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Abstract 
 
Accidental oil spills are known to reflect negative outcomes on the environment and human health as well as marine life and coastal 
regions’ economy. In aim to solve this issue, we suggest a system that is designed to detect oil spills on the ocean surface and provide 
information for taking appropriate measures to contain the spill. Our research focuses on two key maritime regions near the United 
Arab Emirates: The Arabian Gulf and the Gulf of Oman. To create the dataset, we utilized Sentinel-1 Synthetic Aperture Radar (SAR) 
images that were pre-processed using SNAP for training and SNAPPY in Python for testing. The system uses an automated Vision 
Transformer (ViT) as its base for the classification and segmentation of oil spills, which was trained on SAR patches falling under two 
classes. The step of automating the system involves receiving new data inputs and outputting image segments containing the oil slick 
without delay. Our proposed approach illustrated a high level of performance compared to other Convolutional Neural Network 
architectures used in similar cases. The ViT accomplished 0.91 accuracy on unseen data with error of 0.3. We put the model into test 
on new SAR images. The suggested system will help minimizing the effects of oil spills on the ecosystem, human health, and economic 
losses in the UAE. We believe this study will mark a breakthrough in the management of oil spills as it seeks to safeguard crucial 
marine and coastal resources through engaging Artificial Intelligence (AI) with cutting-edge algorithms. 
 
 

1. Introduction 

Marine oil spills are considered as a hazardous problem as they 
pose danger to species, sea ecosystems, tourism, fishing, and 
other socio-economic value and welfare. The Arabian Gulf and 
the Gulf of Oman are considered to be vulnerable areas because 
they lie within a susceptible region. There are large oil processing 
activities in these areas involving extraction, transportation and 
even refining; all of which expose the area to high risk of oil 
spills. The impact of such events is staggering and includes 
alterations in the marine and coastal structures and environments, 
changes in coastal income, and risks to the lives of people, 
depending on these waters. Thus, oil transport and drilling pose 
more risks in the UAE, making it compulsory to detect and 
monitor the occurrence of spills.    
 
The identification of oil spills in marine environments remains a 
paramount area of concern for environmental conservation and 
the safety of marine fleets, notably in the Arabian Gulf and Gulf 
of Oman. Despite advances in remote sensing and environmental 
monitoring technologies, oil spill detection in the UAE has not 
fully exploited the potential of Synthetic Aperture Radar (SAR) 
imagery. SAR sensors, particularly those aboard Sentinel-1 
satellites, have the ability to penetrate cloud cover and operate in 
both day and night conditions, offering unique advantages for 
monitoring vast sea surfaces – as in the UAE and Oman. In light 
of current artificial intelligence (AI) and deep learning (DL) 
advancements, there exist specific promising techniques that may 
help enhance the effectiveness and accuracy of detecting oil spills 
from SAR images. 
 
SAR imagery captures the backscattering of the facets of the sea 
surface, causing oil spillage to appear as dark patches with lower 
backscatter than water (Muji Susantoro & Sunardjanto, n.d.). 
Nevertheless, distinguishing such spills is not easy because look-
alikes exist—phenomena that create formations similar to the 
dark patches mentioned earlier, such as organic films or low-
wind areas (Nunziata et al., 2018). Prior methods of oil spill 

detection have employed different algorithms depending on the 
multiple methods like the CNN and other forms of deep learning 
methods with the purpose of distinguishing the appearance of oil 
spills (Krestenitis et al., 2019). For instance, some studies have 
demonstrated that deep learning is useful for developing high 
accuracy and efficiency in identifying and categorizing oil slicks 
in SAR images (Zeng & Wang, 2020).   
 
Thus, we suggest a study using Vision Transformers in this 
regard, which can be regarded as innovative and prospective due 
to the following qualities: they work with long-range connections 
and describe the context of the image. This algorithm 
demonstrated a high level of success in multiple classification 
benchmarks. Unlike CNNs, where the components mainly 
extract local features, ViTs could capture the images in their 
entirety, which could be advantageous when detecting irregularly 
shaped oil spills (Cheng et al., 2022). SAR imagery recognition 
can largely benefit from this capability given that the forms of oil 
spills can be complex and deformed in multiple ways, thus 
challenging traditional detection (Prastyani & Basith, 2018). 
Additionally, ViTs’ application can help improve the existing 
segmentation methods, enabling boundary definition within oil 
spills with great clarity and subsequently improving the 
monitoring process (Chen et al., 2023; Song et al., 2020). 
 
Explaining the necessity of Vision Transformers for oil spill 
identification within UAE’s seaside regions, we believe that 
applying this proposed approach will empower environmental 
surveying and provide an immediate response to address the 
occurrence of such hazardous events. Since this region is a 
strategic area in terms of shipments of goods and products and is 
also prone to oil spillage, this pushes the need to have more 
advanced detection systems for deployment in the actual field.   
 
