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Abstract 
 
Reversible data hiding in the encrypted domain (RDH-ED) involves performing data encryption to protect privacy and hiding data for 
covert communication or access control. Current research mainly focuses on exploring spatial correlation of adjacent vertices and local 
spatial correlation to reserve embedding space, while ignoring global spatial correlation, limiting embedding capacity. To address this, 
a method combining spatial clustering with multi-MSB (multiple most significant bit) prediction is proposed to enhance embedding 
rate and capacity. Input model vertices are partitioned into exclusive clusters through spatial clustering, ensuring close proximity within 
each cluster. An optimal reference vertex search algorithm is then used to identify the best reference vertex in each cluster to maximize 
embeddable capacity, and multi-MSB prediction determines the embedding length for each embeddable vertex. The basic embedding 
length of the reference vertex also serves as additional embedding space, further boosting capacity. Finally, data are embedded in the 
reserved space through bit substitution. Experimental results demonstrate that the proposed method achieves higher embedding 
capacity and low computational overhead while supporting reversibility and separability. The proposed scheme provides a robust, 
high-capacity, and scalable solution for secure data embedding in encrypted 3D graphics, which is increasingly relevant in real-world 
3D, geological model, and virtual reality applications. 
 
 

1. Introduction 

With the development of computer graphics and increased 
computational power in the big data era, the digital representation 
of the physical world has shifted to three dimensions. Three-
dimensional (3D) data are extensively used in various domains 
(e.g., medicine, art, and geographic information systems). Due to 
the complex structure and large volume of 3D data, outsourcing 
its storage to Cloud servers has become common practice. While 
Cloud services enhance the convenience of storing and accessing 
3D data, they also pose security risks. Additionally, Cloud data 
managers often need to embed labels and annotations into the 
data to effectively manage and protect the vast amounts of 
information on the Cloud (Hou et al., 2024), but this process can 
cause irreversible distortion, which is unacceptable in 
applications requiring precise content, such as medicine, 
geography, and art. Reversible data hiding in the encrypted 
domain (RDH-ED) allows for the embedding and extraction of 
secret messages without exposing and compromising the carrier 
data. RDH-ED is a growing research focus in information hiding. 
Nevertheless, compared to reversible data hiding in plaintext, 
encryption eliminates redundancy, leading to lower payload 
capacity in encrypted domains. Moreover, unlike images, 3D 
models have complex structures, uneven vertex distributions, and 
irregular geometric shapes. The complex spatial relationships 
and structural information of 3D models make it difficult to 
reserve spatial redundancy for embedding data in the encrypted 
domain. Therefore, achieving high-capacity data embedding 
while ensuring reversibility remains a challenge in reversible 
data-hiding for encrypted 3D data. 
 
Current research on RDH-ED has primarily focused on image 
data (Qiu et al., 2022, Yin et al., 2022), with limited studies on 
RDH-EDs for 3D data. Existing RDH-ED methods for 3D 
models are simplistic extensions of image-based methods and 
overlook the global spatial correlations of 3D model. These 
methods are categorized into vacating rooms after encryption 
(VRAE) and reserving rooms before encryption (RRBE). VRAE-

based methods (Jiang et al., 2018, Tsai, 2021, Shah et al., 2018, 
Van Rensburg et al., 2021) utilize spatial correlations of 
encrypted carriers to embed data but may suffer high error rates 
in data extraction or model recovery, making them not fully 
reversible. Additionally, the reduced spatial correlation in 
encrypted carriers limits the embedding capacity. In contrast, 
RRBE-based RDH-ED methods utilize the spatial correlation of 
the original content to reserve embedding space, encrypt the 
model, and embed data into the reserved space, achieving 
reversibility and higher embedding capacity. 
 
The embedding capacity improves when reference vertices are 
closer to the embedded vertices (Tsai and Liu, 2023). As 
neighboring vertices tend to be spatially close, hence some RRBE 
schemes (Yin et al., 2021, Xu et al., 2022, Lyu et al., 2022, Tang 
et al., 2023, Tsai and Liu, 2023) exploit spatial correlations of 
adjacent vertices by partitioning neighboring spaces to increase 
the number of embeddable vertices or reduce the distance 
between embedded and reference vertices, thus improving the 
embedding capacity. These methods partition vertices within 
limited neighboring spaces, failing to ensure global proximity 
between embedded and reference vertices, and have fewer 
embeddable vertices. Therefore, relying solely on adjacent vertex 
correlations results in relatively low embedding capacity and rate. 
 
Unlike the above approaches, the method in (Hou et al., 2024) 
leveraged local spatial correlations to reserve embedding space, 
significantly improving embedding capacity. This approach 
divided the original model into subblocks utilizing an octree and 
applied multi-MSB prediction to each subblock to determine its 
embedding length. However, the octree's equal division leads to 
loss of global spatial correlation, causing subblock vertices to not 
necessarily be the closest globally, resulting in suboptimal 
embedding capacity. Furthermore, some methods in (Yin et al., 
2021, Xu et al., 2022, Lyu et al., 2022, Tang et al., 2023, Tsai and 
Liu, 2023, Hou et al., 2024) employ reference vertices to recover 
coordinates of embedded vertices rather than embedding data, 
reducing the embeddability rate and overall embedding capacity. 
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In summary, the challenges in RDH-ED stem from inadequate 
exploration of global spatial correlations for reserving 
embedding space and underuse of reference vertices for data 
embedding, resulting in limited capacity. We propose a reversible 
data-hiding method that integrates spatial clustering with multi-
MSB prediction to enhance embedding capacity. First, we 
introduce a spatial subdivision method based on spatial clustering, 
leveraging global spatial correlations to group nearest neighbor 
vertices into the same subspace, enhancing vertex correlations, 
and increasing capacity. Second, we propose an optimal 
reference vertex search algorithm that maximizes the embedding 
capacity by leveraging local spatial correlations to adaptively 
identify the best reference vertex within each subspace. 
Additionally, a cluster-index-based grouping strategy is 
employed to remesh the 3D model, converting the cluster index 
information to reduce the overhead. Multi-MSB prediction is 
used to calculate the embeddable length of embeddable vertices, 
and an embedding strategy using the basic embedding length of 
the reference vertex also as the reserved embedding space is 
proposed to boost the embedding capacity. A label map is 
compressed using Huffman coding, and secret messages are 
embedded in the multi-MSB of the vertex coordinate values. 
 
