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Abstract

Mapping large-scale tree species distributions is essential for accurately estimating forest carbon storage. Previous studies have
shown that Satellite Image Time Series (SITS) can be effective for classifying tree species. However, many of these studies rely
heavily on manual feature engineering or overlook critical geoscientific and forestry knowledge. Such domain-specific insights are
particularly important in Earth observation because the same species can exhibit diverse spatio-temporal behaviors across different
regions, leading to lower accuracy and limited model robustness. In this work, we propose a novel model, PTSViT, which integrates
phenological information with deep spatio-temporal features to address these limitations. Our model’s loss function incorporates
phenological priors, utilizing ground-based phenological data and tree species labels as supervisory signals to guide the learning
of spatio-temporal encoders. We evaluate PTSVIiT on a newly created dataset, GXData, which includes 11 major tree species in
GuangXi. Our model surpasses previous approaches across all evaluation metrics, demonstrating the value of integrating prior

knowledge for automated, accurate tree species mapping.

1. Introduction

Tree species mapping is essential for accurately assessing
forest biomass and carbon storage, both of which are critical
indicators of the global response to climate change. Detailed
information on tree species distribution not only enhances in-
sights into forest health and biodiversity but also forms the basis
for precise calculations of carbon storage within forest ecosys-
tems(Houghton, 2005). Traditional methods for mapping tree
species distribution have primarily relied on field surveys and
manual interpretation. While these approaches can produce ac-
curate results, their high time and labor costs limit their applic-
ability over large areas. Additionally, the coverage and accur-
acy of field surveys are often constrained by the researchers’
expertise and workload, making comprehensive and efficient
forest monitoring a considerable challenge(Foody, 2002).

With advances in remote sensing technology, the avail-
ability of extensive remote sensing data has significantly re-
duced the cost and complexity of mapping tree species. Data
from different modalities, such as satellite imagery, hyperspec-
tral imagery, and LiDAR, provides rich surface information,
enabling scientists to efficiently classify tree species(Fassnacht
et al., 2016). Current tree species mapping approaches typic-
ally operate at two scales: small scale (e.g., forest stands) and
large scale (e.g., provincial or national levels). Small-scale tree
species classification often utilizes hyperspectral imagery, high-
resolution imagery, or LiDAR data, which can deliver highly
detailed surface information and, consequently, higher classi-
fication accuracy(Fassnacht et al., 2016). However, the pro-
cessing costs of these data types are considerable, limiting their
scalability for large areas(Lu and Weng, 2007). As a result,
while small-scale mapping approaches achieve high classifica-
tion accuracy, they are often confined to localized studies and
pose challenges for large-scale forest biomass assessments.

In contrast, large-scale tree species classification typic-
ally utilizes medium-resolution satellite imagery, such as Land-
sat and Sentinel. These images cover extensive areas, en-

abling tree species mapping at provincial or national scales and
providing valuable data for forest biomass estimation(Wulder
et al.,, 2016). However, the relatively low spatial resolution
of medium-resolution imagery restricts the ability to accur-
ately distinguish between tree species, resulting in decreased
classification accuracy. Additionally, classification robustness
is challenged when dealing with complex terrain and diverse
forest ecosystems(Kanan et al., 2023). Consequently, enhanc-
ing the accuracy and robustness of large-scale tree spe-cies
classification remains a critical focus of ongoing research.

For large-scale tree species mapping, two primary ap-
proaches are utilized: traditional machine learning methods and
deep learning methods. Traditional machine learning methods,
such as Random Forest and Support Vector Machine, typically
integrate topographic, phenological, environmental, and multi-
temporal data to enhance classification accuracy(Grabska et al.,
2020)(Kollert et al., 2021)(Balestra et al., 2021). However,
these methods rely on feature engineering, which can be time-
consuming and labor-intensive. With the expanding volume
of remote sensing data, manual feature extraction becomes in-
creasingly impractical.