In the process of SAR imagery and the development of machine 
learning algorithms, this study expects to contribute towards the 
constant striving to safeguard marine environments and ensure 
safety on such imperative waters within the UAE. Our research 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-57-2025 | © Author(s) 2025. CC BY 4.0 License.

 
57



 

highlights the alignment with Sustainable Development Goals 
(SDGs), particularly SDG 14 (Life Below Water), by 
contributing to marine conservation efforts, and SDG 9 (Industry, 
Innovation, and Infrastructure) by advancing technological 
solutions for environmental monitoring. The primary goal is to 
develop a reliable detection system that can identify oil spills 
early, enabling timely interventions and minimizing the 
environmental, public health, and economic impacts of these 
incidents in the UAE. 
 

2. Methodology 

Vision Transformers (ViTs) are one of the breakthrough methods 
in the computer vision domain, using the transformer structure 
initially created for working with texts. In contrast to 
Conventional Convolutional Neural Networks (CCNNs) that 
work through convolutional layers, ViTs function with image 
partitions and image parceling where images are split into non-
overlapping patches and perceived as sequences akin to words. 
Thus, ViTs can have the capability to understand the global 
context or how other information is related in an image thus 
making them suitable to be implemented in any vision tasks such 
as image classification, object detection, and segmentation 
(Dosovitskiy et al., 2020; Jamil et al., 2023).    
 
The pipeline of ViT consists of four main stages:  image splitting, 
patch and position embeddings, transformer encoder, and a 
multilayer perceptron (MLP) classification head. The first step 
involves dividing an image into patches of a certain size. These 
patches will be converted into vectors that are appropriately 
arranged and flattened and then linearly transformed into a high-
dimensional space. In order for these embeddings to retain spatial 
information, positional encodings are assigned to them. The Self-
attention in ViT works using a multi-head attention mechanism 
to enable the model to determine the relevance of the relative 
patches and includes all the necessary features in the out-of-the-
image representation (Bakhtiarnia et al., 2021; Qian et al., 2021). 
The output of the attention layers initially goes through the 
stacked dense layers present in the feed-forward neural network 
and the final representations which can be used for classification 
purposes or other use (He et al., 2021; Khan et al., 2021). An 
overview of the model is depicted in figure 1.  

 
Figure 1. Architecture of the Vision Transformer. 

 
The trained ViT will be the basis for the system that will be 
receiving inputs from a satellite source and apply segmentation 
on them. For every new input the classification and localization 
of oil leaks in the image will be delivered to the operator.  
 

3. Dataset Building 
3.1 Data Acquisition 

The initial phase involved downloading satellite imagery data 
from the Copernicus hub and NASA's Earth Data repository from 
The Earth Science Data Systems (ESDS) program. These SAR 
images, often acquired from spaceborne sensors on satellites like 
European Space Agency (ESA) Sentinel-1 satellites, contain 
valuable information about the surface of the earth. 
Subsequently, the acquired data was loaded into the Sentinel 
Application Platform (SNAP), a powerful software tool designed 
for earth observation tasks. Through this software, we worked on 
preparing the SAR data by preprocessing and analysis. We 
exported a total of 16 SAR products from these websites. A SAR 
product in the software captures very deep and high-resolution 
features with extensive information, resulting in large file sizes 
ranging from 900 MBs to 20 GBs. A product is usually visualized 
in multiple bands, e.g. VV and VH. In our work, we focused on 
utilizing the amplitude VV polarization mode. 
 
3.2 Data Processing 

Pre-processing in image classification is an initial step for 
preparing the data before deploying them to the model. This will 
allow further analysis to be enabled after the accuracy is 
guaranteed and any geometric or radiometric distortions are 
removed. In this study, we conducted a series of operations to 
prepare the obtained dataset.   
 
For training, Sentinel-1 SAR data was processed using SNAP 
version 10.0. extension of SNAP, SNAPPY was used to pre-
process the input image before feeding it to the model in Python. 
SNAP offers free and open-source software for working on data 
coming from earth observation methods.  Through SNAP 
Desktop, we generate subsets of images from one large SAR 
image. We conducted a series of operations for every image to 
obtain a subarea that may or may not contain an oil spill. These 
phases are: 
 

1. Subset Extraction 
This is the first initial step, which involves extracting a 
smaller region of interest from the whole SAR image 
and scanning this area for an oil slick. The more 
minimized the area, the better the analysis of the region 
will be, as it facilitates and optimizes the analysis. This 
helps the oil spill model, integrated with SNAP, focus 
on more deep features that would not have been clear 
in large areas. 
 

2. Calibration 
SAR images are generally calibrated into sigma 
nought, which means performing radiometric 
calibration to convert digital numbers into a 
backscatter coefficient. 
 