The main contributions of this paper are as follows: 

 A spatial clustering-based subdivision strategy is first 
proposed to fully exploit global spatial correlations of 
the input model for reserving embedding space. This 
strategy iteratively calculates distances between 
vertices and centroids to partition vertices into 
mutually exclusive clusters, enhancing prediction 
efficiency by grouping closely related vertices.  

 An optimal reference vertex search algorithm is 
proposed to maximize embeddable capacity within 
each cluster by exploring local spatial correlations. A 
cluster-index-based grouping strategy and an 
embedding strategy using the basic embedding length 
of reference vertex as reserved space are proposed to 
achieve higher embedding rates and overall capacity. 

 Experimental results demonstrate that the proposed 
algorithm supports lossless model recovery, error-free 
data extraction, and separability. Compared to state-
of-the-art methods, our algorithm increased the 
embedding rate to 100% and achieved an average 32% 
gain in the embedding capacity. 
 

The remainder of this paper is organized as follows: Section 2 
details the proposed algorithm, Section 3 presents performance 
evaluations, and Section 4 provides the conclusions. 
 

2. Proposed Method 

This section details the proposed high-capacity separable 
reversible data-hiding algorithm for encrypted 3D models. The 
framework of the proposed method is illustrated in Figure 1. and 
comprises three main parts: (1) The model owner starts by 
applying spatial clustering to divide the vertices of the input 
model into mutually exclusive clusters. Prediction-error 
detection is then conducted to determine the embedding length 
for each embeddable vertex. The embedding lengths and number 
of vertices per cluster are expressed in a label map of the input 
model. The model owner then encrypts the model using an 
encryption key and embeds the label map into the reserved 
embedding space; (2) The data hider extracts the label map to 
identify the reserved embedding space and uses a data-hiding key 
to embed additional data, resulting in a marked encrypted model; 
(3) The receiver extracts the additional data and recovers the 
original model using the provided secret keys. 

 
Figure 1. Framework of the proposed method. 

 
2.1 Coordinate Transformation 

In the coordinate transformation process, a 3D model is 
represented as 𝑀𝑀 = {𝑉𝑉,𝐹𝐹} , where the set of vertices 𝑉𝑉 =
{𝑣𝑣1, 𝑣𝑣2,⋯ , 𝑣𝑣𝑁𝑁}  and the set of surfaces 𝐹𝐹 =
�𝑓𝑓�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑘𝑘��𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 , , 𝑣𝑣𝑘𝑘 ∈ 𝑉𝑉�. The smallest boundary vertex is 
determined using Eq. (1). 
 

𝐵𝐵𝑚𝑚𝑖𝑖𝑚𝑚 = �
𝑥𝑥𝑚𝑚
𝑦𝑦𝑚𝑚
𝑧𝑧𝑚𝑚
� =

⎣
⎢
⎢
⎡

𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖∈{1,2,⋯𝑁𝑁}

𝑥𝑥𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖∈{1,2,⋯𝑁𝑁}
𝑦𝑦𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖∈{1,2,⋯𝑁𝑁}

𝑧𝑧𝑖𝑖 ⎦
⎥
⎥
⎤
                         (1) 

 
A coordinate transformation procedure based on Eq. (2) is 
applied to each vertex, where 𝑅𝑅𝑖𝑖 is a decimal value between 0 and 
1, and 𝑘𝑘  is the longest integer digit of all the shifted vertex 
coordinate values (Tsai and Liu, 2023): 
 

  𝑅𝑅𝑖𝑖 =

⎣
⎢
⎢
⎢
⎡
𝑥𝑥𝑖𝑖−𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚,𝑧𝑧𝑚𝑚)

10𝑘𝑘
𝑦𝑦𝑖𝑖−𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚,𝑧𝑧𝑚𝑚)

10𝑘𝑘
𝑧𝑧𝑖𝑖−𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚,𝑧𝑧𝑚𝑚)

10𝑘𝑘 ⎦
⎥
⎥
⎥
⎤
                               (2) 

 
Therefore, each vertex of the input model can be converted into 
a tuple of decimal values 𝑅𝑅𝑖𝑖. The model owner can then use a 
compression threshold 𝑚𝑚 to reserve partial digits of each vertex 
coordinate, transforming them into integer values 𝐶𝐶𝑖𝑖 as per Eq. 
(3), and recover the decimal value 𝑅𝑅𝑖𝑖′ using Eq. (4), where ⌊. ⌋ and 
𝑚𝑚  represent the floor function and compression threshold, 
respectively. A larger compression threshold 𝑚𝑚  results in the 
recovered model being closer to the original model: 
 

                                   𝐶𝐶𝑖𝑖 = ⌊𝑅𝑅𝑖𝑖 × 10𝑚𝑚⌋                               (3) 
                                        𝑅𝑅𝑖𝑖′ = 𝐶𝐶𝑖𝑖

10𝑚𝑚
                                            (4) 

 
The integer coordinate values 𝐶𝐶𝑖𝑖  of the compressed model are 
converted into fixed-length binary representations for storage, as 
determined by Eq. (5). The binary representation length L is 
based on the compression threshold 𝑚𝑚, as shown in Eq. (6). Table 
1 presents the relationships between the binary representation 
length 𝐿𝐿 of the vertex coordinates, the basic embedding length 
𝐸𝐸𝐿𝐿𝐵𝐵, and the compression threshold 𝑚𝑚. 
 

𝐶𝐶𝑖𝑖 = ∑ 𝑐𝑐𝑖𝑖,𝑝𝑝 × 2𝑝𝑝𝐿𝐿−1
𝑝𝑝=0                               (5) 

𝐿𝐿 = �

8,            1 ≤ 𝑚𝑚 ≤ 2
16,          3 ≤ 𝑚𝑚 ≤ 4
32,          5 ≤ 𝑚𝑚 ≤ 9
64,     10 ≤ 𝑚𝑚 ≤ 33

                         (6) 
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Table 1. Binary representation length 𝐿𝐿 and basic embedding 
length 𝐸𝐸𝐿𝐿𝐵𝐵 under the compression thresholds 𝑚𝑚 

 
2.2 Spatial Clustering and Multi-MSB Prediction 

The purpose of this process is to divide the vertices of the input 
model into non-overlapping, compact subspaces and perform 
multi-MSB prediction to reserve embedding space. First, the 
model owner performs spatial clustering to divide the vertices 
into mutually exclusive clusters, ensuring that vertices within 
each cluster are as closely grouped as possible. Following this, 
the optimal reference vertex search algorithm is employed to 
select the best reference vertex in each cluster, maximizing the 
embedding length. The model is then remeshed using a cluster 
index-based grouping method. Finally, a prediction-error 
detection process is applied to determine the embedding length 
for each vertex coordinate value. The detailed steps of this 
process are as follows. 
 
