
Segmented Curve-Fitting Method for Continuum Removal in CRISM MTRDR data

Priyanka Kumari1, Sampriti Soor2, Amba Shetty3, Shashidhar G Koolagudi4

1 Department of Water Resources and Ocean Engineering, NIT Karnataka, India, 575025 - singh.priyanka854@gmail.com 
2 Center for Intelligent Cyber Physical Systems, IIT Guwahati, India, 781039 - sampreetiworkid@gmail.com

3 Department of Water Resources and Ocean Engineering, NIT Karnataka, India, 575025 – amba@nitk.edu.in
4 Department of Computer Science and Engineering, NIT Karnataka, India, 575025 - koolagudi@nitk.edu.in

Keywords: Continuum Removal, Segmented Curve-fitting, Hyperspectral Images, Mineral Mapping.

Abstract

A spectrum in a multiband remotely sensed image is generally a mixture of spectra of different materials present in the scene
which can be distinguished by distinct absorption signatures. A mixed spectrum possesses a smooth baseline shape, known as a
continuum, that masks the individual spectral features. Continuum can also appear due to instrument artifacts and topographic
illumination effects. Eliminating the continuum from a spectrum being analyzed and correctly identifying its unique absorption
characteristics are crucial for material identification, traditionally achieved by the apparent continuum removal methods like using
an Upper Convex Hull (UCH). Nevertheless, most of these methods struggle when baseline curvature exceeds certain limits, often
combining distinct absorptions. In this paper, a new apparent continuum removal technique called Segmented Curve-Fitting (SCF)
is proposed, which requires no prior information about the spectrum but excels in accurately extracting distinct absorptions, even in
the presence of significant curvature. The performance of SCF is compared with UCH and a few other apparent continuum removal
methods previously used in literature, using a collection of simulated data of varying complexity as well as a real CRISM TRDR
hyperspectral dataset. The identification score is improved by around 8% for the similarity matching method Weighted Sum of
Spectrum Correlation and by around 1.5% for a Convolutional Neural Network. Furthermore, an SCF-based mineral identification
framework demonstrates its effectiveness in identifying the dominant minerals on CRISM MTRDR hyperspectral data collected
from different locations on the Martian surface.

1. Introduction

Hyperspectral imaging systems can capture subtle changes in
reflectance that reveal specific minerals or materials that are
hard to identify using other remote sensing methods (Chabril-
lat et al., 2002). Each material has a unique “spectral signa-
ture,” which is a pattern of reflectance values across different
wavelengths showing characteristic positions and shapes of ab-
sorption features. When a hyperspectral system captures these
reflectances, the combined spectral signatures of all materials in
a target area are stored within each pixel. This creates a smooth
background intensity, called the “continuum” in hyperspectral
imagery (Clark and Lucey, 1984, Clark and Roush, 1984).

Hyperspectral sensors, due to their design, require multiple im-
age frames to cover large areas, which are later combined into
spatially connected mosaics. However, these mosaics often
show varying continuum characteristics across and even within
frames (Kumari et al., 2023b). While some hyperspectral data
may have straightforward continuums that need minimal adjust-
ment, others, particularly those with materials having complex
spectral shapes, have more challenging nonlinear continuums.
These can be influenced by factors like scattering, atmospheric
conditions, or sensor variations (Zhang et al., 2004, Zhao et al.,
2015). Accurately estimating this continuum is important as
it serves as a baseline reference for identifying and analyzing
distinct spectral features (Parente et al., 2011).

Continuums in a hyperspectral image are typically estimated
pixel-by-pixel and are generally considered to be independent
of continuums in nearby pixels (Viviano et al., 2014). How-
ever, a simple distance-based similarity approach doesn’t work
well, as it considers the entire spectrum, rather than only the

absorption signatures, which can be affected by the continuum.
The continuum can shift the overall shape of a spectrum, mak-
ing it challenging to identify the material correctly, even when
the main absorption features remain the same (Parente et al.,
2011). Figures 1a-1b show a comparison of a sample Mg-
Smectite spectrum from a CRISM TRDR image and its corres-
ponding spectrum in the MICA library, highlighting differences
in their global curvature and reflectance scales. After aligning
their scales through normalization, these curvature differences
become even more visually apparent.

Continuum removal has two primary roles: mitigating spec-
tral baseline effects from environmental or instrumental sources
(imposed continuum removal - ICR) and isolating absorption
features (apparent continuum removal - ACR). The ICR meth-
ods assume a functional form, often using polynomial or power-
law models to estimate the baseline (Brown, 2006). ICR can be
effective when the continuum shape is predictable. ACR meth-
ods, on the other hand, estimate the continuum by identifying
regions without absorption features, i.e., the blunt regions, and
by linking the endpoints of these (McCraig et al., 2017). Tra-
ditional ACR methods face limitations in handling spectra with
low-intensity signals or significant baseline curvature.