3. Speckle Filtering 
Radar images are generated through the coherent 
interaction of the transmitted microwave with the 
targets, in contrast to optical images. Thus, it is affected 
by speckle noise due to the cohesive sum interference 
of the signals scattered from ground scatterers 
distributed randomly within each pixel (Lee et al., 
1994).  This noise reduces the image quality when 
aimed for feature extraction in image classification or 
segmentation applications. The manifested noise in a 
radar image is higher than that in an optical image. 
Sometimes, the speckle noise is minimized by applying 
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a speckle filter to the digital image before surface 
display and subsequent analysis. 
 

4. Backscattered Radar Intensity 
A radar image is usually represented as a greyscale 
image. The intensity of each pixel is proportional to the 
percent of microwave backscattered from an area on 
the ground depending upon many factors such as type, 
size, shape, the orientation of scatterers at the target 
area, moisture content present at the given area, 
microwave frequency and polarization of radar pulses, 
and the incident angle of a radar beam. The 
backscattering coefficient, or normalized radar cross 
section (dB), is a physical quantity into which the pixel 
intensity values are converted.  The values of this 
quantity fluctuate from 5 dB for very bright objects up 
to -40 dB for very dark surfaces. When recognizing oil 
on the sea surface, usually in a SAR image, a serene 
ocean surface exhibits dark color while rough surfaces 
may appear bright, particularly when observed at a 
small angle. Under certain conditions, when the sea 
surface seems to be rough, oil films are detected by 
appearing as dark patches. 
 

5. Oil Spill Detection 
Determining the appearance of oil slick in SAR images 
can be done through three approaches: manual, semi-
automatic, and automatic (Topouzelis, 2008). In this 
study, we follow the automatic approach, which 
involves techniques such as dark spot detection and RoI 
identification. Therefore, we make use of SNAP’s oil 
spill detection application to determine whether the 
chosen region shows an oil slick. 
 

3.3 Data Augmentation 

After analysing 16 SAR products we exported 168 sub-views. 
120 of these views contain oil spill, while the other 120 are either 
do not show a spill or may exhibit something similar to oil. The 
data obtained was split into two classes, namely, spill and no-
spill. Each class consisted of 84 images for training while 
reserving 36 images for validation, leading to a total of 120 
images per class. Furthermore, three augmentations were 
selected to populate the data, these included cropping, brightness, 
and rotation. A sample of the performed augmentations is 
presented in figure 2. Post-augmentation photos resulted in 252 
training images, and 108 validation images for each class. This 
resulted in a total of 360 images per class. Table 1 summarizes 
dataset size details. 
 

 Number of Images 
 Original Augmented 
Spill Class 120 360 
Non-Spill Class 120 360 
Total 240 720 

Table 1. Dataset size before and after augmentations 
 

 
Figure 2. The first column contains original images from the 
dataset showing oil spills. Each row showcases the applied 

transformation on the image. 
 

4. Results and discussion 

4.1 Model Evaluation 

Using python and PyTorch (Paszke et al., 2019) in Google Colab, 
we trained the Vision Transformer model for 100 epochs. Table 
2 shows the resulting evaluation metrics. A validation accuracy 
of 91% means that the model successfully classifies 91% of the 
validation dataset, demonstrating how effective the model is in 
making decisions. However, for better evaluation, other metrics 
must be considered. For example, is it noticed that precision and 
recall have same value (0.9), which indicates how well the model 
is recognizing the true positives and decreasing the false 
negatives and false positives. F1-score of 0.9 reflects how 
balanced the model’s performance across precision and recall is, 
thus showing a harmonic mean between them. Validation loss 
was calculated with the cross-entropy function resulting in loss 
of 0.3 which implies that the model is performing better in 
classifying the true positive. From all previous values, the Visual 
Transformer proved to achieve robust performance by exhibiting 
strong values across all metrics hence suggesting how it can 
generalize unseen new data. To support these finding we also 
illustrate the confusion matrix in figure 3. Despite that seven no-
spill samples were misclassified, the model was able to correctly 
identify the majority of them, which is 29. Moreover, it 
succeeded in recognizing 35 true positives out of 36. Overall, the 
model had minimal errors in recognizing new data. 
 

 Results 
 Training Validation 
Accuracy 0.99 0.91 
Loss 0.01 0.30 
Precision 0.99 0.90 
Recall 0.99 0.90 
F1-Score 0.99 0.90 

Table 2. Resulted evaluation metrics from training and 
validation 
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Figure 3. Confusion matrix on validation data. 