2.2.1 Spatial Clustering for 3D Model: The model owner 
performs spatial clustering (Xie and Jiang, 2010, Park and Jun, 
2009, Rodriguez and Laio, 2014, Ng et al., 2001) to partition the 
vertices of the input model 𝑀𝑀 into mutually exclusive clusters, 
ensuring that vertices within each cluster are as close to each 
other as possible. This spatial subdivision method, based on 
spatial clustering. effectively creates compact subspaces and 
maximizes the embedding length. The subdivision results are 
represented as: 
 

𝐶𝐶 = {𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑖𝑖 ,⋯𝑐𝑐𝑘𝑘}                           (7) 
𝑚𝑚𝑖𝑖𝑥𝑥 = {𝑚𝑚𝑖𝑖𝑥𝑥1, 𝑚𝑚𝑖𝑖𝑥𝑥2,⋯ , 𝑚𝑚𝑖𝑖𝑥𝑥𝑖𝑖 ,⋯𝑚𝑚𝑖𝑖𝑥𝑥𝑁𝑁|𝑚𝑚𝑖𝑖𝑥𝑥𝑖𝑖 ∈ [1,𝑘𝑘]}       (8) 

 
where 𝑘𝑘 is the number of clusters, 𝑐𝑐𝑖𝑖  and 𝑚𝑚𝑖𝑖𝑥𝑥𝑖𝑖 are the 𝑚𝑚-th cluster 
and the index of the cluster to which the 𝑚𝑚-th vertex, respectively. 
 
2.2.2 Search for Best Reference Vertex: Each cluster 𝑐𝑐𝑖𝑖  is 
treated as an independent unit. Within each cluster, every vertex 
is sequentially considered as a reference vertex, and the 
embedding lengths of the other embeddable vertices in the cluster 
are measured. The goal is to select an optimal reference vertex 
that maximizes the sum of the embedding lengths of the other 
embeddable vertices in the cluster. The search results are 
obtained using Eq. (9) and (10): 
 

𝑎𝑎𝑎𝑎𝑎𝑎max
𝑟𝑟

� 𝐼𝐼𝑟𝑟,𝑒𝑒 − 𝐿𝐿𝑐𝑐𝑖𝑖
𝑟𝑟,𝑒𝑒∈𝑐𝑐𝑖𝑖

 

≈ 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑟𝑟

∑ 𝐼𝐼𝑟𝑟,𝑒𝑒 − 𝜔𝜔𝑟𝑟,𝑒𝑒∈𝑐𝑐𝑖𝑖 ,∀𝑎𝑎 ∈ 𝑐𝑐𝑖𝑖 ;  𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶            (9) 
𝐼𝐼𝑟𝑟,𝑒𝑒 = 𝑎𝑎𝑎𝑎𝑎𝑎 max

𝑡𝑡
(𝑣𝑣𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵 = 𝑣𝑣𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵), 𝑡𝑡 = 1,2,⋯ , 𝐿𝐿; 𝑎𝑎, 𝑒𝑒 ∈ 𝑐𝑐𝑖𝑖  (10) 

 
where 𝑎𝑎 and 𝑒𝑒 are the reference vertex and embeddable vertex 
within cluster 𝑐𝑐𝑖𝑖 , 𝐼𝐼𝑟𝑟,𝑒𝑒  represents the embedding length of each 
embeddable vertex, and 𝐿𝐿𝑐𝑐𝑖𝑖  is the size of the label map for cluster 
𝑐𝑐𝑖𝑖 , 𝐿𝐿𝑐𝑐𝑖𝑖  is approximately constant when the number of vertices in 

the cluster does not change. 𝑣𝑣𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵  and 𝑣𝑣𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵  are the 𝑡𝑡-MSB 
(MSBs of the coordinate) values of the reference vertex 𝑎𝑎 and the 
embedding vertex 𝑒𝑒, respectively. 
 
2.2.3 Remesh 3D Model: After obtaining the cluster index 
and the best reference vertex for each cluster, the vertices of the 
input model are grouped according to their cluster indices. The 
best reference vertex of each cluster is positioned first position 
within its group, and the surface indices are updated accordingly 
as the vertex indices are reordered. This approach ensures that 
vertices within the same cluster are arranged sequentially, 
allowing for clear differentiation of clusters by using information 
on the number of vertices in each cluster. 
 
2.2.4 Perform Multi-MSB Prediction: In cluster 𝑐𝑐𝑖𝑖 , the best 
reference vertex, obtained through the optimal reference vertex 
search algorithm, is used to restore the coordinate values of the 
other embeddable vertices. The compression threshold 𝑚𝑚 serves 
as prior knowledge of the basic embedding length of the 
reference vertex. Specifically, when the compression threshold is 
known, the binary digits within the basic embedding length of the 
reference vertex are consistently zero. By recording the 
compression threshold in the label map, the basic embedding 
length of the reference vertex can be reserved as embedding 
space for data hiding.  
 
For embeddable vertices, the coordinate values are transformed 
into a series of binary digits of length 𝐿𝐿. The prediction-error 
detection process is applied to both the best reference vertex and 
the embeddable vertex. This involves comparing binary digits of 
the reference vertex and the embeddable vertex, starting from the 
MSB down to the LSB, until a difference between the two digits 
is found. The comparative length is the embedding length 𝐼𝐼 of the 
processing vertex. The embedding length 𝐼𝐼 comprises the basic 
embedding length 𝐸𝐸𝐿𝐿𝐵𝐵 and the prediction embedding length 𝐸𝐸𝐿𝐿𝑃𝑃. 
The multi-MSB prediction is given in Eq. (11) and Eq. (12), 
where 𝑣𝑣𝑟𝑟,1,𝑗𝑗

𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵  and 𝑣𝑣𝑒𝑒,𝑖𝑖,𝑗𝑗
𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵  represent the 𝑡𝑡 -MSB MSBs of the 

coordinate values of the reference vertex 𝑎𝑎 and the embedding 
vertex 𝑒𝑒 in the direction of 𝑥𝑥−,𝑦𝑦−, 𝑎𝑎𝑚𝑚𝑖𝑖 𝑧𝑧 −axes, respectively. 
𝑁𝑁𝑐𝑐 is the number of vertices in the cluster 𝑐𝑐𝑖𝑖 . 
 