In ACR continuums are commonly estimated using a hull over
the spectrum, where the shoulder points are identified as the loc-
ations where the hull touches with the spectrum. The spectrum
is either subtracted by or divided by the estimated continuum
[eq. 1] to nullify the effects of the continuum. All the shoulder-
points in a continuum-removed spectrum remain at the same
level. Figure 1c illustrates the Upper Convex Hulls over the
library and test Mg-Smectite spectra, with the corresponding
continuum-removed spectra displayed in figure 1e, showcasing
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(a) Raw Mg-Smectite Spectra (b) After smoothing and Scaling (c) UCH on the spectra (d) Continuum by SCF (e) Continuum removal by UCH (f) Continuum removal by SCF

Figure 1. (a) Mg-Smectite spectra, with one sourced from the MICA spectral library and another from a CRISM TRDR dataset; (b)
The disparity in global curvatures between the two Mg-Smectite spectra are noticeable after the scaling operation; (c) The estimated
continuums using Upper Convex Hulls (UCH) on the preprocessed library and test spectrum in (b); (d) The estimated continuums by

the proposed Segmented Curve Fitting (SCF) method; (e) Continuum removed spectra obtained by subtracting the UCH from the
preprocessed spectra in (c); (f) Continuum removed spectra of the spectra in (b) by the proposed method SCF. In (e) and (f), extracted
absorptions (considering those larger than a specific threshold) in the continuum-removed spectra are highlighted with darker colours.

Note-1: The extracted absorptions in the continuum-removed library and test spectra by SCF in (f) exhibit more resemblance than
those by UCH in (e). Note-2: The figures in the top and bottom row are presented with actual scales on the y-axis, while those in the

middle row have the same scale as in (b), although are separated by an offset for visual clarity.

how absorption signatures are automatically extracted between
pairs of consecutive shoulder points if the absorption size ex-
ceeds a threshold. On the other hand, figure 1f depicts the ab-
sorptions detected by the proposed method, showing a better
similarity between the absorptions extracted from the library
spectrum and the test spectrum.

Existing ACR methods fall into two categories: those without
prior spectral information and those with known absorption po-
sitions. For the former, Upper Convex Hull (UCH) (Clark and
Roush, 1984) remains popular due to its simplicity and effect-
iveness within certain limits of continuum curvature. Segmen-
ted Upper Hull (SUH) restricts changes in slope and thus can
struggle with non-convex continuums (Clark and King, 1987).
Recent advancements, like scale-space filtered alpha hulls and
Geometric Hulls (GH) (Mielke et al., 2015), address some of
these limitations by iteratively detecting shoulder points, yet
they risk overfitting and excessive segmentation. In cases where
absorption shoulder locations are known, techniques like cu-
bic splines and reference spectral background removal have
proven effective (Clark and Lucey, 1984, Zhao et al., 2015).
While functional within specific curvature ranges, these tradi-
tional methods may struggle to preserve individual absorption
features when the continuum shape varies significantly.

An effective ACR method should be resilient to the variations
in the continuum shape. This study introduces a novel ACR
method, Segmented Curve-Fitting (SCF), which effectively ad-
dresses these challenges without requiring prior spectral in-
formation. SCF uses an initial set of shoulder points derived
from UCH, followed by segmentation into parabolic fits that re-
fine the continuum estimation in each segment. Unlike typical
ACR methods that connect shoulder points with straight lines,
SCF applies parabolic curves, offering flexibility to handle both
concave and convex shapes within any portion of the test spec-
trum. This approach adapts a piece-wise technique like SUH
but without the slope constraints, providing a more realistic
continuum estimation that better preserves absorption features.
To validate SCF’s effectiveness, we tested it against traditional
ACR methods like UCH, SUH, and geometric hulls (GH) us-
ing a hyperspectral dataset. SCF’s performance was assessed
through similarity measurements of band-center positions and
Full Width at Half Maximum (FWHM) values of absorption
features between test spectra and true labels in spectral librar-
ies. Mineral identification accuracy was evaluated using clas-

sification methods, including a Convolutional Neural Network
(CNN) and shape-based matching methods, confirming SCF’s
resilience to continuum shape variations and its improved fea-
ture extraction capabilities.

The paper is organized as follows: Section 2 covers relevant
notations and metrics; Section 3 provides a detailed explana-
tion of SCF; Section 4 compares SCF with previous continuum
removal approaches for mineral identification, and Section 5
presents experimental results on Martian CRISM MTRDR hy-
perspectral data.

