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Abstract

Semi-supervised semantic segmentation (S4) has garnered significant attention in recent years due to the time-consuming and costly
process of creating pixel-level annotations. Instead of only relying on labeled data, semi-supervised approaches leverage both
labeled and unlabeled data to mitigate the issue of the labor-intense annotation process. Although current state-of-the-art methods
in S4 achieve impressive results, they are often only evaluated in specific domains, which are not fully representative of many
real-world applications. For this reason, we evaluate the foundational Mean Teacher approach together with UniMatch, one of the
current state-of-the-art methods, on multiple datasets spanning remote sensing, medical imaging, and machine vision settings. Our
results demonstrate that semi-supervised approaches are able to achieve significant performance gains in label-scarce environments
and even surpass the fully supervised baseline with 100% of the labels in the machine vision setting.

1. Introduction

Deep learning revolutionized our ability to deal with high-
dimensional data, dramatically improving the state-of-the-art
in natural language processing, genomics, and computer vis-
ion tasks like image classification, object detection, or semantic
segmentation (LeCun et al., 2015). However, obtaining the
large amount of labeled data required to train deep neural net-
works is particularly time-consuming and costly for semantic
segmentation tasks, as they demand labor-intensive pixel-level
annotations. To mitigate this issue, an ever-growing amount of
researchers developed semi-supervised semantic segmentation
(S4) methods, exploiting both labeled and unlabeled images to
improve performance without the need for exhaustive manual
annotations (Peláez-Vegas et al., 2023).

Despite the rapid progress, current state-of-the-art methods
(Zhao et al., 2023; Sun et al., 2024; Mai et al., 2024; Wang
et al., 2024a,b; Hu et al., 2024) in S4 are often only evalu-
ated in specific domains, primarily PASCAL VOC (Everingham
et al., 2010) and Cityscapes (Cordts et al., 2016). In particu-
lar, PASCAL VOC consists mainly of object-centered images,
whereas Cityscapes only contains street scenes. Although they
are widely used as benchmark datasets, they are not fully rep-
resentative for many more general real-world applications and
conditions. Additionally, many evaluations still rely on out-
dated or small architectures, limiting the generalizability and
comparability of their findings to more modern, large-scale net-
works.

To address the aforementioned limitations, we conduct a com-
prehensive comparison between two key methods: the found-
ational Mean Teacher approach (Tarvainen and Valpola, 2017)
and UniMatch (Yang et al., 2023). We choose Mean Teacher
for its widespread use in semi-supervised learning, and because
many state-of-the-art approaches still use it as their methodo-
logical foundation. UniMatch, on the other hand, is a leading
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state-of-the-art method recognized for its strong performance
and usability across diverse domains. We evaluate four datasets
in three distinct application domains: Two remote sensing, one
medical imaging, and one machine vision dataset. Notably, we
are the first to apply S4 to the T-LESS dataset (Hodan et al.,
2017), representing the machine vision setting with industry-
relevant, texture-less objects.

2. Semi-supervised Semantic Segmentation

Based on the taxonomy proposed by Peláez-Vegas et al. (2023),
most existing S4 methods can be classified into five categor-
ies: adversarial methods, consistency regularization, pseudo-
labeling, contrastive learning, and hybrid methods.

Adversarial methods. Adversarial methods for S4 can be di-
vided into two groups based on the use of generative models
during training. The first group includes approaches that incor-
porate a generative model to create synthetic images, which are
then used as additional input for the segmentation task (Souly et
al., 2017; Li et al., 2021). The second group, in contrast, does
not use a separate generative model. Instead, these methods
employ a GAN-like structure where the segmentation network
itself acts as the generator, and the discriminator distinguishes
between the predicted segmentation maps and the real ground
truth maps (Hung et al., 2018; Mittal et al., 2019; Mendel et al.,
2020; Ke et al., 2020; Zhang et al., 2021b; Jin et al., 2021).