𝐼𝐼𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑎𝑎𝑥𝑥
𝑡𝑡
�𝑣𝑣𝑒𝑒,𝑖𝑖,𝑗𝑗

𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵 = 𝑣𝑣𝑟𝑟,1,𝑗𝑗
𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵�, 𝑡𝑡 = 1,2,⋯ , 𝐿𝐿; 

                        𝑚𝑚 = 2,3,⋯ ,𝑁𝑁𝑐𝑐; 𝑗𝑗 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧                                  (11) 
𝐼𝐼 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝐼𝐼𝑥𝑥, 𝐼𝐼𝑦𝑦 , 𝐼𝐼𝑧𝑧�                                (12) 

 
The prediction-error detection process is illustrated in Figure 2. 
For example, with 𝑚𝑚 = 4, the vertex coordinates in cluster 𝑐𝑐𝑖𝑖  are 
transformed into corresponding 16-bit binaries. As described in 
Section 3.2, vertex 𝑣𝑣1 , first in its group, is the best reference 
vertex for cluster 𝑐𝑐𝑖𝑖 , the basic embedding length 𝐸𝐸𝐿𝐿𝐵𝐵 
(highlighted in orange in Figure 2) of vertex 𝑣𝑣1  is used as 
reserved embedding space. For each embeddable vertex, the 
corresponding 16-bit binaries of the embeddable vertex and the 
best reference vertex are compared sequentially from the MSB to 
the LSB until a difference appears. If the embedding vertex 𝑣𝑣4 
differs from 𝑣𝑣1 at the 9th bit plane, the embedding position on the 
𝑥𝑥 −axis for 𝑣𝑣4 is first eight bits. The embedding length is divided 
into a basic embedding length (shown in orange in Figure 2) and 
a predicted embedding length (shown in blue in Figure 2). The 
embedding lengths for 𝑥𝑥−,𝑦𝑦−, 𝑎𝑎𝑚𝑚𝑖𝑖 𝑧𝑧 −axes of each embeddable 
vertex are calculated sequentially to obtain the final embedding 
length 3 × 𝑚𝑚𝑚𝑚𝑚𝑚�𝐼𝐼𝑥𝑥, 𝐼𝐼𝑦𝑦 , 𝐼𝐼𝑧𝑧�. That is, the embeddable vertex can 
provide 3 × 𝑚𝑚𝑚𝑚𝑚𝑚�𝐼𝐼𝑥𝑥 , 𝐼𝐼𝑦𝑦 , 𝐼𝐼𝑧𝑧�  bits of spatial redundancy for 
embedding data. This process is repeated for each cluster to 
compute the total embedding capacity. 

𝑚𝑚 𝐿𝐿 𝐸𝐸𝐿𝐿𝐵𝐵 𝑚𝑚 𝐿𝐿 𝐸𝐸𝐿𝐿𝐵𝐵 
1 8 4 10 64 30 
2 8 1 11 64 27 
3 16 6 12 64 24 
4 16 2 13 64 20 
5 32 15 14 64 17 
6 32 12 15 64 14 
7 32 8 16 64 10 
8 32 5 17 64 7 
9 32 2 18 64 4 
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Figure 1. Example of prediction-error detection process for 

cluster in x-axis. 
 

2.3 Encryption 

To effectively enhance the privacy of the input model, the model 
owner uses the encryption key 𝐾𝐾𝐸𝐸 to generate a series of binary 
random sequences 𝑏𝑏, and converts the coordinate values of the 
input model into binary representations 𝑐𝑐𝑖𝑖,𝑝𝑝 . For each vertex 
coordinate, the binary random sequence 𝑏𝑏  is continuously 
sampled for 𝐿𝐿 bits. The exclusive-OR (XOR) operation is then 
performed between the binary representation of the vertex 
coordinate values by using Eq. (13). Where 𝑐𝑐𝑖𝑖,𝑝𝑝  is the binary 
representation of the coordinate values of the input model, 𝑏𝑏𝑖𝑖,𝑝𝑝 is 
the sampled binary random sequence, and 𝐿𝐿  is the binary 
representation length based on compression threshold 𝑚𝑚. Finally, 
the encrypted model can be obtained. 
 

𝑐𝑐𝑖𝑖,𝑝𝑝′ = 𝑐𝑐𝑖𝑖,𝑝𝑝⨁𝑏𝑏𝑖𝑖,𝑝𝑝,𝑤𝑤ℎ𝑒𝑒𝑎𝑎𝑒𝑒 𝑝𝑝 = 0,1,⋯𝐿𝐿 − 1 (13)               

 
2.4 Label Map 

In this process, the model owner uses Huffman coding to 
compress the label map and embed it into the encrypted model. 
The embedding lengths, compression threshold, and vertex 
counts for each cluster are compiled into a label map. The 
compression threshold is encoded at a fixed length. The Huffman 
coding tree structure is generated using a tree-structured coding 
process according to the frequency of embedding length symbols 
for each embeddable vertex and the frequency of the number 
symbols corresponding to the vertices in each cluster. By 
traversing the constructed Huffman coding binary tree, the 
encoding results for different embedding lengths and vertex 
counts can be obtained. 
 
The final label map is represented as a binary sequence of length 
𝐻𝐻𝐿𝐿 , which is determined from encoding the compression 
threshold, the Huffman coding tree structure, and the encoding 
results. The label map is then embedded into the basic embedding 
length 𝐸𝐸𝐿𝐿𝐵𝐵 of each vertex (including reference vertices) using bit 
substitution. If all basic embedding lengths are used, the 
predicted embedding length 𝐸𝐸𝐿𝐿𝑃𝑃 are replaced. This results in an 
encrypted model with an embedded label map. 
 