2. Notations

A spectrum and its corresponding wavelength domain are rep-
resented as vectors denoted by bold lowercase letters. Con-
sider a spectrum, denoted as r, spanning the wavelength do-
main w with wavelengths sorted in ascending order. For a
given wavelength w (∈ w) the corresponding element in the
spectrum is r(w). Similarly, for a wavelength portion λ of w
(where λ contains some consecutive wavelengths of w), the
corresponding spectra portion is denoted as r(λ). A subset
of a wavelength portion (which may not necessarily contain
consecutive wavelengths) is denoted by λ′, while a collection
of such wavelength portions λ is represented by Λ. For set
of wavelengths λ′ (⊆ λ or ⊆ w), the corresponding spec-
trum elements are denoted by r(λ′). When a spectrum is not
subscripted with an index, a specific wavelength, or a set of
wavelengths, it indicates that the spectrum is considered for the
entire wavelength domain. On the other hand, if a spectrum
or a curve (let t) is defined over a wavelength portion λ only,
rather than the entire wavelength domain, the spectrum is de-
noted with a superscripted λ (e.g. t(λ)).

Let c be an estimated continuum of r, then as mentioned in
section ?? the continuum removed spectrum can be calculated
by the operation Cc(r) using division or subtraction as given in
eq. 1.

C div
c (r) = r/c

C sub
c (r) = r− c

(1)

In this paper, if the removal method is not specified at the super-
script level for a continuum removing function C , it is assumed
that both subtraction and division can be applied. Similarly, if a
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continuum c is not specified at the subscript level, it is assumed
that the continuum is estimated by an upper convex hull.

In section 3 while describing the proposed Segmented Curve-
Fitting method three translated spectra t1, t2 and t3 are utilized.
Specifically, t1 is defined over the entire wavelength domain,
while t2 and t3 are defined over specific wavelength portions.
Furthermore, a fitted curve, denoted as p is defined for each of
these wavelength portions.Some additional notations are intro-
duced in section 4.1.3 pertaining to different evaluation meas-
ures for assessing a preprocessed test spectrum t in comparison
to the corresponding preprocessed library spectrum l.

3. Segmented Curve-Fitting for Continuum Removal

Traditional continuum removal methods assume convex
curvature in hyperspectral data, often estimates the continuum
as the UCH. However, natural spectral continua may vary, with
non-convex regions that affect local wavelengths unevenly. Our
proposed method SCF addresses this issue by segmenting the
spectrum and fitting continuum shapes for each segment in-
dependently. Although this approach may overlook the global
shape of the spectrum, it enables a more precise enhancement
of weaker band depths. The SCF methodology is demonstrated
in Figure 2 with a sample H2O-Ice spectrum from the MICA
spectral library (Viviano et al., 2014). This method is effective
for analyzing pure spectra as well, extracting distinct absorption
signatures.

❍ Step-1 (Segmenting the spectrum): Initially, shoulder
points in the spectrum are identified to partition the spectrum
into segments, where parabolic curves are fitted to further refine
shoulder points and estimate the continuum. The UCH method
is employed here to segment the spectrum, as outlined in Al-
gorithm 1. The UCH algorithm operates in linear time, using
general stack operations push, pop, and length (Cormen et al.,
2022).

Algorithm 1 Pseudocode to calculate the UCH
1: function UPPERCONVEXHULL(r,w)
2: initialize Empty stack S
3: S.push(1), S.push(2)
4: for i ∈ 3, 4, ..., r.length do:
5: if

rS−1
− rS−2

wS−1
− wS−2

≥
ri − rS−2

wi − wS−2
then

▷ S−k is the k-th element from top in S
6: S.push(i)
7: else
8: S.pop()
9: if S.length == 1 then

10: S.push(i)
11: return linear interpolation(S, r,w)

Fig. 2(a) shows the example spectrum and its UCH. Fig. 2(b)
depicts the continuum-removed spectra by the usual process,
that is, dividing the spectrum by its UCH to obtain a translated
spectrum, as

t1 = C (r) (2)

Let m be the highest value in t1 (m = 1 for C div and m = 0
for C sub in eq. 1). A wavelength segment λ characterized by
lesser than m values between two m-valued wavelengths in t1

contains an absorption in r, where the m-valued wavelengths
at the two ends contain the shoulder-points of the absorption.
Fig. 2(c) shows such spectrum segments of t1 for the example

spectrum. When a parabolic curve p(λ) is fitted through a spec-
trum segment t1(λ), by minimizing the quadratic error while en-
suring it passes through the end-points of the segment, some
points within the segment lie above this curve. If t1(λ) is divided
or subtracted by p(λ) to generate a translated spectra segment
t2(λ), translated points of those remain above the m level in
t2(λ) too. Now, on t2(λ) another continuum removal operation
can be performed to extract more shoulder points.