In contrast, deep learning methods have gained great suc-
cess due to their ability to automatically extract features. These
methods learn complex spatiotemporal features from multi-
temporal imagery, avoiding the complicated processes of fea-
ture construction and selection. For instance, (Tarasiou et al.,
2023) introduced a Vision Transformer architecture specifically
designed for satellite image time series, effectively capturing
species-specific spatiotemporal features through self-attention
mechanisms, thereby reducing reliance on manual feature en-
gineering.

Nevertheless, deep learning methods often overlook
domain-specific knowledge, which can lead to less interpretable
processes and affect model performance. In particular, in Earth
observation domain, the dynamic nature of the environment
means that tree species distributions may be influenced by vari-
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Figure 1. Study area and data description. (a)Location of GuangXi and distribution of tree species labels in GXData; (b)Tree species
labels are pixel-level, which are made of a number of polygons; (c¢) GXData includes 11 tree species and the number of different tree

species labels(pixel-level) are shown.

ous factors. Environmental conditions vary by region, result-
ing in distinct spectral-temporal behaviors for the same spe-
cies across different areas. By integrating prior knowledge
into data-driven models, such as incorporating intrinsic phen-
ological patterns of tree species, classification accuracy and ro-
bustness could be significantly improved.

To address the lack of prior knowledge in deep learning-
based tree species classification models, we propose PTS-
ViT that integrates phenological information with deep spatio-
temporal features, overcoming the limitations of interpretabil-
ity in existing methods and enhancing model performance and
robustness. The main contributions of this study can be sum-
marized as follows:

1. We designed a phenology-temporal features alignment
module that transforms the output of the temporal encoder and
phenological information into a unified one-dimensional time
series, providing a consistent representation for heterogeneous
data.

2. We developed a phenology-aware loss function, using
ground-level phenological information from different tree spe-
cies as a additional supervisory signal to guide the learning of
the temporal encoder, enhancing the model’s interpretability.

3. We created a tree species classification dataset based on
Sentinel-2, named GXData, which includes 11 dominant tree
species within the study area (Guangxi, China). Our method
outperforms other comparable methods for the GXData.

2. Related work

2.1 Machine Learning Methods for Tree Species Classific-
ation
High temporal resolution satellite imagery, particularly
Sentinel-2, have significantly expanded the application of ma-
chine learning methods that integrate satellite image time
series(SITS) with prior knowledge for large-scale tree species
classification. (Balestra et al., 2021) utilized Sentinel-2 satellite

imagery from 2018 to 2020 to calculate vegetation indices such
as NDVI, TDVI, EVI and GNDVI, and generated time series
for forest categories. Machine learning algorithms were trained
with accurate ground truth, and PCA was conducted to reduce
variable redundancy in the Random Forest classification. Due
to the phenological differences among species, the overall clas-
sification accuracy was 70% - 80%. (Grabska et al., 2020) eval-
uated several machine learning algorithms—including Random
Forest and Support Vector Machine—using Sentinel-2 imagery
combined with environmental data to classify tree species in
Polish. Their findings indicate that integrating Sentinel-2 spec-
tral data with environmental variables, such as topography and
climate, substantially enhances classification accuracy across
various forest species. Similarly, (Kollert et al., 2021) in-
vestigated the potential of Sentinel-2 imagery for tree species
classification in mountainous regions by leveraging seasonally
cloud-free composite images to capture phenological differ-
ences. (Hemmerling et al., 2021) utilized all available Sentinel-
2 observations and applied radial basis convolutional filters to
construct cloud-free 5-day temporal sequences for each spec-
tral band. By inputting these constructed time series into Ran-
dom Forest classifier, they demonstrated that dense temporal
information is critical for improving classification accuracy. In
a large-scale study of Canada’s forest ecosystems, (Hermosilla
et al., 2022) combined Sentinel-2 imagery with environmental
data and employed the Random Forest algorithm to predict spe-
cies distribution. Their results showed that integrating satellite
data with environmental variables—such as soil type and cli-
mate—can significantly enhance model performance.
Collectively, these studies demonstrate the effectiveness
of traditional machine learning algorithms, particularly Ran-
dom Forest, in leveraging Sentinel-2’s high temporal resolu-
tions for large-scale tree species classification. By incorporat-
ing auxiliary environmental variables into spatio-temporal fea-
tures constructed through feature engineering, these models
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Figure 2. Phenological Periods of Different Tree Species.(a)China Fir; (b)Masson Pine.

