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Abstract 
This study investigates the application of point cloud data for identifying and analyzing scratch patterns on walls within underground 
parking lots. As parking demands increase, narrow passages, intricate turns, and suboptimal layouts in parking facilities heighten minor 
collision risks, leading to substantial financial and operational costs. Conventional assessment methods, relying on on-site surveys and 
video surveillance, often fail to capture accurate spatial details and minor wall damages. This research employs high-precision point 
cloud data, complemented by image data, to precisely model and analyze parking lot layouts and scratch-prone areas. A novel approach 
integrating YOLOv10 object detection and PTv3 point cloud processing algorithms is developed to detect and localize scratches, while 
spatial analysis evaluates design factors affecting scratch distribution. Using handheld SLAM scanning devices, point cloud data was 
efficiently collected from five representative underground parking lots. The analysis of these datasets, which captured 327 wall 
scratches, reveals that structural layout and lighting conditions significantly influence scratch occurrence patterns, highlighting the 
potential of point cloud data in improving safety-oriented parking facility design. 

1. Introduction

Parking lot accidents, particularly minor scrapes and collisions, 
occur frequently and pose significant safety risks. The likelihood 
of such incidents has increased due to multiple factors: the rising 
number of vehicles, growing demand for parking, and poor 
parking lot designs with narrow passages, complex turning 
angles, and inefficient layouts. While these accidents may not 
result in consequences as severe as major traffic collisions, their 
high frequency makes them a notable concern. According to the 
National Safety Council research report, parking lot accidents 
account for 20% of all vehicle collisions in the United States, 
resulting in approximately 60,000 injuries and an estimated 500 
fatalities annually (Council, 2023). In China, despite typically 
low vehicle speeds in these areas, 15.9% of child traffic accidents 
occur in parking lots, and roadside parking zones (Bureau, 2022). 
Therefore, implementing well-planned parking lot designs and 
efficient spatial layouts is crucial for enhancing traffic safety. 
Moreover, there is a practical necessity to evaluate and optimize 
existing parking facilities to address these safety concerns. 

Currently, parking facility assessment primarily relies on field 
surveys (Akai et al., 2021), surveillance camera data (Shih and 
Tsai, 2014), and vehicle trajectory analysis (Rahmani-Andebili 
et al., 2018). However, traditional evaluation methods often lack 
precision in capturing spatial details, particularly when assessing 
minor damages such as wall scratches, making it challenging to 
fully understand the actual environmental conditions under 
which accidents occur. These methods also provide limited 
insight into the three-dimensional spatial characteristics of 
parking facilities, failing to accurately reflect the spatial 
relationships between walls, obstacles, and vehicles. Such 
limitations often prevent potential issues from being identified 
and resolved during the design phase or early operational stages. 

In recent years, with the advancement of three-dimensional laser 
scanning technology, point cloud data has emerged as a powerful 

tool for parking facility design and assessment (Gong et al., 2019). 
Point cloud data provides high-precision three-dimensional 
information, enabling accurate spatial coordinate representation 
of structural elements, walls, and obstacles within parking 
facilities. Compared to traditional two-dimensional data or image 
analysis, point cloud technology offers deeper insights into the 
spatial characteristics of parking facilities and aids in identifying 
accident-prone areas and their relationships with the surrounding 
environment through geometric analysis. The integration of point 
cloud data with image information effectively addresses many 
challenges in parking facility environmental assessment, 
demonstrating particular advantages in identifying wall scratches 
and analysing spatial constraints. 

This study aims to employ an integrated approach combining 
point cloud data and imagery to identify existing wall scratches 
in parking facilities and conduct a detailed analysis of the 
surrounding features in affected areas. Through data collection 
and analysis from five different parking facilities, we seek to 
reveal the spatial characteristics that contribute to scratch 
formation and propose recommendations for optimizing parking 
lot design to reduce similar incidents in the future. 