Now, the parabolic curve can be fitted through various sets of
points in a segment of t1. The fitting points can be all the points
in the segment, all the local maxima, all the local minima, or
some points selected on some conditions. Alternatively, a lower
convex hull also can be used for this purpose. As in the experi-
ments better results are observed if the curves are fitted through
the local maxima, in this paper all the local maxima are con-
sidered as the fitting points. By this, the method doesn’t rely
on specific thresholds for selecting the fitting points, making
it robust across different types of data. Note that, in the ex-
ample shown in figure 2, a detected segment around 2.6µm is
not considered for further processing as it does not have any
local maxima. Specifically, only the segments having at least
one local peak are selected for further processing. The words
’maxima’ and ’minima’ in this paper indicate both singular and
plural forms.

❍ Step-2 (Segment-wise fitting of parabolic curves) To obtain
a functional form of the fitted curve, rather than the original
spectrum, the translated spectrum is used, on which such para-
bolas facing the positive y-axis can exist as functions. Let λ be
a wavelength segment picked for further processing and Λ be
the set of all picked wavelength segments. Considering ws and
wt as the two end-wavelengths of λ, the general equation of the
parabolic curve fitted in λ becomes

p
(λ)

(w) = a(w − ws)(w − wt) +m for w ∈ λ (3)

The value of a in 3 can be calculated from t1(λ′) minimizing
the quadratic error as following, where λ′ (⊂ λ) contains the
wavelengths of the local maxima in t1(λ).

let p = (w − ws)(w − wt)

Error J =
∑
w∈λ′

(t1(w) − ap−m)2

With optimum fitting
δJ

δa
= 0

=⇒
∑
w∈λ′

(t1(w) − ap−m)p = 0

=⇒
∑
w∈λ′

t1(w)p − a
∑
w∈λ′

p2 − m
∑
w∈λ′

p = 0

=⇒ a =

∑
w∈λ′

t1(w)p − m
∑

w∈λ′
p∑

w∈λ′
p2

(4)

Fig. 2(c) shows the fitted curves for the different segments of
the translated spectra.

❍ Step-3 (Segment-wise Translation) The next step is to cal-
culate another segment-wise translation for all the segments λ
in Λ that generates t2(λ) from t1(λ) and p(λ). To extract ad-
ditional shoulder-points, another step of continuum removal is
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performed on each of the translated segments t2(λ) by UCH.

t2(λ) = Cp(λ)(t
1
(λ)) (5)

t3(λ) = C (t2(λ)) (6)

Fig. 2(d) shows t2(λ) and UCH for the selected segments, and
fig. 2(e) shows t3(λ) for each of these segments. Note that,
to ensure continuity in the continuum-removed spectra, i.e., to
keep all the shoulder-points on the continuum-removed spec-
trum at the same level, in all continuum removal operations
(C ), employing the same translation method is necessary, that
is, employing either only divisions or only subtractions.

❍ Step-4 (Merging the translated segments) The final step of
the procedure involves combining the independently translated
segments of t3 with the unpicked portions in step-2 from the
initially translated spectrum t1 on the entire wavelength domain
w to generate the continuum-removed spectrum.

SCF (r,w)(w) =

{
t3

(λ)

(w), if ∃λ ∈ Λ | w ∈ λ

t1(w) otherwise
∀w ∈ w (7)

Fig. 2(f) shows the continuum-removed spectrum by the pro-
posed method, and in fig. 2(g) a visualization of the predicted
continuum is given. The predicted continuum could separate al-
most all the prominent absorptions which the previous method
was unable to.

The usual methods of continuum removal like UCH and SUH
determine the continuum from the full spectrum first, then elim-
inate its effect from the spectrum by subtraction or division op-
eration as given in eq 1; on the other hand, the proposed method
directly removes the effect of the continuum from the spectra
by eq 7 without estimating the continuum particularly, i.e., the
continuum shown in fig. 2(g) is not needed to be computed
to get the continuum-removed spectrum shown in fig. 2(f).
The continuum-removed spectrum SCF (r,w) can be calcu-
lated in linear computational time, because, the initial segment-
ation in step-1 takes linear time, and the segments consist of
distinct wavelength ranges which are processed further (eq. (4-
7)) in linear computational time independently and each in lin-
ear time. Note that, while it may appear reasonable to limit the
computation by considering only the local peaks from r to fur-
ther reduce the runtime, this approach would not be suitable for
detecting the shoulder points correctly.