Consistency regularization. Consistency regularization-based
semi-supervised learning methods leverage unlabeled data by
applying perturbations and training models to remain invari-
ant to these changes. This is typically accomplished by intro-
ducing an additional regularization term in the loss function,
which measures the distance between the original and perturbed
predictions. Mean Teacher (Tarvainen and Valpola, 2017) is a
foundational approach, which enforces consistency between a
student and a teacher model. The primary distinction among
consistency regularization methods for S4 is how perturbations
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are applied. Following the taxonomy of Peláez-Vegas et al.
(2023), these methods can be further categorized into four sub-
groups. The first group applies perturbations directly to the in-
put images, requiring the model to predict the same label for
both the original and the augmented input (French et al., 2019;
Olsson et al., 2021; Chen et al., 2021b; Zhao et al., 2023).
While the second group focuses on feature perturbations (Ou-
ali et al., 2020), the third category generates perturbed predic-
tions by using auxiliary models (Chen et al., 2021a; Peng et al.,
2020). Lastly, there are hybrid approaches (Liu et al., 2022; Wu
et al., 2023; Yang et al., 2023) that combine multiple types of
perturbations from the previous categories.

Pseudo-labeling. Pseudo-labeling methods, sometimes also
referred to as bootstrapping, are fundamental to S4. These
methods generate pseudo-labels of unlabeled images by us-
ing predictions from a model that was pre-trained on labeled
data. Conventionally, these pseudo-labels are then added to
the labeled dataset, and a new model is trained on the expan-
ded dataset. Peláez-Vegas et al. (2023) further categorize these
pseudo-labeling methods into self-training and mutual-training
methods. Self-training methods (Yang et al., 2022; Teh et al.,
2022; Zhu et al., 2021; Chen et al., 2020c; Yuan et al., 2021;
He et al., 2021; Sun et al., 2024; Wang et al., 2024a) gener-
ate pseudo-labels mostly based on high-confidence predictions
of a single supervised model, whereas mutual-training methods
(Feng et al., 2022; Zhou et al., 2022; Li et al., 2023a,b; Na et
al., 2024) involve multiple models.

Contrastive learning. Contrastive learning methods aim to or-
ganize the feature space by grouping similar samples together
and pushing dissimilar samples away. Inspired by the ground-
breaking success in self-supervised learning by methods like
SimCLR (Chen et al., 2020a,b), a series of S4 approaches have
been proposed (Liu et al., 2021; Chen and He, 2021; Alonso et
al., 2021).

Hybrid methods. Naturally, there is also a large variety of
hybrid methods (Qiao et al., 2023; Wang et al., 2023b,c; Ma
et al., 2023; Liang et al., 2023; Wang et al., 2023a; Hu et al.,
2024; Mai et al., 2024; Wang et al., 2024b; Yang et al., 2023)
that fuse characteristics from the other categories, particularly
pseudo-labeling and consistency regularization.

3. Methodological Background

In this section, we outline the two methods employed in
this study: Mean Teacher (Tarvainen and Valpola, 2017) and
UniMatch (Yang et al., 2023). Mean Teacher serves as the semi-
supervised baseline due to its widespread use and foundational
role for many modern methods. UniMatch represents a lead-
ing state-of-the-art approach recognized for its performance and
generalizability across diverse settings.

3.1 Mean Teacher

The Mean Teacher approach (Tarvainen and Valpola, 2017) is a
foundational method for semi-supervised learning that enforces
consistency between a student and a teacher model. Conven-
tionally, both the student and teacher networks share the same
architecture.

The central idea is to train the student network using standard
backpropagation and gradient descent, while the teacher net-

work’s weights θ′t are updated as an exponential moving aver-
age (EMA) of the student’s weights:

θ′t = αθ′t - 1 + (1− α)θt . (1)

Here, t is the current training step, θt represents the student’s
weights at step t, and α is a smoothing coefficient that con-
trols the rate of the EMA update. By applying this EMA-based
weight update, the teacher model maintains a more stable rep-
resentation over time, providing more consistent pseudo-labels,
which in turn regularize the student model during training.

The student network is trained with

LMeanTeacher = Ls + λLc , (2)

where Ls represents the regular cross-entropy loss for labeled
data with

Ls = − 1

N

N∑
n=1

C∑
c=1

yn,c · log(p(z)n,c) , (3)

where N is the number of pixels in an image, C is the num-
ber of classes, yn,c is the corresponding ground truth label, and
p(z)n,c is the predicted softmax probability for class c.