achieve higher classification accuracy.

2.2 Deep Learning Methods for Satellite Image Time
Series Semantic Segmentation

In recent years, researchers have found that deep learn-
ing methods designed for satellite image time series (SITS)
can more effectively perform various semantic segmentation
tasks, such as land cover classification and crop identification.
(RuBwurm and Korner, 2018) applied the ConvLSTM(Shi et
al., 2015) model based on Recurrent Neural Networks for land
cover classification, utilizing a temporal encoder to capture
temporal features within time-series data. This work demon-
strates the advantages of RNN in handling SITS. (Martinez et
al., 2021) proposed the Fully Convolutional Recurrent Network
(FCRN), which combines Convolutional Neural Networks with
RNN to process SITS in crop identification tasks. This model
extracts spatial features through CNN and temporal features
through RNN, significantly enhancing semantic segmentation
performance on SITS.

More recently, attention mechanisms have achieved great
progress in deep learning. (Garnot and Landrieu, 2021) intro-
duced lightweight temporal self-attention mechanisms(Garnot
and Landrieu, 2020) to improve model comprehension of SITS.
Their work focused on leveraging self-attention to capture key
features in time-series data. (Tarasiou et al., 2023) proposed the
TSViT model, a Vision Transformer-based architecture for pro-
cessing SITS. By using self-attention, the model captures com-
plex spatio-temporal dependencies and demonstrates outstand-
ing performance in semantic segmentation tasks. Transformer
has become a promising architecture in processing SITS with
their powerful spatio-temporal feature extraction and sequence
data modeling capabilities.

3. Materials
3.1 Study Area

Guangxi, located in southwestern China, is characterized
by abundant natural resources and diverse ecosystems, covering
an area of approximately 236,700 square kilometers (Fig.1(a)).
Its topography is predominantly mountainous and hilly. Recent
statistics indicate that forest coverage rate of GuangXi has been
steadily increasing, with forests now comprising about 60 per-
cents of the region. This increase not only reflects commitment
to ecological conservation of the government but also provides
essential data support for ecosystem research within the region.

The primary tree species within forest ecosystems of
GuangXi include pine, Chinese fir, eucalyptus, and oil tea trees.
These species are valuable not only economically but also for
their roles in maintaining the stability and health of the ecosys-
tem. Pine and Chinese fir are the main commercial timber spe-
cies in Guangxi, widely used in construction, paper production,
and furniture manufacturing. Oil tea trees provide high-quality
edible oil for local communities and contribute positively to
environmental protection, promoting biodiversity conservation
within the region.

3.2 Data

To minimize the need for repeated atmospheric correc-
tion, we directly utilized the Sentinel-2 Level 2A surface re-
flectance (SR) products obtained from the official European
Space Agency website. The Sentinel-2 mission comprises two
satellites—Sentinel-2A and Sentinel-2B—Ilaunched in 2015
and 2017, respectively. Each satellite has a 10-day revisit in-
terval, resulting in an effective observation frequency of every
5 days over the study area. Sentinel-2 provides 13 spectral
bands covering wavelengths from the visible to the shortwave
infrared, with spatial resolutions ranging from 10 to 60 meters.
For our analysis, we collected imagery data spanning from
January 1, 2019, to December 31, 2019, encompassing the vari-
ous growing seasons of different tree species. To mitigate the
impact of clouds and cloud shadows, we selected images with
a cloud cover of less than 50 percents. Specifically, we util-
ized ten spectral bands in this study: blue (B), green (G), red
(R), red-edge 1 (R1), red-edge 2 (R2), red-edge 3 (R3), near-
infrared 1 (NIR), near-infrared 2 (NIRn2), shortwave infrared
1 (SW1), and shortwave infrared 2 (SW2), while excluding the
60-meter resolution bands.