4. Performance Evaluation

The performance of the proposed SCF continuum removal
method is evaluated using a labeled dataset of TRDR spectra
(Plebani et al., 2022). To assess SCF’s effectiveness in pre-
serving absorption features, Band-center and FWHM scores are
calculated, whereas Identification accuracy is evaluated through
an Identification score by comparing the test spectra with true
spectra in the MICA spectral library, which includes 31 mineral
spectra from six mineral groups such as iron oxides, primary
silicates, ices, sulfates, phyllosilicates, carbonates, and hy-
drated silicates and halides. The test spectra and reference spec-
tra from the library undergo a preprocessing pipeline (Kumari et
al., 2024), including continuum removal, allowing performance
comparisons with other continuum removal methods. Identific-
ation is conducted using two approaches: the Weighted Sum of
Segmented Correlation (WSSC) curve-matching method and a

Figure 2. (a) H2O-Ice spectrum R from MICA library and the
UCH of it; (b) Translated spectrum t1 using division method of
eq 1; (c) segments are extracted from t1 and parabolic curves as

in eq.-3 are fitted; (d) Translated spectrums t2 (λ) from 5 and
corresponding UCHs; (e) Translated spectrums t3 (λ) from

eq.-6; (f) Merging the segments from t3s and the unchanged
spectra portions from t1 to get continuum removed spectra by
SCF method. The continuum removed spectra by UCH, SUH
and GH are also provided for visual comparison; (g) A visual

comparison between the predicted continuums by the proposed
method, UCH, SUH and GH.

Note: X-axis represents the wavelength domain. The domain is
same for the full spectra in (a), (b), (f) and (g); and same for the

spectra segments in (c), (d) and (e). Y-axis in (a) and (g)
represents the reflectances in the input spectra, and the
continuum-removed normalized spectra in the others.

shallow CNN model, showcasing SCF’s performance with dif-
ferent classification methods.
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Figure 3. A preprocessing pipeline that includes SCF as the
continuum removal operation can translate the two H2O-Ice
spectrum (from MICA spectral library and CRISM TRDR

dataset) in the left image to the right image.

4.1 Experimental Setup

4.1.1 Data Specifications CRISM’s Targeted Remote Sens-
ing Data Record (TRDR) provides high spatial resolution spec-
tral data of Mars’ surface, which is available via NASA PDS
(Justin N. Maki, 2004). Plebani et al in (Plebani et al., 2022)
classified a large collection of 592,413 TRDR spectra from over
70 images into 39 categories, of which 28 labels correspond
with those in the MICA library. For this evaluation, 200 spectra
per label are randomly sampled from this dataset, focusing on
the wavelength range 1-2.6 µm from the available 1-3.47 µm
as most of the unique identifiable absorptions of the minerals
appear in this range and beyond this range data are often very
noisy.

The preprocessing pipeline used for CRISM MTRDR data (Ku-
mari et al., 2023a) includes smoothing, spike removal, con-
tinuum removal, and standardization. Smoothing and spike re-
moval are applied to reduce noise in the dataset, as for SCF, ef-
fective smoothing is essential to accurately fit parabolas through
local maxima within a segment. Figure 3 illustrates the effect
of the preprocessing steps applied on H2O-Ice spectrum from
the MICA library and TRDR dataset.

4.1.2 Identification Procedures For mineral identification,
two distinct approaches are employed in this study: a CNN-
based classification model and a spectral matching technique,
the Weighted Sum of Segment Correlation (WSSC). The CNN
model, adapted from (Kumari et al., 2023a), is a shallow se-
quential network that utilizes convolutional layers to learn spa-
tial features from spectral data. It is trained and validated
on labeled TRDR spectra and tested for accuracy on held-out
samples, helping to assess the performance of the preprocessing
pipeline and continuum removal methods. The WSSC method,
a spectral matching approach, calculates a match index between
test and library spectra by correlating prominent absorptions
without requiring prior knowledge of the test spectrum. While
similar to shape-matching algorithms such as those described
by (Clark et al., 2003), WSSC focuses on the segmented ab-
sorption features, providing an adaptable and robust alternat-
ive to standard methods in hyperspectral analysis. By applying
both CNN and WSSC, the study evaluates SCF’s performance
across machine learning and classical matching techniques, of-
fering insights into the effectiveness of each approach for hy-
perspectral mineral identification.