Lc is a consistency loss between the student and the teacher’s
predictions using the unlabeled data, weighted by λ. It encour-
ages the student to produce predictions similar to the teacher’s
pseudo-labels. We follow (Chen et al., 2021a) and employ the
common mean squared error for Lc.

3.2 UniMatch

UniMatch (Yang et al., 2023) is a hybrid method based on
FixMatch (Sohn et al., 2020), which combines consistency reg-
ularization with pseudo-labeling. This approach still remains as
one of the state-of-the-art methods for S4.

The central idea of UniMatch is to enforce consistency between
dual perturbations and feature perturbations, while pseudo-
labels are generated from the model’s own predictions on un-
labeled data. Weak perturbations include transformations like
resizing, cropping, and flipping, while strong perturbations ap-
ply more aggressive transformations such as color jitter and
CutMix (Yun et al., 2019). The pseudo-labels are treated
as ground truth if their softmax confidence exceeds a certain
threshold, ensuring that only high-quality pseudo-labels con-
tribute to training.

The total loss function of UniMatch is defined as the average of
the supervised and unsupervised losses:

LUniMatch =
1

2
(Ls + Lu) . (4)

For unlabeled images, the unsupervised loss Lu is applied only
if the softmax confidence of the weakly augmented prediction
exceeds a pre-defined threshold τ . This ensures that the model
only learns from pseudo-labels that are reliable enough:

Lu = 1
(
max(pw) ≥ τ

)
·(

λLs(p
w, pfp) +

µ

2

(
Ls(p

w, ps1) + Ls(p
w, ps2)

))
, (5)
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where pw represents the weakly augmented softmax probability,
pfp is the feature-perturbed softmax prediction using a dropout
layer (Srivastava et al., 2014), and ps1 , ps2 are the softmax prob-
abilities from two strongly augmented input images. The unsu-
pervised loss Lu is composed of two parts: a consistency term
between weak and feature-perturbed predictions, and a consist-
ency term between weak and strongly augmented predictions,
ensuring that the model’s predictions remain consistent under
different perturbations. Ls denotes the regular cross-entropy
loss with pw as the pseudo-label.

4. Experimental Setup

Hereinafter, we describe our experimental setup. We provide
details on all four datasets and on implementation details to en-
sure reproducibility.

4.1 Datasets

Table 1 provides an overview of the four datasets, each present-
ing unique challenges and characteristics.

Remote Sensing. The WHU-CD (Ji et al., 2018) and LEVIR-
CD (Chen and Shi, 2020) datasets consist of aerial or satellite
images taken years apart to monitor urban changes. WHU-
CD captures building changes in post-earthquake Christchurch,
New Zealand, while LEVIR-CD monitors urban development
in Texas, USA. Both datasets are commonly used for urban
change detection.

Medical Imaging. The ACDC dataset (Bernard et al., 2018)
comprises 200 MRI frames that consist of a series of sequential
slices, which together form a 3D representation of the heart.
The task is to segment the left ventricle, myocardium, and right
ventricle. Following Luo et al. (2022), the dataset is divided
into 140 frames from 70 patients for training and 60 frames
from 30 patients for testing.

Machine Vision. The T-LESS dataset (Hodan et al., 2017) is
an RGB-D dataset for 6D pose estimation of textureless ob-
jects and is part of the BOP Challenge (Hodan et al., 2024). It
consists of 30 objects without significant texture, color, or re-
flection features, often similar in shape and size, characteristics
typical of industrial settings.

4.2 Implementation Details

Architecture. For all experiments, we adopt DeepLabv3+
(Chen et al., 2018) with a ResNet-101 backbone (He et al.,
2016), ensuring competitive performance across diverse do-
mains. This well-established architecture not only guarantees
robust results but also facilitates future comparisons, as its
widespread use allows for consistent benchmarking across stud-
ies.

