary aim of this study is to assess
the trade-off between computational complexity and accuracy
achieved on both synthetic and TRDR datasets when using the
MICAnet classification model to evaluate preprocessing effect-
iveness. The experimental setups are divided into four main
architectures, each with an increasing value of N :

• I. N = 0 : Baseline architecture with only the bottleneck
block.

• II. N = 1 : Intermediate architecture with 1 decoder and
1 encoder blocks.

• III. N = 2 : Proposed architecture with 2 decoder and 2
encoder blocks.

• IV. N = 3 : Deeper architecture with 3 decoder and 3
encoder blocks.

For each of these main architectures (I-IV), we tested three vari-
ations of the encoder block configuration:

• A. 1 convolutional layer (stride = 1) followed by 1 max-
pooling layer (stride = 2).

• B. 1 convolutional layer (stride = 1) followed by 1 convo-
lutional layer (stride = 2).

• C. 2 convolutional layers (stride = 1) followed by 1 max-
pooling layer (stride = 2).

The performance of each setup is measured in terms of floating-
point operations (FLOPs) and accuracy, where the accuracy is
obtained using the MICAnet classifier on both the synthetic
dataset and the CRISM TRDR dataset. The results of this abla-
tion study are summarized in Table 2.

The results presented in Table 2 reveal the impact of different
architectural configurations on both computational complexity
and classification accuracy. We observe the following trends:

1. Increasing Depth Improves Accuracy: As we move
from Architecture I to Architecture IV (increasing the
number of encoder-decoder pairs), there is a consistent im-
provement in accuracy across both datasets. Architecture

IV-B, with three encoder-decoder pairs and the B configur-
ation in each encoder block, achieves the highest accuracy
of 91.0% on the synthetic dataset and 89.0% on the TRDR
dataset. This indicates that a deeper network can better
capture the spectral features necessary for mineral identi-
fication.

2. Trade-Off Between FLOPs and Accuracy: There is a
noticeable increase in FLOPs with deeper architectures
and more complex encoder block configurations (partic-
ularly in B and C). For instance, Architecture I-A requires
only 0.18 million FLOPs, whereas Architecture IV-B re-
quires 26.44 million FLOPs. Despite the computational
cost, the accuracy improvements suggest that the increased
complexity enhances feature extraction and contributes to
better overall performance.

3. Encoder Block Configuration Impact: Among the three
configurations within each architecture, Configuration B
(one convolutional layer with stride 1, followed by one
convolution layer with stride 2 and no max-pool layers)
tends to yield the highest accuracy. This setup likely en-
hances the model’s ability to capture subtle spectral vari-
ations, which are essential for distinguishing minerals.
Configuration C (with two convolutional layers of stride
1 followed by a max-pooling layer of stride 2) achieves
moderately high accuracy but slightly lower than B due to
the potentially reduced spatial information retention.

The optimal setup for our 1D-UNet preprocessing model is
Architecture IV-B, which offers a balanced trade-off between
computational complexity and accuracy. With three encoder-
decoder pairs and each encoder block containing two convo-
lutional layers (stride 1) followed by an upscaling layer, this
configuration achieves high accuracy while retaining signific-
ant spectral information necessary for mineral identification.

2.4 Performance Analysis and Comparison with Tradi-
tional Preprocessing Pipeline

The training and validation loss curves for the best architecture
(IV-B), in figure 3, demonstrate a smooth convergence over 100
epochs. Both loss curves start high at the beginning of training
but rapidly decrease during the initial epochs, indicating effect-
ive learning. Beyond approximately 40 epochs, the losses sta-
bilize together and approach near-zero values, reflecting min-
imal overfitting and strong generalization. The close overlap
between the training and validation loss curves highlights the
model’s robustness, as it maintains consistent performance on
both the training and validation datasets. Minor fluctuations ob-
served towards the later epochs are likely due to the progressive
addition of noise during training.

Figure 3. Training and validation loss over epochs during the
training of the best architecture IV-B.
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Figure 4. Some sample synthetic spectra, and their preprocessing results by architecture IV-B compared to the ground truth.

Figure 5. Classwise and group-wise accuracy of the minerals
considered in the experiment shows detection improvement of

around 5% if the proposed preprocessing model is used than the
framework.