2. Related work

Methods for three-dimensional modeling of indoor parking lots 
have evolved into a robust and comprehensive technical system 
(Kang et al., 2020). Regarding data acquisition, point cloud data 
is primarily collected using Terrestrial Laser Scanners (TLS), 
handheld laser scanners, or Mobile Laser Scanning systems 
(MLS). Data quality is further enhanced through preprocessing 
steps including point cloud registration, noise filtering, and 
downsampling. The modeling methods are commonly classified 
into three categories:  
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The first category comprises modeling methods based on plane 
extraction, such as RANSAC algorithms, region growing 
methods, and Hough transforms, which are particularly suitable 
for identifying and processing regular planar features, like walls 
and floors in parking facilities (Yang et al., 2022). The second 
category involves modeling methods based on semantic 
segmentation, which employ deep learning networks (e.g., 
PointNet++ and DGCNN) or traditional machine learning 
approaches (such as Random Forest and SVM) for point cloud 
semantic segmentation, enabling accurate identification and 
preservation of component classification information (Qi et al., 
2017, Wang et al., 2019). The third category consists of 
parametric modeling methods, primarily using BIM and CAD-
based parametric modeling, which are capable of generating 
standardized models in compliance with engineering 
specifications (Tang et al., 2010, Volk et al., 2014). Each method 
offers unique applications and advantages, necessitating careful 
selection or combination based on specific project requirements. 
 
The spatial structure analysis of indoor parking facilities based 
on three-dimensional models has matured into a systematic 
research methodology. In spatial topology analysis, researchers 
have developed graph-theory-based approaches to study 
connectivity between functional areas and characterize spatial 
organization (Stephan et al., 2021). For accessibility analysis, 
space syntax modeling evaluates inter-regional accessibility, 
providing a foundation for traffic flow optimization (Ma and Xue, 
2020). In terms of visibility analysis, viewshed analysis methods 
examine drivers’ field of vision and blind spot distribution, 
focusing especially on visual obstructions at corners and around 
columns (Ma et al., 2022). For evacuation path analysis, 
personnel evacuation simulation technology assesses emergency 
evacuation efficiency, offering essential reference points for 
safety design (Young-Joo and II-Chean, 2019). The 
comprehensive application of these analytical methods provides 
a scientific basis for optimizing the spatial design of parking 
facilities. 
 
Research on accident characteristics and layout impact factors in 
indoor parking facilities has revealed significant underlying 
safety concerns. Regarding accident types, these primarily 
include vehicle-to-vehicle collisions and scratches, reverse 
parking accidents, and vehicle-pedestrian conflicts, with high 
occurrence rates at turns, entrances/exits, ramps, and near 
columns (Zhang et al., 2023). Layout factors affecting parking 
facility safety can be categorized into three types:  
 
The first type includes geometric factors, such as parking space 
dimensions and shapes (considering varied vehicle turning radii), 
aisle width (accommodating two-way traffic), turn radius 
(affecting sight distance and turning safety), ramp gradient 
(related to driving stability), and clearance height (for various 
vehicle types). The second type encompasses environmental 
factors, including lighting systems (requiring uniform 
illumination and adequate brightness), ventilation (influencing 
visibility), signage (necessitating clarity and visibility), and anti-
slip measures (especially on ramps and turns). The third type 
involves traffic organization factors, covering one-way or two-
way traffic flow, vehicle-pedestrian separation, entry/exit 
quantity and placement, and traffic signage arrangement. The 
scientific design and optimization of these factors play a crucial 
role in enhancing parking facility safety and must be carefully 
considered during the planning and design stages 
(Douissembekov et al., 2014). 
 

3. Methodology 

The technical workflow for analyzing wall scratches in parking 
facilities using three-dimensional point cloud data is illustrated 
in Figure 1.  
 
The data collection process was initiated with a Simultaneous 
Localization and Mapping (SLAM) device capturing point cloud 
data while multi-angle cameras simultaneously gathered image 
data. During the data preprocessing phase (Step 1), the point 
cloud data underwent noise reduction and downsampling, while 
the image data was enhanced through histogram equalization and 
edge enhancement. In the wall scratch recognition phase (Step 2), 
a deep learning model was employed to identify and classify 
scratches. Following this, in Step 3, an interior feature analysis 
was conducted to measure the spatial structures in scratch-
affected areas and evaluate lighting conditions within these zones. 
Finally, in the correlation analysis phase (Step 4), features were 
aligned, and a clustering algorithm was applied to analyze scratch 
distribution patterns. This comprehensive analysis has revealed 
environmental factors’ impact on scratch formation, providing 
data-driven support for design optimization of parking facilities. 
The detailed workflow steps are as follows: 
 