As shown in Figure 3, the label map is first embedded into the 
basic embedding lengths of the encrypted vertices. If all basic 
embedding lengths are used, the predicted embedding length 𝐸𝐸𝐿𝐿𝑃𝑃 
can be replaced to store the encoding results. In Figure 3, the 
yellow and green areas represent the embedding regions for the 
Huffman coding tree structure and the encoding results, 
respectively. The encrypted model with an embedded label map 
is obtained by embedding the label map into the reserved 
embedding space through the bit substitution strategy. 

 
Figure 3. Example of label map embedding and data embedding 

processes. 
 

2.5 Data Hiding 

After receiving the encrypted model with the embedded label 
map, the data embedding process is initiated by the data hider. To 
enhance the security of the additional data, a series of binary 
random sequences 𝑠𝑠 are generated using the data-hiding key 𝐾𝐾𝐷𝐷. 
The XOR operation is performed between these sequences and 
the additional data 𝐴𝐴𝐴𝐴 , as described by Eq. (14), where 𝐸𝐸𝐴𝐴𝑘𝑘 
is 𝑘𝑘 −th bit encrypted additional data. 

 
𝐸𝐸𝐴𝐴𝑘𝑘 = 𝑠𝑠𝑘𝑘⨁𝐴𝐴𝐴𝐴𝑘𝑘                               (14) 

 
Next, the data hider extracts the Huffman coding tree structure 
from the label map to reconstruct the Huffman tree and retrieve 
the encoding codes for each symbol. This allows the data hider 
to determine the reserved embedding space. Finally, the 
encrypted additional data are embedded into the available 
embedding room through bit substitution, as indicated by the blue 
areas in Figure 3 to produce the marked encrypted model. The 
embedding process is defined by Eq. (15), where 𝐸𝐸𝑤𝑤(𝑀𝑀)𝑖𝑖,𝑗𝑗  is 
𝑚𝑚 −th vertex coordinate of the marked encrypted model, and 𝑗𝑗 
represent the directions of 𝑥𝑥−,𝑦𝑦−, 𝑎𝑎𝑚𝑚𝑖𝑖 𝑧𝑧 −axes, respectively. 
 
𝐸𝐸𝑤𝑤(𝑀𝑀)𝑖𝑖,𝑗𝑗 = 𝐸𝐸𝐴𝐴1 × 2𝐿𝐿−1 + 𝐸𝐸𝐴𝐴2 × 2𝐿𝐿−2 + ⋯+ 𝐸𝐸𝐴𝐴𝐼𝐼𝑖𝑖 × 2𝐿𝐿−𝐼𝐼𝑖𝑖 + 

𝐸𝐸𝑖𝑖′(𝑀𝑀)𝑚𝑚𝑚𝑚𝑖𝑖2𝐿𝐿−𝐼𝐼𝑖𝑖 , 𝑚𝑚 = [1,𝑁𝑁]; 𝑗𝑗 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧             (15) 
 

2.6 Data Extraction and Model Recovery 

After receiving the marked encrypted model, the receiver can 
perform model decryption or data extraction, depending on the 
keys they possess. There are three cases as follows: 
1） The receiver has a decryption key 𝐾𝐾𝐸𝐸. The receiver extracts 

the label map to obtain the basic embedding length and 
embedding length of each vertex coordinate. An XOR 
operation was performed with a random binary sequence 
generated according to the decryption key to obtain the 
initially decrypted model. The binary digits in the basic 
embedding length of all the reference vertices were 
replaced with zero to recover the coordinate values of the 
reference vertices. Finally, the modified MSBs of each 
embeddable vertex coordinate are restored from their 
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corresponding reference vertices using the prediction-error 
detection process. 

2） The receiver has a data-hiding key 𝐾𝐾𝐷𝐷. The receiver first 
extracts a label map to obtain the reserved embedding room. 
The encrypted additional data are extracted from the 
reserved embedding room and an XOR operation is 
performed with a binary random sequence generated 
according to the data-hiding key to obtain the decrypted 
additional data. 

3） The receiver has both the decryption key 𝐾𝐾𝐸𝐸 and the data-
hiding key 𝐾𝐾𝐷𝐷. The receiver can recover the original model 
and extract additional data without any errors. Data 
extraction and model recovery can be performed in an 
arbitrary order, which indicates separability. 

 
3. Experimental Results and Analysis 

This section outlines the experimental methodology, including 
the experimental settings, evaluation metrics, and results. The 3D 
mesh models used are depicted in Figure 4(a), with their 
parameters listed in Table 2. For performance evaluation, we 
used the Princeton segmentation benchmark (PSB) (Chen et al., 
2009), and the additional data consisted of randomly generated 
binary sequences. The proposed algorithm was implemented in 
MATLAB R2022a on a personal computer with an Intel Core i5-
10210U 1.60 GHz processor and 16 GB of memory. 
 

Model Name Number of 
vertices 

Number of 
surfaces 

Bunny 35947 69451 
Dragon 437645 871414 

Airplane 8679 17354 
Bird 5054 10104 

Bearing 14994 29984 
Happy Buddha 543652 1087716 

Table 2. Model information of experiment. 
 

The performance of the proposed scheme was evaluated in terms 
of model visualization, reversibility, and embedding capacity. 
Visualization of the model at different stages was demonstrated. 
Reversibility was assessed through the Hausdorff distance and 
signal-to-noise ratio (SNR). The Hausdorff distance measures the 
similarity between two sets of points, with smaller values 
indicating higher similarity. The Hausdorff distance between two 
sets of points, 𝐴𝐴 = �𝑎𝑎1, 𝑎𝑎2,⋯𝑎𝑎𝑝𝑝�  and 𝐵𝐵 = �𝑏𝑏1, 𝑏𝑏2,⋯𝑏𝑏𝑞𝑞� , is 
defined as follows: 
 

𝐻𝐻𝐴𝐴(𝐴𝐴,𝐵𝐵) = 𝑚𝑚𝑎𝑎𝑥𝑥�ℎ(𝐴𝐴,𝐵𝐵), ℎ(𝐵𝐵,𝐴𝐴)�                (16) 
 
where ℎ(𝐴𝐴,𝐵𝐵) and ℎ(𝐵𝐵,𝐴𝐴) are 

ℎ(𝐴𝐴,𝐵𝐵) = 𝑚𝑚𝑎𝑎𝑥𝑥
𝑎𝑎∈𝐴𝐴

𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏∈𝐵𝐵

‖𝑎𝑎 − 𝑏𝑏‖                       (17) 
ℎ(𝐵𝐵,𝐴𝐴) = 𝑚𝑚𝑎𝑎𝑥𝑥

𝑏𝑏∈𝐵𝐵
𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎∈𝐴𝐴

‖𝑏𝑏 − 𝑎𝑎‖                       (18) 
and ‖∙‖ calculates the distance between the two sets of points. 
 