Figure 4 shows the preprocessed spectra of some synthetic min-
eral spectra by architecture IV-B, including kaolinite, epidote,
analcime, and hematite. The preprocessed spectra are very
close to the ground-truth preprocessed spectra (primary min-
eral spectra passed through the classical preprocessing pipeline)
even when the proportions of the primary minerals are sig-
nificantly less. The performance of the architecture IV-B is
highlighted in detail in figure 5. Training was performed us-
ing augmented spectra from the MICA spectral library, while
testing employed TRDR CRISM hyperspectral data (Plebani et
al., 2022). The classwise and groupwise accuracy results show
the model’s robustness and efficiency. For individual mineral
classes, the proposed framework consistently outperformed the
classical pipeline, achieving higher accuracies across 28 min-
eral classes. Similarly, in groupwise evaluation, the proposed
model achieved notable improvements, particularly for primary
silicates, ices, and sulfates, with average groupwise accuracies
of 0.91, 0.91, and 0.90, respectively, and also there is a signi-
ficant enhancement in the accuracy of the carbonate minerals.

3. Mineral Mapping on the Martian Surface

The Syrtis Major quadrangle on Mars, which spans latitudes 0°
to 30° north and longitudes 270° to 315° west, features a signi-
ficant area of lowlands known as the Nili Fossae. This region is
primarily composed of olivines, smectites, hydrated silica, ka-
olinite, and iron oxides (Hoefen et al., 2003, Edwards and Ehl-
mann, 2015). In September 2015, Nili Fossae was selected as
a potential landing site for the Mars 2020 rover. Jezero Crater,
an extensive impact structure with a diameter of approximately
45 kilometers (Fassett and Head III, 2005), is located within
this area and served as the landing site for the Mars 2020 mis-
sion. This mission aims to collect mineral samples that may
eventually be returned to Earth by future expeditions, allow-
ing for a comparison of mineral diversity over time within this
specific region of the Martian surface. Mawrth Vallis is an-
other significant geological feature, measuring 100 kilometers
across, which has been shaped by various impact events, small
streams, and volcanic activity. Studies utilizing visible and
near-infrared spectrometers have extensively examined Mawrth
Vallis, identifying key minerals such as Fe/Mg-phyllosilicates,
Al-phyllosilicates, and high-calcium pyroxene (HCP) (McK-
eown et al., 2009, Wray, 2013). Northeast Syrtis, part of the
Syrtis Major volcanic province located in the northern hemi-
sphere of Mars, showcases stratified terrain rich in a diverse
array of igneous minerals, including olivine and both high- and
low-calcium pyroxenes. Additionally, aqueous minerals such as
clays, carbonates, serpentine, and sulfates are also prevalent in
this area (Murchie et al., 2009, Ehlmann et al., 2009). Located
in the Margaritifer Terra region, the Aram Chaos impact crater
spans 280 kilometers in diameter. This region is known for
its frequent occurrences of minerals such as hematite, jarosite,
and hydrated sulfates (Glotch and Christensen, 2005). Figure 6
shows the locations of the regions on the Martian surface .

The minerals identified on the Martian surface exhibit a diverse
array of diagnostic absorption features in the VNIR spectral
range of 1 to 2.6 micrometers. Hydrated silicates, similar to
Fe/Mg-smectites, show a combination of features, with a broad
absorption around 1.4 micrometers due to OH stretching, a band
near 1.9 micrometers from H2O bending, and a feature around
2.2-2.3 micrometers associated with Al-OH and Mg-OH vibra-
tions. Sulfates, such as gypsum, exhibit a suite of diagnostic
features, including bands at 1.45, 1.75, 1.94, 2.22, and 2.48
micrometers, arising from combinations of H2O stretching and
bending, as well as SiO4 stretching vibrations. Additionally,
Fe-hydroxy sulfates and mono/poly-hydrated sulfates exhibit
distinct absorptions related to OH, H2O, and SiO4 vibrational
modes in this spectral region.