3.1 Data preprocessing 

Data acquisition was performed using the Feima SLAM-100 
three-dimensional laser scanner, which employs SLAM 
technology to enable simultaneous scanning and mapping while 
in motion, with a scanning accuracy of ±3cm@10m, 
measurement range of 0.1m-100m, and scanning speed of 
430,000 points per second. Operators carried the handheld device 
while walking through the parking facilities at a constant speed 
of 1m/s along predetermined paths, ensuring uniform point cloud 
coverage. During data collection, real-time SLAM positioning 
and mapping technology was employed, eliminating the need for 
manual target placement. The collection device integrated an 
IMU (Inertial Measurement Unit) sensor, which automatically 
compensated for posture changes during the collection process, 
enhancing acquisition accuracy. After collection, trajectory 
optimization was performed using the device’s built-in SLAM 
loop closure detection functionality, achieving a loop closure 
detection accuracy better than 5cm. Within each parking lot, the 
planned collection paths covered all driving lanes and major 
structural areas, with total path lengths varying according to the 
parking lot area.  
 
Point cloud data preprocessing: Initially, the Statistical Outlier 
Removal (SOR) algorithm was applied to remove noise from the 
point cloud data. This algorithm identifies and removes 
anomalous points by analyzing the statistical characteristics of 
each point’s neighborhood, making it particularly suitable for 
processing indoor LiDAR point cloud data (Rusu et al., 2008). In 
practice, setting the number of neighboring points K=50 and the 
standard deviation threshold to 2.0 effectively removed 
measurement noise.  
 
Subsequently, Voxel Grid Filter was employed for 
downsampling, which simplifies data by replacing all points 
within each voxel with the voxel center point, better preserving 
the geometric features of the point cloud (Elseberg et al., 2013). 
During downsampling, the voxel size was set to 0.05m, reducing 
data volume by approximately 70% while maintaining geometric 
features. 
 
Image data preprocessing: The image data underwent 
histogram equalization and edge enhancement to improve the 
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visibility of scratch areas. 
 
The Feima SLAM processing software was utilized to integrate 
the image and three-dimensional point cloud data, enabling color 
information to be mapped onto the point cloud. This fusion 
process enhanced the point cloud data by displaying precise color 
details from the images on the three-dimensional structure, 
thereby improving the visualization and interpretability of 
environmental features within the parking facilities. 

 
3.2 Scratch Detection 

Scratch Detection in Image Data: This study established a 
comprehensive detection process based on a deep learning-based 
object detection algorithm, aiming at the automated detection and 
analysis of scratches on parking lot walls. During the dataset 
preparation phase, the research team randomly selected 5,000 
high-resolution images of parking lot walls from the collected 
images, each with a resolution of 2592×1944 pixels. To ensure 
consistency and reliability in labeling, strict scratch identification 
criteria were developed (Figure 2). Specifically, scratches visible 
under standard parking lot lighting with a linear damage length 
exceeding 5 cm and a width ranging from 0.5 mm to 5 cm were 
defined as valid scratch samples. Moreover, to account for the 
varied forms of scratches, damage types were subdivided into 
three categories: deep scratches (penetrating to the base material), 
surface scratches (affecting only the paint layer), and impact 
damage (characterized by circular or irregular patterns). For 
model training and evaluation, the dataset was divided into a 
training set (70%) and a test set with the remaining 30%, ensuring 
a balanced representation of each scratch type in both subsets. 
 

 
 
Figure 2. Visual identification criteria and classification of wall 
scratches  
 
Model Development: YOLOv10 was selected in this study with 
CSPNet (Cross Stage Partial Network) as the backbone network 
(Wang et al., 2024). Considering variable lighting conditions and 
viewing angles in parking lots, data augmentation strategies were 
introduced in the preprocessing stage. These included uniformly 
resizing input images to 1280×1280 pixels, applying random 
rotations of ±15°, brightness adjustments of ±20%, and 
horizontal flips. The model was trained using mini-batch 
stochastic gradient descent with a batch size of 32, an initial 
learning rate of 1e-4, and a cosine annealing strategy for dynamic 
adjustment. To prevent overfitting, training was limited to 100 
epochs, with early stopping implemented at a patience of 15 
epochs. Additionally, the confidence threshold for inference was 
set at 0.5, and the non-maximum suppression (NMS) threshold at 
0.4, balancing detection accuracy with recall. 
 