4.1.3 Evaluation Measures A band-minima refers to the
position of minimum reflectance value at a spectral region, gen-
erally an absorption, in a non-translated spectrum, that is before
the continuum removal operation on it. On the contrary, the
band-center is the position of the minimum reflectance value

Figure 4. The band-minima and FWHM for all the prominent
segments of the processed spectra given in figure 3

in an absorption after the translation. There can be a minor
shift between the band-minima and band-center positions for
absorptions. The amalgamation of the positions of band-center
in different absorptions or segments of a spectrum is a use-
ful identifier for distinguishing materials as each of them has
a unique set of positions and shapes of the absorptions over the
wavelength domain. In spectroscopy, FWHM (Full Width at
Half Maximum) is a measurement used to describe the shape
of absorption in a translated spectrum, that measures the width
of absorption in terms of the range of wavelengths at which the
depth of the absorption is half of its maximum value. As the
datasets in the experiments are either TRDR/MTRDR data, all
characterized by a nearly constant spectral resolution (0.00655
µm) within the 1-2.6 µm wavelength range, the accuracies of
absorption detection are assed using thresholds related to the
spectral resolution. Specifically, a 3-band difference (approx-
imately 0.02 µm) from the expected position is considered to
evaluate the correct detection of band-center and a 6-band dif-
ference (approximately 0.06 µm) for FWHM. These thresholds
are chosen through experiments to ensure they do not signific-
antly impact mineral identification accuracy.

From both the preprocessed test spectrum t and the correspond-
ing library spectrum l, the absorptions are extracted first. Sub-
sequently, tiny absorptions are filtered out using a threshold.
The positions of the band-center and the FWHMs in the remain-
ing absorptions are compared to assess their similarity.

Let At and Al be the set of absorptions in t and l respectively.
Let BM(Al

k) and FWHM(Al
k) represent the band-center po-

sition and FWHM respectively in the k-th absorption in l. Sim-
ilarly, BM(At

k) and FWHM(At
k) respectively are the band-

center position and FWHM in the k-th absorption in t. An ex-
ample of this is shown in figure 4.

Through a one-to-one mapping based on the nearest band-
center positions a bijection of the highest possible cardinality
is established from Al′ (⊆ Al) to At′ (⊆ At). Let i-th absorp-
tion in Al is mapped with bi-th absorption in At. With this, the
two measures band-center Score and FWHM Score are defined
as below.

Band-center Score The mean-shift in the band-center posi-
tion in t is defined as,

MBM (t) =

∑
∀Al

i
∈Al′

|BM(Al
i)−BM(At

bi
)|

|Al′| (8)

|.| in the numerator denotes the absolute difference and in the
denominator denotes the cardinality.

For a set of test spectra T the band-center score is obtained by
the fraction of the set for which the mean-shift in the positions
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of band-center is lesser than 0.02 µm. Formally,

count(MBM (t) ≤ 0.02), ∀t ∈ T
|T | (9)

FWHM Score Similarly, the mean-change in the FWHM in
t is defined as,

MFWHM (t) =

∑
∀Al

i
∈Al′

|FWHM(Al
i)− FWHM(At

bi
)|

|Al′|
(10)

and FWHM score of T is obtained by,

count(MFWHM (t) ≤ 0.06), ∀t ∈ T
|T | (11)

Identification Score Identification accuracy measures the
percentage of correctly identified spectra, calculated using the
Weighted Sum of Segment Correlation (WSSC) method. Ef-
fective preprocessing, particularly smoothing, enhances the per-
formance of WSSC by ensuring high correlation between seg-
ment features in test and library spectra. The identification
score is the percentage of test spectra for which the true-label
class receives a match index within 5% of the highest score as-
signed to any class.

4.2 Performance Analysis

The Upper Convex Hull and the Segmented Upper Hull, as
defined in the literature, do not have the provision of custom-
izability. In contrast, the Geometric Hull, although presented
in the literature to consider all local minima in an intermediate
step, tends to overfit a real input spectrum if all local minima
are considered due to its iterative nature and presence of fluctu-
ations in a real spectrum, resulting in a limited ability to detect
absorption features, particularly for the minerals having distin-
guishable broad absorptions. Lastly, SCF, described in Section
3 as a non-parametric approach, exhibits various forms based on
factors such as whether selective or all local minima are used to
fit the curve, the minimum required number of local maxima
in a segment for consideration in further processing, whether a
recursive approach is employed to detect more shoulder points,
and so on. To prevent overfitting in GH, only the local min-
ima beyond a specified threshold depth from its shoulder points
are taken into consideration. SCF also, in the crude form does
not perform optimally when dealing with minerals that exhibit
a broad absorption feature like mafic minerals and halides. For
such minerals specifically, SCF considers a segment for further
division only if it contains at least 3 local minima.