The geometric disparity between the reconstructed and original 
models can be measured by SNR, with a larger SNR indicating 
smaller geometric deformation. The SNR is defined as follows: 
 

𝑆𝑆𝑁𝑁𝑅𝑅 = 10 × 𝑙𝑙𝑚𝑚𝑎𝑎10
∑ ��𝑣𝑣𝑖𝑖,𝑥𝑥−𝑣𝑣𝑥𝑥����

2+�𝑣𝑣𝑖𝑖,𝑦𝑦−𝑣𝑣𝑦𝑦�����
2+�𝑣𝑣𝑖𝑖,𝑧𝑧−𝑣𝑣𝑧𝑧����

2�𝑁𝑁
𝑖𝑖=1

∑ ��𝑣𝑣𝑖𝑖,𝑥𝑥
′ −𝑣𝑣𝑖𝑖,𝑥𝑥�

2+�𝑣𝑣𝑖𝑖,𝑦𝑦
′ −𝑣𝑣𝑖𝑖,𝑦𝑦�

2
+�𝑣𝑣𝑖𝑖,𝑧𝑧

′ −𝑣𝑣𝑖𝑖,𝑧𝑧�
2�𝑁𝑁

𝑖𝑖=1

    (19) 

 
where 𝑁𝑁 is the number of vertices in the model; 𝑣𝑣𝑖𝑖,𝑥𝑥, 𝑣𝑣𝑖𝑖,𝑦𝑦, 𝑣𝑣𝑖𝑖,𝑧𝑧 
are the coordinates of the vertices in the original model; 𝑣𝑣𝑖𝑖,𝑥𝑥′ , 
𝑣𝑣𝑖𝑖,𝑦𝑦′ , 𝑣𝑣𝑖𝑖,𝑧𝑧′  are the coordinates of the vertices in the reconstructed 

model; and 𝑣𝑣𝑥𝑥��� , 𝑣𝑣𝑦𝑦��� , 𝑣𝑣𝑧𝑧�  are the average coordinates of the 
original model. Embedding capacity was measured using pure 
embedding capacity (PEC) and embedding rate. PEC was 
determined by subtracting the capacity of the embedded label 
map from the total capacity. A higher PEC value indicates a 
greater ability to embed additional data. The definitions of total 
capacity 𝑡𝑡𝑒𝑒𝑐𝑐 and pure embedding capacity 𝑝𝑝𝑒𝑒𝑐𝑐 are as follows: 
 

𝑡𝑡𝑒𝑒𝑐𝑐 =
3 × 𝐸𝐸𝐿𝐿𝐵𝐵 × 𝑁𝑁𝑟𝑟 + 3 × ∑ �𝐸𝐸𝐿𝐿𝐵𝐵 + 𝐸𝐸𝐿𝐿𝑃𝑃𝑖𝑖�

𝑁𝑁𝑒𝑒
𝑖𝑖=1

𝑁𝑁

= 3 × 𝐸𝐸𝐿𝐿𝐵𝐵 + 3 ×
∑ 𝐸𝐸𝐿𝐿𝑃𝑃𝑖𝑖
𝑁𝑁𝑒𝑒
𝑖𝑖=1
𝑁𝑁  (20)

 

𝑝𝑝𝑒𝑒𝑐𝑐 = 𝑡𝑡𝑒𝑒𝑐𝑐 −
𝑠𝑠𝑚𝑚𝑧𝑧𝑒𝑒(𝑙𝑙𝑎𝑎𝑏𝑏𝑒𝑒𝑙𝑙𝑚𝑚𝑎𝑎𝑝𝑝)

𝑁𝑁
(21) 

 
where 𝑁𝑁, 𝑁𝑁𝑟𝑟, and 𝑁𝑁𝑒𝑒 represent the number of vertices in the input 
model, reference vertices, and embeddable vertices, respectively. 
𝐸𝐸𝐿𝐿𝐵𝐵  is the basic embedding length of a vertex, 𝐸𝐸𝐿𝐿𝑃𝑃𝑖𝑖  is the 
predicted embedding length of the 𝑚𝑚 -th vertex, and 𝑠𝑠𝑚𝑚𝑧𝑧𝑒𝑒(∙) 
calculates the capacity of the label map. 
 
An ablation experiment was conducted to assess the impact of 
clustering algorithms and the use of the basic embedding length 
of reference vertices as part of the embedding room on 
embedding capacity. These evaluations confirmed the 
effectiveness and feasibility of each component. Finally, 
comparisons with existing methods in Section 4.5 verified the 
feasibility of our proposed algorithm.  
 
3.1 Model Visualization 

Figure 4 demonstrates the 3D model visualization at different 
stages of the proposed algorithm. Initially, the original models 
(Figure 4(a)) are encrypted, resulting in encrypted models 
(Figure 4(b)). Label maps are then embedded into these 
encrypted models, producing encrypted models with embedded 
label maps (Figure 4(c)). The data hider extracts the label maps 
from these models to identify the reserved embedding room and 
embeds additional data, resulting in the models shown in Figure 
4(d). For recipients, the process of model decryption and data 
extraction depends on the keys they possess: 
1） Models in Figure 4(e) are obtained by decrypting with the 

encryption key 𝐾𝐾𝐷𝐷. 
2） Models in Figure 4(f) are produced by first extracting 

additional data using the data-hiding key 𝐾𝐾𝐸𝐸, followed by 
decrypting the model with the encryption key 𝐾𝐾𝐷𝐷. 