Training. In terms of training, we largely follow the sug-
gestions of Mean Teacher (Tarvainen and Valpola, 2017) and
UniMatch (Yang et al., 2023) in terms of data augmentations
and initial hyperparameters. We use a Stochastic Gradient Des-
cent optimizer with a momentum of 0.9, and weight decay of
0.0001 as optimizer-specific hyperparameters. Dataset-specific
hyperparameters can be found in Table 2. Additionally, we em-
ploy a polynomial learning rate scheduler:

lr = lrbase · (1−
iteration

total iterations
)0.9 , (6)

where lr is the current learning rate and lrbase is the initial base
learning rate.

Metrics. For the remote sensing datasets, WHU-CD and
LEVIR-CD, we report the changed-class Intersection over
Union. In contrast, for the medical imaging dataset, ACDC,
we follow previous work (Tarvainen and Valpola, 2017; Yang
et al., 2023) and report the Mean Dice. Finally, we report the
mean Intersection over Union, also known as the Jaccard Index,
for the machine vision setting with the T-LESS dataset.

5. Results

In this section, we present the evaluation results. First,
we provide quantitative comparisons of Mean Teacher and
UniMatch on WHU-CD, LEVIR-CD, ACDC, and T-LESS,
benchmarking them against a fully supervised baseline. The
supervised baseline uses the same architecture and hyperpara-
meters but is trained solely with the supervised loss, as defined
in Equation 3. Next, we present qualitative results of UniMatch
for all four datasets.

For the training splits, we follow the methodology of Bandara
and Patel (2022) for WHU-CD and LEVIR-CD. For ACDC, we
adopt the approach used by Yang et al. (2023), utilizing images
from one, three, or seven patients, corresponding to approxim-
ately 2.5%, 5%, and 10% of the dataset, respectively. As this is
the first evaluation of S4 on T-LESS, we use the training splits
from MS COCO (Lin et al., 2014), given its comparable dataset
size.

5.1 Quantitative Evaluation

WHU-CD. As shown by Table 3, utilizing the ResNet-101
(RN-101) backbone consistently improves performance over
the smaller ResNet-50 (RN-50). Reducing the number of avail-
able labels from 40% to 5% significantly deteriorates perform-
ance for the supervised baseline (80.6% to 60.8%). Mean
Teacher shows notable improvements but also struggles with
only 5% of labels (64.0%). In contrast, UniMatch consistently
performs well across all splits, achieving 80.9% to 86.6%.

LEVIR-CD. Table 3 reveals that the larger RN-101 backbone
offers minimal improvement over RN-50. The performance gap
between Mean Teacher and UniMatch is also smaller. Mean
Teacher achieves 78.7% to 81.9%, while UniMatch slightly out-
performs it, ranging from 80.7% to 82.7%. Notably, with the
40% label split, the difference between the supervised baseline
and UniMatch is only 2.3%.

ACDC. Based on the results highlighted in Table 4, swapping
the U-Net architecture with a DeepLabv3+ using the RN-101
backbone results in significant improvements for the supervised
baseline (from 28.5% to 62.5% using U-Net, to 50.1% to 86.5%
with DeepLabv3+). Similar, albeit less striking, improvements
are observed for the Mean Teacher approach. UniMatch’s gains
are more modest, improving from 85.4% to 89.9% (compared
to 86.7% to 90.7% with the updated architecture). However,
UniMatch’s performance is particularly strong in the 1-case
scenario, where only labeled images of a single patient were
used, showing only a 4.0% drop in performance compared to a
36.4% decrease for the supervised baseline.

T-LESS. As Table 5 shows, for T-LESS, the supervised
baseline yields poor results with smaller fractions of labeled
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Domain Resolution (W × H) Training Images Test Images
WHU-CD (Ji et al., 2018) Remote Sensing 256 × 256 5947 743
LEVIR-CD (Chen and Shi, 2020) Remote Sensing 256 × 256 7120 1024
ACDC (Bernard et al., 2018) Medical Imaging 256 × 256 1312 610
T-LESS (Hodan et al., 2017) Machine Vision 720 × 540 87584 (synth. + real) 10080 (real)

Table 1. Overview of the datasets that we used for evaluation.