Scratch Localization in 3D: To achieve 3D localization of 
scratch center points, this study mapped the scratch center from 
2D image space to 3D point cloud through coordinate 
transformation. Initial correspondences between 2D image 
features and 3D point cloud coordinates were established via 
SIFT-based feature matching between image projections and 

point cloud views. Using intrinsic camera parameters and 
extrinsic data from the Feima SLAM100 sensor, scratch center 
coordinates were transformed from 2D to 3D space. To enhance 
accuracy, the RANSAC algorithm optimized the transformation 
matrix, and bundle adjustment minimized reprojection error, 
ensuring precise 3D positioning of scratches. 
 
3.3 Spatial feature Analysis 

To analyze indoor features around scratch locations, detailed 
analysis was conducted on wall structures, spatial layouts, and 
lighting conditions in scratch-affected areas. 
 
Spatial Structure Extraction: Considering the structured 
characteristics of parking lot environments, we employed Point 
Transformer V3 (Wu et al., 2024) pre-trained on the Stanford 
Large-Scale 3D Indoor Spaces (S3DIS) dataset, which provides 
high-quality annotations for walls, columns, and ground surfaces 
among its 13 semantic classes. Point Transformer V3 
demonstrates state-of-the-art performance on S3DIS through its 
improved self-attention mechanism and efficient local 
aggregation strategy. We directly utilized the pre-trained weights 
of their released model, which achieves 74.5% mean IoU on the 
S3DIS Area 5 test set, ensuring robust performance on structural 
element recognition. The model effectively processes point 
clouds using its hierarchical vector attention and local vector self-
attention modules, operating at multiple scales to capture both 
fine-grained geometric details and global structural information. 
 
Spatial Structure and Obstacle Analysis: Through semantic 
analysis of the point cloud, spatial constraints in scratch areas 
were analyzed. Wall-to-column distances were calculated as the 
minimum distance between the scratch wall W and the centreline 
of the nearest column C: 
 
 

𝑑𝑑𝑊𝑊,𝐶𝐶 = min
𝑝𝑝𝑤𝑤∈𝑊𝑊

�
(𝑐𝑐2���⃗ − 𝑐𝑐1���⃗ ) × (𝑐𝑐1���⃗ − 𝑝𝑝𝑤𝑤�����⃗ )

|𝑐𝑐2���⃗ − 𝑐𝑐1���⃗ | � 
(1) 

 
 
where pw�����⃗  is a point on the scratch wall, c1���⃗  and 𝑐𝑐2���⃗  are two points 
defining the column centreline. 
 
The wall angle α at scratch location was measured as the 
deviation from horizontal line: 
 
 

α = arccos�
𝑛𝑛𝑤𝑤�����⃗ ⋅ ℎ�⃗

|𝑛𝑛𝑤𝑤�����⃗ ||ℎ�⃗ |
� ⋅

180
π  

(2) 

 
 
where nw�����⃗  is the wall surface normal vector at scratch location, 
and h�⃗ = [1,0,0]  is the horizontal reference direction. The 
resulting α  is in degrees, representing the wall’s horizontal 
curvature at scratch position. 
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Figure 3. Schematic Diagram of Spatial Structure and Obstacle 
Analysis: (a) wall-column distance calculation, (b) scratch wall 
angle calculation. 
 
Lighting Condition Analysis: For each image containing 
scratches, an image processing tool (Python’s OpenCV library) 
was used to convert the color image to a grayscale image, 
followed by calculating the average grayscale value of all pixels 
within the image, serving as an indicator of the local light 
intensity. 
 
To convert the grayscale value to physical illuminance (lux), an 
empirical grayscale-to-lux conversion relationship was 
established. In an experimental setting, a light meter (Delixi 1802) 
measured the actual light intensity at multiple points, and images 
of the corresponding areas were taken. Five representative 
measurement points were selected, covering low, medium, and 
high illuminance levels, including 25 lux, 50 lux, 100 lux, 150 
lux, and 200 lux. At each point, the actual illuminance and the 
corresponding average grayscale value of the image region were 
recorded. Using these data points, a mapping relationship from 
grayscale values to lux was developed through linear or 
polynomial regression. This conversion relationship was then 
applied to transform the average grayscale value of each scratch 
image into the corresponding illuminance value, supporting 
subsequent analysis of the relationship between illuminance and 
scratch occurrence. 
 