Table 1 shows the evaluation metric scores for each mineral
group separately. The experiments have indicated that, for each

Figure 5. The density plots of the differences in band-center and
FWHM values between the processed spectra of dataset-4 and
the corresponding spectra from the MICA library, using UCH,

SUH, GH and SCF in preprocessing. The plots are colour-coded
by the mineral groups. The lesser quartile-2 (median) and
quartile-3 values indicate that the band-center and FWHM

values are more accurate when SCF is applied.

method, while there may be some mineral spectra whose true
labels are not detected, a large portion of those spectra are still
classified into the correct mineral group. This indicates that, at
the very least, the WSSC method with SCF to detect the ab-
sorption can detect mineral groups with a high degree of accur-
acy, even if the detection of individual minerals may not be as
precise. The presented accuracy scores of WSSC in the table
suggest that WSSC is not very accurate in detecting minerals
that have prominent absorption signatures in the form of broad
spectral segments, termed as broad-bands, or sharp absorptions
within a broad band in the spectrum, such as silicates and car-
bonates. For dataset-4, it was observed that the accuracy scores
of CNN obtained by using SCF are not always greater than the
scores obtained by using UCH, SUH, and GH. However, for

Table 1. Evaluation measures (in %) using TRDR dataset

Mineral classes Band-center Score FWHM Score Identification Score (WSSC) Identification Score (CNN)
UCH SUH GH SCF UCH SUH GH SCF UCH SUH GH SCF UCH SUH GH SCF

Primary silicates 72.5 54.0 78.8 78.4 64.0 61.2 79.9 71.0 77.8 59.7 81.8 79.5 86.0 86.5 87.8 86.9
Hydrated silicates 85.3 66.3 66.3 96.0 65.3 68.8 67.8 81.3 78.2 72.9 65.3 86.7 89.1 89.3 88.3 91.3

Phyllosilicates 78.0 58.8 76.8 89.6 67.2 80.3 78.8 88.8 84.5 65.8 81.7 88.0 89.3 90.8 86.8 92.7
Sulfates 77.0 58.6 77.6 80.5 63.1 78.8 77.8 86.1 79.0 72.2 84.0 87.0 91.6 90.8 90.8 90.1

Carbonates 52.3 67.0 61.1 65.5 73.0 73.0 60.0 71.0 62.8 77.0 61.7 75.0 78.0 79.8 78.8 81.0
Ices 78.0 65.7 75.1 86.0 73.0 80.0 77.7 78.0 97.0 91.3 92.7 98.0 91.5 89.8 89.6 89.7

Overall 74.2 60.0 68.8 82.0 65.9 73.4 76.6 82.7 77.9 72.8 76.8 86.5 90.1 88.8 88.5 91.5
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most of the mineral groups, the SCF method yields higher ac-
curacy scores, resulting in an overall improvement in the per-
formance of around 1.5%, where as by the described method
WSSC, where local shape-matching is considered, the better-
ment is more than 8%. Figure 5 represents the density plots of
the calculated mean shift in band-center and mean change in
FWHM for the spectra in dataset-4. It is evident from the figure
that SCF detects the band-centers of the absorptions more ac-
curately and preserves the shape of the absorptions (FWHMs)
more precisely similar to the library than the compared meth-
ods UCH, SUH, and GH. The following is the summary of the
experiments:

• SCF relies on local spectral shapes, and exhibits enhanced
noise resilience in terms of preserving more precise spec-
tral information like band-center and FWHM of the ab-
sorption features.

• There is a strong correlation between the preservation
of band-center and FWHM and the mineral identifica-
tion accuracy. Preprocessing the spectra with SCF con-
tinuum removal yielded satisfactory accuracy gains over
the other methods for mineral identification using the spec-
tra matching technique WSSC and also using a shallow
CNN model. Performance gains were consistent across
the mineral groups.

• While WSSC with SCF may encounter challenges in ac-
curately identifying minerals with broad or sharp absorp-
tions within broad bands, the methods generally maintain
accuracy in identifying mineral groups, even if some min-
eral labels are detected incorrectly.