The species label data used in this study is derived from
forest resource surveys (Fig.1(b)), which are periodically con-
ducted by government agencies to assess the status of forest
ecosystems. During these surveys, field teams collect data
on tree species distribution within the study area. Ultilizing
publicly available multispectral satellite imagery and species
label data, we developed a tree species classification data-
set, GXData, which comprises 11 dominant tree species in
Guangxi. The overview of the dataset is shown in Fig.1.

This study also incorporates phenological information for
different tree species. These phenological data are generally ob-
tained from ground observation stations(Du et al., 2019)(Qin,
1997). Currently, phenological information for Chinese fir and
masson pine in Guangxi is directly accessible, as shown in
Fig.2.

4. Methodology

We proposed a tree species classification model, PTSViT
(Fig.3), which Integrates phenological information with deep
spatio-temporal fusion features. PTSVIiT mainly comprises the
following modules: temporal encoder, spatial encoder-decoder,
phenology-temporal feature alignment module, and a loss func-
tion incorporating phenological priors. The temporal encoder
utilizes a self-attention mechanism to construct temporal fea-
tures from SITS. The spatial encoder encodes the spatial rela-
tionships of the images using the fused temporal features from
temporal encoder and utilizes a decoder for semantic segment-
ation tasks. These two modules are derived from the TSViT ar-
chitecture, which has demonstrated strong performance in crop
type mapping. In this study, we adapt them for classifying tree
species. The phenology-temporal features alignment module
converts the outputs of the temporal encoder and phenological
information into one-dimensional time series, creating a unified
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Figure 3. The overall architecture of our model PTSVIiT. The left part represents temporal encoder, the top right part represents
phenology-temporal features alignment module, which includes 727 transfer module and P27 transfer module. The bottom right

part represents spatial encoder-decoder.

representation for heterogeneous data. The loss function incor-
porating phenological priors uses ground phenological inform-
ation and tree species labels as supervisory signals to guide the
learning of the spatio-temporal encoders. The following sec-
tions will introduce each module in detail.

4.1 Temporal Encoder

Before processing by the temporal encoder, we first token-
ize the SITS record X € RTXHXWXC which consists of
a sequence of T temporal satellite images. To adapt the
tokenization-as-convolution approach for these records, we ap-
ply a 3D kernel of size (¢ x h X w) with strides (¢, h, w) across
both temporal and spatial dimensions. This process extracts
N = |Z] %] | %] non-overlapping tokens x; € R,
which are then projected into a d-dimensional space. In our
implementation, we set ¢ = 1, as in TSViT, so that each token
contains only spatial information for each time step.Ultimately,
this tokenization scheme is akin to that of ViT, applied in paral-
lel for each acquisition.

After this tokenization scheme, X are transformed into
several tokens, whose size are (N7 X Ng X Nw x d). We
reshape it to Zp € RNENwXN1Xd 4 input to the temporal
encoder, as shown in equation(1):

79 = concat(Zr,,., Zr+Pr[t,:]) € RNuNwxKFNTxd (1)
where Pr[t,:] € R¥7*4 is temporal position encoding in
which t € R” is a vector containing all T' acquisition times
and Zres € R¥*4 is temporal class token, both of which are
respectively added and prepended to all Ny Ny time series.