 
          (a)           (b)           (c)            (d)             (e)           (f) 
Figure 4. Result of model visualization. (a) Original models. (b) 
Encrypted models. (c) Encrypted models with label map. (d) 
Marked encrypted models. (e) Direct decrypted models. (f) 
Recovered models with data extraction. 
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From the model visualization results, it is evident that the 
proposed algorithm effectively encrypts the original models, 
securely embeds additional data, and allows for accurate 
reconstruction of the models. This confirms the algorithm's 
feasibility and practical applicability. 
 
3.2 Reversibility Analysis 

The Hausdorff distance (HD) and SNR were used to evaluate the 
quality of the reconstructed models. Figure 5 presents the HD and 
SNR values between the original and recovered models for 
various compression threshold values 𝑚𝑚. The results indicate that 
the HD gradually decreases as the compression threshold 
increases, while the SNR increases linearly with the compression 
threshold. This indicates that the quality of the recovered model 
improves as the compression threshold rises. When the 
compression threshold of 𝑚𝑚 = 5 , the HD < 10−4  and the 
SNR >70 dB, indicating that the quality of the recovered model 
very high. These experimental results confirm that the proposed 
scheme is reversible. 

 
(a) 

 
(b) 

Figure 5. Results of reversibility under different values of 
compression threshold 𝑚𝑚 . (a) Hausdorff distance. (b) SNR. 

 
3.3 Embedding Capacity Analysis 

PEC and embedding rate were used to evaluate the embedding 
capacity of the proposed scheme. Figure 6 presents the PEC for 
different values of the compression threshold 𝑚𝑚 for each model. 
When 3 ≤ 𝑚𝑚 ≤ 4 , the binary representation length of the 
vertices is 16 bits. At 𝑚𝑚 = 4, the basic embedding length was 2 
bits, which is significantly lower than the 𝐸𝐸𝐿𝐿𝐵𝐵 of 6 bits at 𝑚𝑚 = 3. 
This indicates that a higher compression threshold 𝑚𝑚 reduces the 
correlation among vertices, resulting in a significant decrease in 
embedding capacity. 
 
For 5 ≤ 𝑚𝑚 ≤ 9, the average pure embedding capacities are 64.56, 
54.73, 44.47, 34.71, and 24.88 bits per vertex, respectively. The 
embedding capacity increases substantially as the binary 
representation length of the vertices increases from 16 bits (for 
3 ≤ 𝑚𝑚 ≤ 4) to 32 bits. However, as the compression threshold 

𝑚𝑚  continues to increase, the basic embedding length of the 
vertices decreases, reducing the correlation between vertices and, 
consequently, lowering the embedding capacity. These results 
indicate that spatial clustering significantly enhances embedding 
capacity. Additionally, when 2 ≤ 𝑚𝑚 ≤ 9, the embedding rate for 
each input model reaches 100%, indicating that incorporating the 
basic embedding length of reference vertices into the embedding 
room effectively improves both the embedding rate and capacity. 

 
Figure 6. Pure embedding capacity under different values of 

compression threshold 𝑚𝑚. 
 
3.4 Ablation Experiment 

This section verifies the impact of two key modules on the 
performance of the embedding capacity: the clustering algorithm, 
and use of reference vertices for embedding data. We tested the 
two modules using the rabbit model to illustrate the impact of the 
choice of clustering algorithm and the use of reference points for 
embedded data on the performance, respectively. 
 
3.4.1 Clustering Algorithms: Figure 7 illustrates the impact 
of different clustering algorithms on embedding capacity under 
different compression thresholds 𝑚𝑚. The algorithms compared 
include k-means, k-medoids (Park and Jun, 2009), density peak-
based clustering (FSFDP) (Rodriguez and Laio, 2014), and 
spectral clustering (Ng et al., 2001). The k-means and k-medoids 
algorithms iteratively calculate distances between vertices and 
centroids (medoids) to partition the vertices of the input model 
into k mutually exclusive subsets or clusters, aiming to minimize 
the sum of distances between each vertex and its cluster center. 
Both methods achieved the highest PEC due to their effectiveness 
in creating tightly knit subspaces. The FSFDP and Spectral 
clustering algorithm ensure that vertices within each subspace are 
relatively compact, which enhances embedding capacity. 
However, their performance was consistently lower than that of 
k-means and k-medoids. The superior performance of k-means 
and k-medoids is attributed to their ability to effectively 
minimize the sum of distances between centroids and member 
vertices within each cluster, aligning well with the goal of 
creating compact subspaces that maximize embedding capacity.  

 
Figure 7. Pure embedding capacity under different clustering 

algorithms. 
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3.4.2 Basic Embedding Length of Reference vertices as 
Embedding Room: Figure 8 shows the impact of including the 
basic embedding length of reference vertices as part of the 
embedding room on embedding capacity under different 
compression thresholds 𝑚𝑚 . For 5 ≤ 𝑚𝑚 ≤ 9 , with a constant 
number of clusters (and consequently a constant number of 
reference vertices), the basic embedding length of vertice 
decreases as the compression threshold 𝑚𝑚  increases. This 
reduction in the embedding space of reference vertices leads to a 
decrease in overall embedding capacity when the basic 
embedding length of reference vertices is used as part of the 
embedding room. At 𝑚𝑚 = 5, incorporating the basic embedding 
length of the reference vertices into the embedding room 
increases the embedding capacity by up to 3 bits per vertex 
compared to not embedding messages in reference vertices, 
representing a 5% improvement in performance. 

 
Figure 8. Pure embedding capability obtained when embedding 

space contains reference vertices or not. 
 
3.5 Performance Comparison 

The performance of the proposed method was compared with 
seven state-of-the-art methods (Hou et al., 2024, Tsai, 2021, Van 
Rensburg et al., 2021, Yin et al., 2021, Lyu et al., 2022, Tang et 
al., 2023, Tsai and Liu, 2023) in terms of embedding capacity and 
overall performance. 
 