Batch Size Learning Rate Epochs Crop Size
WHU-CD (Ji et al., 2018) 8 0.02 80 256 × 256
LEVIR-CD (Chen and Shi, 2020) 8 0.02 80 256 × 256
ACDC (Bernard et al., 2018) 8 0.25 400 256 × 256
T-LESS (Hodan et al., 2017) 8 0.005 30 512 × 512

Table 2. Overview of the hyperparameters used for training.

Figure 1. Qualitative examples of UniMatch (20% split) on
WHU-CD. From left to right: image A, image B, ground truth,

and prediction.

data, achieving only 19.5% with the 1/512 split. In compar-
ison, when training with all available data, 65.6% are attained.
Mean Teacher demonstrates considerable improvements across
all splits, ranging from 38.5% to 67.5%. However, UniMatch
outperforms both the baseline and Mean Teacher, with results
spanning from 55.6% to 75.9%. Notably, UniMatch surpasses
the fully supervised baseline with only 685 labels (1/128 split)
already, achieving an impressive 71.9%. These striking findings
will be discussed further in Section 6.

5.2 Qualitative Evaluation

Figures 1, 2, and 4 provide qualitative examples from the
WHU-CD, LEVIR-CD, and T-LESS datasets, respectively,
showcasing the performance of the UniMatch models. In each
figure, the first row represents a positive example where the
predictions are nearly indistinguishable from the ground truth,
demonstrating the model’s ability to accurately solve the task.
In contrast, the second row illustrates cases where the model
struggles, either missing an entire building for WHU-CD and
LEVIR-CD or producing noisy and incomplete segmentation
masks for T-LESS. Notably, the third row highlights instances
where the ground truth appears to be inaccurate — missing
changes in WHU-CD and LEVIR-CD or overlapping object
boundaries in T-LESS — yet the model’s predictions seem
more plausible and closer to the expected outcomes.

Similarly, Figure 3 presents qualitative examples from the

Figure 2. Qualitative examples of UniMatch (20% split) on
LEVIR-CD. From left to right: image A, image B, ground truth,

and prediction.

Figure 3. Qualitative examples of UniMatch (7 cases) on ACDC.
The left column shows the input image with the ground truth

overlaid, while the right column shows the corresponding
predictions.

ACDC dataset, where the first row shows near-perfect segment-
ation across all three classes, while the second row illustrates
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Remote Sensing WHU-CD LEVIR-CD
5% (297) 10% (594) 20% (1189) 40% (2378) 5% (356) 10% (712) 20% (1424) 40% (2848)

R
N

-5
0 SupBaseline (Yang et al., 2023) 54.1 60.9 68.4 76.2 69.3 76.0 77.6 80.5

SemiCD (Bandara and Patel, 2022) 65.8 68.1 74.8 77.2 72.5 75.5 76.2 77.2
UniMatch (Yang et al., 2023) 80.2 81.7 81.7 85.1 80.7 82.0 81.7 82.1

R
N

-1
01 SupBaseline 60.8 59.6 66.4 80.6 69.7 75.1 78.0 80.4

Mean Teacher 64.0 73.9 80.6 84.4 78.7 80.6 81.6 81.9
UniMatch 80.9 85.5 85.6 86.6 80.7 82.2 82.4 82.7

Table 3. Quantitative comparisons of the changed-class Intersection over Union on the WHU-CD and LEVIR-CD datasets for
different training splits and architectures. Best respective results are marked in bold.

Medical Imaging 1 case 3 cases 7 cases

R
N

-5
0 SupBaseline (Yang et al., 2023) 28.5 41.5 62.5

MeanTeacher (Tarvainen and Valpola, 2017) - 56.6 81.0
UniMatch (Yang et al., 2023) 85.4 88.9 89.9

R
N

-1
01 SupBaseline 50.1 72.1 86.5

Mean Teacher 59.6 80.9 88.8
UniMatch 86.7 90.1 90.7

Table 4. Quantitative comparisons of Mean Dice on the ACDC
dataset for different training splits and architectures. Best

respective results are marked in bold.