The temporal position encodings Pr[t, :] depend dir-ectly on

absolute timestep ¢ which introduce acquisition-timespecific

biases into the model. For tree species recognition, it is im-

portant to encode the absolute temporal position, because it

helps model identifying a plant’s growth stage.

Consequently, the final feature map of the temporal encoder
becomes Z% € RNuHNwXE+Nrxd where the first K

tokens in the temporal dimension correspond to the prepended
class tokens. We utilize only these first K tokens in the spatial
encoder and employ all tokens during the alignment of pheno-
logical and temporal features.

4.2 Spatial Encoder-Decoder

Before processing the temporal encoder output by spatial
encoder, we exchange the first two dimensions. In this way, we
get a list of patch features Zg € R¥*NuNw>d for a]l output
classes. So the input to the spatial encoder is:

Z3 = concat (Zses, Zs + Pg) € RFXITNaNwxd 9y

Where Pg € RYV#Nw x4 are spatial position encodings and re-
spectively added to all K spatial representations. The output
of the spatial encoder is Z§ € R¥>1+NuNwxd

Spatial position encodings Pg are similar to the position
encodings used in the original ViT architecture (Dosovitskiy,
2020), with the difference from temporal position encodings
that these biases are now added to K feature maps instead of a

single one.
4.3 Phenology-Temporal Features Alignment

The details on this module are shown in Fig.4. The
temporal encoder outputs K cls tokens, each representing the
global temporal features of different tree species. The cosine
similarity between each cls token and all other ordinary tokens
is calculated, and the results are processed through a softmax
activation layer to obtain the Temporal Embedding T'E. These
embeddings explicitly represents the relationship between the
global and local temporal features of different tree species. For
the same tree species, the larger the T'F value at timestep 7', the
more significant the local temporal features at that time are for
the task of extracting that tree species. The phenological fea-
tures of tree species refer to the growth and development
stages exhibited by trees in different seasons throughout the
year. These features typically include
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CF MP T EU EGU SBS

accarucy 0.7912  0.8386 0.9160 0.9527 0.9383 0.8894 0.8938 0.7755 0.7533 0.8674 0.9377

iou 0.6869 0.7546 0.8331

0.8378 0.8823 0.7346 0.7079 0.6421

MW SB FT ERMF RHS All
0.8685/0.9038
0.6571 0.8272 0.9202 | 0.7713/0.8245

Table 1. Classification accuracy and IOU of different tree species and all species. The first row of the table takes the first letter of tree
species’ name. For the accuracy of all species, the left value represents macro accuracy, the right value represents micro accuracy. We

apply the same rule to the IOU of all species.
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processes such as budding, flowering, fruiting, and leaf fall. As
shown in Fig.4, these features can be mathematically repres-
ented as a one-dimensional vector, with the vector values cor-
responding to specific time points, measured by day of year
(DOY). Based on empirical knowledge, the start of the grow-
ing season, the start of the maturation season, and the end of
the growing season are the time points with the most signific-
ant spectral changes for different tree species. Therefore, these
three timesteps are selected to construct a one-dimensional vec-
tor which represents the parameter p. This vector is used as a
parameter input for a Gaussian Mixture Model (GMM), with
the weights w and variance o set to 1/3 and 3, respectively.
The model ultimately outputs a one-dimensional feature p , as
shown in equation(3).

3
p(z) = Zwi - N (@ i, 0%) 3)
i=1

After normalization, this feature becomes the prior-guided
embedding P GE, which encodes the phenological features
specific to tree species observed by ground observation net-
works. For tree species with missing phenological informa-
tion, a uniform distribution model is used to construct the P
GE. Now, we have converted both the temporal features and
pheno-logical features into one-dimensional features, 7' E' and
PGE.

4.4 Integrating Phenological Priors

The model’s loss function consists of two components:
Lprior and Lseg, as shown in the equation(4):

Loss = Lseg + ok Lprior (4)

where « is a hyperparameter. This loss function uses ground
phenological information and tree species label information as
supervisory signals to guide the learning of the temporal en-
coder and spatial encoder.