3.5.1 Embedding Capacity: Figure 9 shows the maximum 
average embedding capacity on the PSB dataset for the proposed 
method compared to existing algorithms. The work in (Tsai, 2021) 
integrated spatial subdivision and space encoding to embed 
additional data into encrypted vertices, achieving a PEC of only 
7.68 bits per vertex. A two-layer RDH-ED method based on 
homomorphic encryption is proposed in (Van Rensburg et al., 
2021), which resulted in an embedding capacity of 13.5 bits per 
vertex. This algorithm reached an average embedding capacity of 
15.58 bits per vertex in (Yin et al., 2021). The work in (Lyu et al., 
2022) utilized multi-MSB prediction and the odd-even property 
of vertex indices, this method achieved an embedding capacity of 
26.11 bits per vertex. The work in (Tang et al., 2023) extended 
previous work by leveraging the model's topology to increase the 
number of embeddable vertices, raising the embedding capacity 
to 35.95 bits per vertex. This method reached an embedding 
capacity of the algorithm proposed in (Tsai and Liu, 2023) was 
39.12 bits per vertex. The work in (Hou et al., 2024) divided the 
3D model into non-overlapping subblocks and used octree spatial 
subdivision to enhance prediction length, achieving an 
embedding capacity of 51.96 bits per vertex. The algorithm 
proposed in this study employs spatial clustering to partition 
vertices into mutually exclusive clusters, ensuring that vertices 
within each cluster are as close as possible to one another, thereby 
maximizing prediction length. The proposed method achieved an 
average embedding capacity of 61.66 bits per vertex, 
representing an improvement of approximately 19% over (Hou 
et al., 2024). 

 
Figure 9. Pure embedding capacity in PSB. 

 
3.5.2 Feature Comparison: Table 3 presents a comparison 
between the proposed algorithm and existing algorithms. The 
work in (Tsai, 2021) implemented an RDH-ED algorithm based 
on the VRAE framework by integrating spatial subdivision and 
encoding to embed additional data into encrypted vertices, 
excluding boundary vertices. While the embedding rate is 
approximately 100%, the embedding capacity is limited to 
approximately 7.68 bits per vertex. Improper threshold settings 
can lead to numerous message-extraction errors. A two-layer 
RDH-ED method based on homomorphic encryption is proposed 
in (Van Rensburg et al., 2021). However, the use of 
homomorphic encryption results in high computational overhead, 
and the method cannot losslessly recover the original model. The 
work in (Yin et al., 2021) proposed an RHD-ED algorithm based 
on BBRE framework that pre-calculates the multi-MSB 
prediction result of embeddable vertices using their neighboring 
vertices. However, because all neighboring vertices are used as 
references, the embedding rate is low, which restricts the 
method's efficiency in terms of embedding capacity. The work in 
(Lyu et al., 2022) divide all vertices into embeddable and 
reference vertices using the odd-even property of vertex indices 
to achieve a higher embedding rate. However, only half of the 
vertices can be used to embed messages, resulting in relatively 
low embedding capacity. The work in (Tang et al., 2023) 
extended the algorithm in (Lyu et al., 2022) by leveraging 
topological relationships to further exploit the spatial 
relationships between adjacent vertices. The work in (Tsai and 
Liu, 2023) performed random sampling to reduce the number of 
reference vertices and minimize the distance between the 
reference and its corresponding embedded vertices, leading to 
substantial increases in both total embedding capacity and 
embedding rate. 
 
The aforementioned schemes (Yin et al., 2021, Lyu et al., 2022, 
Tang et al., 2023, Tsai and Liu, 2023) overlook both global and 
local spatial correlations, thereby limiting embedding capacity. 
The work in (Hou et al., 2024) utilized an octree spatial adaptive 
subdivision strategy to partition a 3D model into non-overlapping 
subblocks. While this method significantly improves embedding 
rate and capacity by leveraging local spatial correlations, it does 
not fully utilize global spatial correlation or use the basic 
embedding length of reference vertices as embedding room, 
resulting in a loss of potential embedding capacity and rate. 
 
The proposed algorithm addresses these limitations by 
performing spatial clustering based on global spatial correlation 
to partition vertices into clusters, thereby enhancing the 
embedding capacity significantly. By using the basic embedding 
length of reference vertices into the embedding room, the 
proposed method further increases the model’s embedding 
capacity, achieving an embedding rate of 100%. The proposed 
method is both reversible and separable. These results confirm 
the feasibility and effectiveness of the proposed algorithm. 
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Algorithm Tsai, 2021 Rensburg et al., 
2021 

Yin et al., 
2021 

Lyu et al., 
2022 

Tang et al., 
2023 

Tsai and 
Liu, 2023 

Hou et al., 
2024  

Proposed 

Type VRAE RRBE RRBE RRBE RRBE RRBE RRBE RRBE 
Embedding 

Method 
Spatial Subdivision 

Space Encoding 
Paillier Additive 
Homomorphism 

Multi-MSB Prediction Bit Substitution 

Ring 
prediction 

Odd-even 
property 

Odd-even 
property/ 
Topology 

Random 
sample 

Octree 
subdivision 

Spatial 
clustering 

Embedding 
Rate 

≈ 100% 100% 27.48% 50% 73% 27.48%~ 
62.74% 

95.49% 100% 

Embedding 
Capacity 

7.68 13.5 1.78-12.48 17.84-25.65 22.53-38.95 13.49-27.36 16.56-55.02 14.38-64.56 

Separability Yes No Yes Yes Yes Yes Yes Yes 
Extraction 

Errors 
Yes No No No No No No No 

Model loss Yes Yes No No No No No No 
Table 3. Comparison between proposed algorithm and other algorithms. 

 
4. Conclusion 

In this paper, a reversible data-hiding algorithm for encrypted 3D 
models was first proposed by integrating spatial clustering with 
multi-MSB prediction. The adaptive spatial subdivision method 
based on spatial clustering was proposed to divide the model’s 
vertices into distinct and compact clusters. The optimal reference 
vertex search method explored local spatial correlations and 
measured the embedding lengths of the embeddable vertices 
within each cluster to maximize capacity. A cluster-index-based 
grouping strategy was proposed to remesh the 3D model, 
reducing transmission overhead. The basic embedding length of 
the reference vertex was employed to further enhance capacity. 
Multi-MSB prediction and Huffman coding complete the 
structure of the proposed algorithm. Experimental results 
demonstrated the algorithm’s feasibility, achieved a high 
embedding rate and capacity, and supported reversibility and 
separability. Our proposed approach provides a reversible, high-
capacity and scalable solution for secure data embedding in 
encrypted 3D graphics, making it highly efficient and suitable for 
practical applications. Future work will incorporate secret 
sharing to improve the security of the input model. 
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