The discovery of minerals such as Mg-carbonate, Fe/Mg
smectite, HCP, and Mg-Olivine CRISM hyperspectral image
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Figure 6. Top: Different locations on Martian surface marked on
Mola elevation map. Bottom: Mineral mapping on different

MTRDR data super imposed on Mola elevation map. Note that,
The resolution of the elevation map and the hyperspectral data

are not the same.

from Mars has significant implications for understanding the
geological processes, environmental conditions, and potential
resource exploration opportunities in the studied area. The
presence of Mg-carbonate suggests past aqueous alteration pro-
cesses, as carbonates typically form in the presence of liquid
water and carbon dioxide. Fe/Mg smectites are clay minerals
that form through the alteration of igneous rocks in the pres-
ence of water, providing evidence of past water-rock interac-
tions. The formation of Mg-carbonate and Fe/Mg smectites im-
ply the existence of past habitable environments with the pres-
ence of liquid water, potentially for extended periods. The pres-
ence of Mg-carbonate and Fe/Mg smectites also could indicate
the existence of significant subsurface water reservoirs, which
could be valuable resources for future human exploration and
settlement on Mars. The stability of these minerals can provide
constraints on the pH, temperature, and water chemistry condi-
tions that existed during their formation. Mg-olivine and HCP
are primarily igneous minerals, indicating the presence of mafic
or ultramafic rocks, which can provide insights into the region’s
volcanic and magmatic history. Mg-olivine is a potential source
of magnesium, which could be extracted and utilized for vari-
ous purposes, such as construction materials or soil enhance-
ment for future Martian agriculture. The identification of these
minerals can help prioritize landing sites and regions of interest
for future robotic and human exploration missions, as well as
for resource prospecting and utilization.

The detection of Fe-olivine and Mg-carbonate in the Nili Fossae
region (FRT3E12) indicates the presence of mafic or ultramafic
igneous rocks, providing insights into the region’s volcanic and
magmatic history, as well as potential aqueous alteration pro-
cesses. The presence of Fe-hydroxy sulfate and mono-hydrated
sulfate in the Aram Chaos region (FRT98B2) also points to the
existence of sulfate-rich deposits, potentially formed through
the alteration of sulfide-bearing rocks or volcanic activity. The
detection of Mg-carbonate in the NE Syrtis region (FRT19538)
further supports the hypothesis of past aqueous alteration pro-
cesses and the potential for habitable environments in this area.
The identification of high-calcium pyroxene and poly-hydrated

sulfate in the Gale Crater region (FRTC518) suggests the pres-
ence of mafic igneous rocks and sulfate-rich deposits, respect-
ively, providing insights into the region’s geological history
and potential past environments. The presence of high-calcium
pyroxene and Fe/Mg-smectites in the Mawrth Vallis region
(FRT9326) indicates the presence of mafic igneous rocks and
clay minerals, suggesting water-rock interactions and potential
habitable environments in this region. These findings highly
contribute to our understanding of the geological composition,
evolution, and potential past habitable environments in these
regions, which is crucial for unraveling Mars’ geological and
potential biological history.

4. Discussion and Conclusion

The results of this study demonstrate the efficacy of the pro-
posed UNet-based preprocessing model for CRISM MTRDR
hyperspectral data in identifying minerals on the Martian sur-
face. By integrating the preprocessing steps typically per-
formed in traditional pipelines into a unified neural network
framework, we significantly reduce the time and computational
resources required for mineral classification. The model not
only streamlines the preprocessing phase but also enhances the
quality of the spectral data, improving the distinguishability of
mineral absorption features.

The augmented training dataset created from the MICA spec-
tral library, comprising 31 mineral spectra across six mineral
groups, has proven to be a crucial component in training the
model effectively. This approach mitigates the challenge of lim-
ited labeled data for Martian mineral identification, allowing for
a more robust learning process. The ability to randomly sample
and proportion minerals within the training dataset enables the
model to generalize better, accommodating the diverse mineral
mixtures that are frequently encountered in CRISM hyperspec-
tral data.

The performance analysis highlights a marked improvement in
both accuracy and efficiency when using the proposed model
compared to traditional preprocessing pipelines. The findings
suggest that the model maintains high classification accuracy
while significantly reducing processing time, making it suit-
able for real-time applications in planetary exploration. Fur-
thermore, the potential of the model extends beyond mineral
identification on Mars. The framework could be adapted for
similar applications in other planetary bodies or even for ter-
restrial remote sensing data. Future research could explore the
integration of additional features, such as temporal data, to fur-
ther enhance mineral identification capabilities.
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