5. Experiments
5.1 Performance of the model

We evaluate our model on GXData dataset and present the
classification accuracies for different tree species (Table.1).
We also calculate micro accuracy, micro Intersection over
Union(IoU), macro accuracy and macro IoU for all tree spe-
cies. From the table we observe that the accuracies for all tree
species are higher than 0.75, and the IoU values are higher
than 0.64, indicating that our model performs well across all
species. The confusion matrix visualized in Fig.6 further
demonstrates that each tree species is accurately classified.

Soft Broadleaved Species (SBS) and Fruit Trees (FT) exhibit
the lowest classification accuracies, which may be influenced
by the limited number of labels for these classes. In contrast,
Eucalyptus Urophylla (EU) and Eucalyptus Grandis x
Urophylla (EGU) achieve the highest accuracies while Rocky
Hill Shrub (RHS) and Eucalyptus Grandis x Urophylla (EGU)
attain the top two IoU scores. This may be attributed to these
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Figure 5. Qualitative examples for GXData.
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Figure 6. Confusion matrix of PTSViT’s result.

species having the most labels; however, since EU and EGU
belong to the same genus, the IoU between these two species is
lower than that of RHS.

5.2 Ablation study

We conducted ablation study on the designed module us-

ing GXData. Table.2 shows that all evaluation metrics im-
prove significantly with the inclusion of this module. Notably,
macro IoU improves the most, reaching 77.13% (an increase
of +27.53%). Even micro accuracy, which shows the least im-
provement, increases from 79.10% to 90.38% (+14.26%).

micro micro macro macro
accuracy iou  accuracy iou
w/o
phenology 0.7910 0.6543 0.7406 0.6048
prior
w/
phenology 0.9038 0.8245 0.8685 0.7713
prior

Table 2. Ablation study for phenology prior guided loss.

The above experiment demonstrates the effectiveness of
our model, which integrates phenological priors with deep
spatio-temporal features, significantly enhancing the perform-
ance of tree species classification. Moreover, the P27 and 1727
transfer module successfully transform features from different
modalities into the same representation space.

5.3 Compare with other methods

In Table.3 and Fig.5, we present the performance of our
final PTSVIiT model compared to other deep learning-based
method on GXData. For all tree species, PTSViT achieves
the highest scores across all metrics, improving micro accuracy
from 78.72% (achieved by UTAE) to 90.38% (PTSViT). TSViT
and UTAE exhibit similar performance, with TSViT performing
slightly better.

Fig.5 presents qualitative results of different methods on
GXData. UTAE often splits a single parcel into several parts,
misclassifying some of them, and occasionally misclassifies en-
tire parcels. In contrast, TSViT, TSViT rarely fragments par-
cels as UTAE does but sometimes misclassifies whole parcels.

UTAE TSViT PTSViT
micro accuracy  0.7872  0.7910  0.9038
micro iou 0.6491 0.6543  0.8245
macro accuracy  0.7214  0.7406  0.8685
macro iou 0.5437 0.6048 0.7713

Table 3. Comparison of different methods for tree species
classification. We record four metrics, our method all gets the
best result.

Overall, PTSVIiT demonstrates superior accuracy and robust-
ness compared to both UTAE and TSVIiT.

6. Conclusion

In this paper, we have proposed PTSVIT, a tree species
classification model that integrates ground-based phenological
information with deep spatio-temporal fusion features. The
model comprises a temporal encoder, a spatial encoder-decoder,
a phenology-temporal feature alignment module, and a loss
function that incorporates phenological priors. We have also
created a tree species classification dataset named GXData and
demonstrated the effectiveness of incorporating prior know-
ledge through experiments on this dataset. In future work, we
will focus on multimodal representation learning to integrate
additional useful information for fine-grained tree species clas-
sification.
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