5. Application on Hyperspectral Images

This section presents the results of mineral identification on
CRISM MTRDR data of the Martian surface, achieved by em-
ploying the WSSC method to match the characteristic absorp-
tion feature positions and shapes with spectra from the MICA
library. The SCF method was used as a preprocessing step
to remove the continuum and scale the spectra. The CRISM
MTRDR data are publicly available via NASA’s Planetary Data
System (PDS) (Justin N. Maki, 2004). In this study, two
CRISM MTRDR images, FRT93BE (latitude: 19.1°N, longit-
ude: 283.5°W) from Jezero Crater and FRT13D1F (latitude:
28.9°S, longitude: 166.7°W) from Columbus Crater, were used
to assess the applicability of SCF for mineral identification
across distinct Martian regions. Jezero Crater, located on the
western edge of Isidis Planitia in Mars’ northern hemisphere,
and Columbus Crater, a 119-kilometer-wide feature in Terra
Sirenum in the southern hemisphere, are of scientific interest
due to the presence of clay minerals, suggesting historical li-
quid water (Payne et al., 2011, Wray et al., 2011). Jezero
Crater’s mineralogy is dominated by olivine, pyroxene, and pla-
gioclase feldspar, while Columbus Crater predominantly con-
tains pyroxenes with traces of gypsum, a rare Martian min-
eral. FRT93BE contains 804×832 pixels, and FRT13D1F has
800×648 pixels, each with 489 bands covering a wavelength
range of 0.43–3.89 µm. However, consistent with other CRISM
data used in section 4, only the 1–2.6 µm wavelength range was
analyzed in this study.

The primary minerals identified in FRT93BE include Mg-
Carbonate, High-Calcium Pyroxene (HCP), and Mg-Smectite.
Mg-Carbonate exhibits spectral features at 2.2–2.4 µm and 2.33

FRT93BE (from Jezero Crater region of Mars)
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Figure 6. Detected dominant minerals in CRISM MTRDR data
FRT93BE and FRT13D1F. For each mineral, the pixels with a
match index of more than 0.7 with the corresponding library

spectrum are highlighted. The first column contains the browse
products with colours indicated for visual verification.

µm due to carbonate ions and hydroxyl groups, respectively.
HCP has a strong absorption at 0.9 µm, a calcium-related fea-
ture at 1.2 µm, and a shoulder at 1.6 µm. Mg-Smectite shows
features at 1.8–1.9 µm from OH groups and metal-oxygen
bonds, with a distinctive feature at 2.2–2.35 µm from OH and
Mg-O vibrations. Mg-Smectites in FRT93BE likely coexist
with carbonates in significant abundance. In FRT13D1F, Low-
Calcium Pyroxene (LCP) and gypsum are the dominant min-
erals. LCP exhibits a broad absorption around 1.8 µm, and
gypsum reveals distinct absorptions between 1.4–1.5 µm and a
sulfate group feature at 2.1 µm, resulting from water molecule
oscillations.

Figure 6 displays the mineral distributions in both images as de-
termined by the continuum removal and WSSC framework dis-
cussed in section 4.1.3. To evaluate SCF’s accuracy in detect-
ing absorption features and matching them with library spectra,
results are compared with those obtained using other continuum
removal methods, such as UCH, SUH, and GH. Pixels matching
the library spectra with indices above 0.7 are highlighted in fig-
ure 6. This approach enables soft classification, allowing pixels
to associate with multiple mineral classes, which is suitable for
hyperspectral data like CRISM where pixel spectra often ex-
hibit mixtures. As shown, SUH and GH methods are limited in
detecting minerals with broad absorption features, while UCH
and SCF consistently align most closely with the mineral distri-
butions in browse products across all detected minerals.

6. Discussions and Conclusion

This paper presents a novel apparent continuum removal
method called Segmented Curve-Fitting (SCF), specifically de-
signed to address non-convex continuum shapes in spectra in
linear time. SCF effectively extracts a greater number of
shoulder points from spectra, resulting in a closer alignment
between the extracted absorptions and those in the correspond-
ing library spectra compared to traditional methods such as
UCH and SUH.
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To evaluate SCF’s performance, we measured the mean shift
in band-center positions and the differences in full-width at
half-maximum (FWHM) of extracted absorption features us-
ing the TRDR dataset. Experiments on real CRISM TRDR
data demonstrated that mineral identification using WSSC with
SCF-based continuum removal improved accuracy by approx-
imately 8% over the UCH method and about 1.5% when em-
ploying a CNN model. However, the analysis of mineral group-
wise accuracies suggested that SCF may be less effective at
distinguishing prominent broad-band absorption signatures or
sharp absorptions within broader bands. Overall, the SCF
method excels in detecting narrow to medium absorptions from
spectra exhibiting curvature distortion, outperforming existing
methods.

Future enhancements to the SCF method could focus on the
following areas:

• Enhancing adaptability and precision: Currently, SCF
utilizes all local maxima within a spectral region for para-
bolic curve fitting. Future research could investigate se-
lective criteria for choosing these maxima during the fit-
ting process.

• Broad absorption detection: The method could be im-
proved to automatically identify broad absorptions, which
are not currently addressed, thereby expanding SCF’s cap-
ability to detect a wider range of spectral features.

• Spectral unmixing applications: Given SCF’s ability to
capture distinct spectral features, there is potential for its
application in spectral unmixing tasks.
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