 
For a deeper analysis of the model’s performance, we observe 
both accuracy and loss curves during training across 100 epochs, 
as shown in figure 4. The training loss (blue solid line) is reduced 
significantly in the initial epochs and remains below 0.05 starting 
from the epoch number of 25. Validation loss (orange dashed 
line) fluctuates significantly, especially between epochs 20 to 60, 
where a spike is observed. This implies that generalization of the 
model is unstable at these epochs. However, it starts to stabilize 
after epoch 70 and remains at a higher level than the training loss. 
Training accuracy (green solid line) climbs steeply and then 
levels off at around 100% after a few epochs, which shows that 
the present model is far doing well with the training data set. 
Validation accuracy (red dashed line) increases gradually at the 
initial steps and remains oscillatory after 20 epochs, with a value 
of around 90%. This may indicate an overfitting problem. The 
plot also addresses issues with overfitting and validation stability 
during the training. Hence these insights are important to be 
considered for optimizing the model’s performance. 

 
Figure 4. Evolution of accuracy and loss during training and 

validation. 
 
4.2 Model Inference 

To comprehensively assess the performance, we performed 
model inference with 16 SAR images, in which eight of them 
were from UAE, and the others were from other countries. These 
images undergo pre-processing steps before being fed into the 
ViT. Unlike the training process, where we used small segments 
showing spill to train the model, the test images represent full 
SAR images, mimicking the output from satellite acquisitions. 
Before feeding these images into the model for prediction, similar 
to previous steps in the pre-processing phase, we used the same 
pipeline to handle and prepare the test samples using SNAPPY 
in Python instead of SNAP Desktop.   
 
Each patch was then individually fed into the Vision Transformer 
model for inference. If any patch was classified as containing an 

oil spill, the entire SAR image was labelled as an oil spill. 
Additionally, patches with detected spills were highlighted to 
provide a visual justification for the classification.  Of the eight 
SAR images from the UAE, six were successfully classified as 
containing oil spills. Similarly, five of the eight images from 
other regions were correctly identified. This demonstrates the 
model's ability to generalize beyond the training dataset, 
accurately detecting oil spills in diverse environments. 
 
Figure 5 shows an example of one batch undergoing attention 
mechanisms in the Vision Transformer (ViT) model employed to 
identify oil spills in synthetic aperture radar (SAR) images. The 
first one on the extreme left is the input SAR image highlighting 
regions that share the characteristics of an oil spill. The next eight 
heatmaps depict the attention maps generated by different 
attention heads of the Vision Transformer model.   Heatmap is 
the visibility distribution of a particular patch grid of the image, 
and the sum of all heatmaps provides an attentive evaluation of 
the image. The heatmaps show the distribution of attention 
concentration, where yellow color indicates increased attention 
and blue color – reduced attention. The heat maps depicted in this 
plot emphasizes that Vision Transformer layers focus on a given 
area of the picture and hence represent both local and global 
embeddings. The feature of multiple attention heads allows the 
model to focus on different areas of an image at once, thus 
improving its ability to recognize oil spills as well as filtering out 
similar formations or noise. The proposed multi-headed attention 
mechanism improves the model’s resistance to SAR image 
complexity and the accuracy of oil spill detection.   
 
Figure 6 displays the results after testing the model on a full SAR 
image. The original SAR image is shown in (a). In (b), the 
prediction outputs are displayed. Each patch is an input to the 
ViT. The model identifies the segments having an oil spill and 
assigns their class accordingly with a confidence score. Instead 
of classifying the entire SAR image, the image was divided into 
small regions of interest. This helped the model to focus on 
specific areas similar to what was trained on and avoid making 
false positives when identifying finer details. This patch-based 
methodology enables the model to precisely detect areas of oil 
presence, even within intricate SAR images where environmental 
noise or natural analogues may otherwise conceal spills. The high 
confidence scores indicate the efficacy of the Vision Transformer 
model in differentiating oil spills in the SAR images. 

 
Figure 5. Visualization of attention. 
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Figure 6. (a) views the input SAR image. in (b) we plot random 

segments from the original input image displayed after 
classification. A confidence value will determine the strength 

level of oil spill assumption. The bigger the confidence the 
closer the prediction goes towards oil spill class. 

 
5. Conclusion 

An automatic oil spill detection system based on ViT’s 
segmentation and classification architecture was suggested in this 
study. This serves the purpose of taking immediate action against 
the incident of oil leakages in the ocean. The project focuses on 
areas surrounding UAE including Arabian Gulf and Gulf of 
Oman. We trained the model on segments of SAR images 
obtained from online resources provided by Copernicus Hub and 
ESA. The resulting model was tested on new SAR data that were 
segmented and fed to the model as patches. This allowed 
localizing the leakage that exists in the image. The model showed 
signs of overfitting which can be solved by enhancing both the 
dataset and the architecture of the neural network. We believe 
that our proposed observation system can assist in reducing the 
risks driven by oil slick appearance which affect the environment, 
human health, and the country’s economy. Following the interest 
of achieving a sustainable future in the UAE, we aim to improve 
our current findings using more elevated state-of-art technology.     
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