After obtaining the illuminance value for the scratch area in each 
image, the illuminance values of all images were grouped into 
intervals, with each interval spanning 25 lux (e.g., 0-25, 25-
50, …). Then, within each illuminance group, the number of 

images containing scratches was counted, yielding the scratch 
frequency across different illuminance intervals. 
 
3.4 Correlation Analysis of Scratches with Spatial Features  

To investigate the relationship between scratch distribution and 
indoor architectural elements, advanced image analysis 
techniques were employed to examine correlations between 
scratch locations and the design of parking facilities. The 
DBSCAN clustering algorithm was applied to evaluate the spatial 
distribution patterns of scratches, pinpointing high-frequency 
scratch zones. Additionally, by integrating spatial features such 
as wall-to-column distances and corner angles, a statistical 
analysis identified key environmental factors contributing to 
scratch formation. 
 

4. Experiments 

4.1 Datasets 

To validate the proposed methodology, we collected point cloud 
data from five diverse parking lots, ensuring a representative 
dataset (Table 1).  
 
Table 1. Characteristics of Five Parking Lot Datasets 

Dataset Number 
of Points 
(Million
) 

Area 
 (Square 
Meters/Le
vel) 

Collecti
on Path 
Length 
(Meters) 

Collection 
Duration 
(Seconds) 

# P1 
(Residential 
parking lot) 

126 5236 
2 floors 

477 642 

# P2 
(Office 
building 
parking lot) 

176 3595 
3 floors 

837 1034 

# P3 
(University 
parking lot) 

237 2,375 
2 floors 

704 1160 

# P4 
(University 
parking lot) 

127 3,091 
1floor 

441 620 

# P5 
(Office 
building 
parking lot) 

72 Only 
entrances 
and exits 

273 502 

 
These parking lots were strategically selected to encompass a 
range of urban scenarios. P1 represents a residential complex 
parking lot with two floors, characterized by relatively dim 
lighting and a complex layout tailored to long-term parking needs. 
P2 and P5 are located within commercial office buildings; P2 is 
a modern, three-floor garage with well-maintained facilities and 
sufficient lighting, whereas P5 is a gated facility with data 
focused primarily on high-traffic entrance/exit areas. The dataset 
further includes two university parking lots (P3 and P4), each 
with unique designs: P3 is a two-floor underground structure with 
limited lighting, and P4 is a single-floor open lot. This selection 
ensures a comprehensive dataset that reflects a variety of 
architectural layouts, lighting conditions, and usage patterns. The 
office building parking lots (P2, P5) generally feature superior 
facilities and lighting systems, while P1, P3, and P5 exhibit more 
challenging lighting environments. The diverse internal layouts 
and structural designs across these parking lots enhance our 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-535-2025 | © Author(s) 2025. CC BY 4.0 License.

 
538



 

ability to assess the method’s robustness across different spatial 
configurations.  
 

 
Figure 5. Cross-sectional point cloud visualization of parking 

lots P1-P5, with subfigures (a)-(e) representing each lot 
respectively. 

The final 3D point cloud model integrates image data, providing 
top-view and cross-sectional perspectives of the dataset, as 
illustrated in Figures 4 and 5. Across the five parking facilities, a 
total of 181 wall sections and 441 columns were identified, 
excluding the restricted entrance in P5. These parking facilities 
exhibit diverse structural characteristics: ceiling heights range 
from approximately 2.5 meters to 4.2 meters, and column spacing 
varies from 5 to 6 meters, depending on the design of each facility. 
All structures feature concrete walls, with surface roughness and 
flatness differing significantly across the facilities. This diversity 
of characteristics aids in validating the algorithm’s adaptability 
and robustness across various structural configurations. 
 
4.2 Results and discussions 

4.2.1 Validation of Scratch Detection Algorithm 
This study employed the Confusion Matrix and its derived 
metrics for quantitative evaluation of the proposed scratch 
detection algorithm (Table 2). The overall accuracy reached 
94.4%, indicating that 119 out of 126 samples were correctly 
classified - this measures the proportion of all correct predictions. 
In terms of precision, which represents the proportion of true 
positive predictions among all positive predictions, 89.5% of all 
samples identified as scratches were true scratches, 
demonstrating a low false positive rate. Regarding recall, which 
indicates the proportion of actual positives correctly identified, 
91.9% of all actual scratch samples were successfully detected, 
showing a low false negative rate. 
 