Figure 4. Qualitative examples of UniMatch (1/4 split) on
T-LESS. From left to right: input image, ground truth, and

prediction.

the model’s difficulty in detecting one class, indicating its lim-
itations in more challenging scenarios.

Additionally, Figure 5 provides qualitative examples of Mean
Teacher for the positive samples from Figures 1-4. While the
results from Mean Teacher are generally satisfactory, they fall
short of matching the performance of UniMatch, supporting the
quantitative comparisons.

6. Discussion

The results demonstrate that semi-supervised approaches con-
sistently outperform fully supervised models, particularly in
label-scarce scenarios. UniMatch not only shows greater resili-
ence to reductions in labeled data than Mean Teacher but also
delivers the best results across all experiments.

A key observation of our study is that UniMatch even surpasses
the fully supervised baseline with 100% of the labels in sev-
eral T-LESS splits. This may seem counterintuitive, but as

Figure 5. Qualitative examples of Mean Teacher across all
domains. From top to bottom: WHU-CD (20% split),

LEVIR-CD (20% split), ACDC (7 cases), and T-LESS (1/4
split).

shown in Figure 6, the training labels often fail to accurately
capture object boundaries, while the pseudo-labels generated
by UniMatch provide better results. Fully supervised models
likely overfit on these noisy or inaccurate labels, which weak-
ens their generalization, especially in the presence of the do-
main gap between synthetic training and real test images. These
findings are supported by the work of Zhang et al. (2021a),
which highlights how large models can overfit noisy training
data. Similarly, French et al. (2019) stress the importance
of strong augmentations in semi-supervised segmentation, a
plausible factor in UniMatch’s superiority over Mean Teacher,
which relies mainly on consistency regularization. Finally, re-
cent work on foundation models in monocular depth estimation
(Yang et al., 2024) emphasizes the benefits of strong perturba-
tions on unlabeled data, further supporting UniMatch’s robust
performance.
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Machine Vision 1/512 (172) 1/256 (342) 1/128 (685) 1/64 (1370) 1/32 (2738) 1/16 (5474) 1/8 (10948) 1/4 (21896) 1/2 (43792) 1 (87584)
SupBaseline 19.4 31.0 39.1 47.3 55.7 52.3 55.1 54.4 59.9 65.6
MeanTeacher 38.5 47.3 56.4 58.5 61.4 62.9 64.2 65.0 67.5 -
UniMatch 55.6 61.8 71.9 74.0 75.3 74.3 75.3 75.9 73.0 -

Table 5. Quantitative comparisons of the mean Intersection over Union on the T-LESS dataset for different training splits, using a
DeepLabv3+ architecture with a ResNet-101 backbone. Best respective results are marked in bold.

(a) Image (b) Ground Truth

(c) Strongly Perturbed Image (d) Pseudo-label

Figure 6. Representative example of UniMatch pseudo-label of
strongly perturbed image after just 5 training epochs in

comparison to the original GT.

7. Conclusion

In this work, we demonstrated that semi-supervised approaches
are able to provide a significant performance gain over fully su-
pervised models for semantic segmentation in label-scarce en-
vironments across remote sensing, medical imaging, and ma-
chine vision settings. UniMatch, in particular, not only proved
remarkably resilient to reductions in labeled data but also out-
performed the fully supervised baseline on T-LESS with just
1/128 of the labels. It shows that by leveraging more accurate
pseudo-labels and strong perturbations, the model is less likely
to overfit to noisy labels, which is a common limitation of tra-
ditional supervised methods. These results confirm the value of
applying semi-supervised techniques across diverse domains,
emphasizing their potential for real-world applications.

For future work, leveraging pseudo-labels from large-scale
teacher models, as suggested by Yang et al. (2024), could
help overcome the limitations of synthetic images, such as do-
main gaps and inaccurate labels, while enhancing their advant-
ages. Additionally, incorporating uncertainty estimation, which
has proven useful in semantic segmentation (Landgraf et al.,
2024a,b,c), could be explored within semi-supervised pipelines
for further improvements in label-scarce environments where
creating pixel-level annotations is time-consuming and costly.
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