Table 2. Confusion Matrix Results of the Scratch Detection 
Algorithm 
 

 Prediction 
Scratches Non-scratches 

Ground-
truths 

Scratches 34（91.9%） 3（8.1%） 
Non-
scratches 

4（4.5%） 85（95.5%） 
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4.2.2 Visualization of Experimental Results 
Through systematic identification, a total of 327 valid scratches 
were detected, comprising 196 surface scratches, 97 deep 
scratches, and 34 impact damages. This dataset provides robust 
quantitative evidence for assessing wall damage in parking 
facilities. 
 
The spatial analysis revealed that 90-degree corner areas 
exhibited the highest concentration of scratches, accounting for 
42% of the total, followed by other wall angles at 35%—
primarily observed at turning entrances and exits—while straight 
wall areas showed relatively fewer scratches, accounting for only 
23% (Figure 6). This distribution pattern highlights the differing 
levels of collision risk across areas within the facility. 90-degree 
wall intersections had notably higher scratch incidences than 
straight wall sections, with the former showing twice as many 
scratches as the latter. In narrow spaces where the distance to 
columns was less than 6 meters, scratch density was 
approximately twice as high as in more open areas. 
 

 
Figure 6. Impact of Lighting Conditions on Scratch Incidence 
 

 
Figure 7. Scratch Incidence by Structural Type and Proximity to 
Columns 
 
Correlation analysis between environmental factors and scratch 
distribution demonstrated that lighting conditions significantly 
impact scratch formation (Figure 7). In poorly lit areas 
(illuminance below 50 lux), the frequency of scratches was 2.3 

times higher than in well-lit areas. Moreover, areas with high 
lighting contrast exhibited approximately 35% more scratches. 
These findings suggest that enhancing lighting conditions could 
be an effective strategy for reducing scratch occurrence in 
parking facilities. 
 
 

5. CONCLUSIONS AND FUTURE WORK 

This study proposed and validated a method combining three-
dimensional point cloud data with image data for identifying 
parking lot wall scratches and conducting in-depth analysis of 3D 
spatial characteristics. Through the application of advanced deep 
learning algorithms including YOLOv10 and PTv3, modeling 
and analysis were performed on data from five different types of 
parking facilities. Results indicate that scratch distribution in 
parking facilities is closely correlated with spatial layout and 
lighting conditions. Particularly in narrow passages and corner 
areas, scratch frequency increased significantly, providing 
scientific evidence for improving parking facility design and 
effectively reducing risks in high-incident areas. The innovation 
of this study lies in combining high-precision three-dimensional 
modeling of point cloud data with image recognition technology, 
providing new tools for parking facility design and safety 
management, overcoming limitations of traditional planar data or 
surveillance footage in detail capture and spatial relationship 
analysis. 
 
The primary limitations of this study arise from data collection 
challenges specific to indoor parking facilities. In particular, the 
unpredictable lighting conditions caused by motion-sensor 
lighting systems significantly impacted data quality, as low 
lighting levels could result from lights being inactive. 
Additionally, restricted access to gated indoor parking lots, as 
encountered with P5 parking lot in our experiment, limited our 
ability to gather comprehensive spatial data. These constraints 
affected both the quantity and quality of the collected point cloud 
data, potentially influencing the robustness and reliability of our 
analysis. 
 
Future research could aim to develop advanced methodologies to 
overcome the current limitations in data collection, particularly 
addressing challenges related to variable lighting conditions in 
indoor environments. Implementing vehicle-mounted sensing 
technologies could simulate real-world driving experiences and 
enable synchronized data collection. Additionally, expanding the 
research scope to incorporate obstacle detection and more 
comprehensive 3D spatial analysis would deepen our 
understanding of parking facility layouts. This expanded analysis 
would include vertical circulation patterns, multi-level spatial 
relationships, and the distribution of structural elements across 
different floors. Such a holistic spatial analysis would offer 
valuable insights into the organizational efficiency of parking 
facilities, supporting more informed design decisions. These 
advancements would not only mitigate current methodological 
limitations but also contribute to a more nuanced understanding 
of parking facility spatial characteristics, ultimately enhancing 
the practical applicability of the proposed methodology in the 
design and management of modern parking infrastructure. 
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