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Abstract

As deep learning models advance, their use in Super Resolution (SR) tasks has become pivotal for enhancing remote sensing
low-resolution (LR) satellite images. However, the decision making processes within these models remain opaque, especially
in remote sensing applications where transparency is critical. This paper focuses on applying Explainable Artificial Intelligence
(XAI) techniques, particularly Local Attribution Maps (LAMs), to analyze and interpret the internal behavior of both general pur-
pose and remote sensing specific SR neural networks. General purpose models like Generative Adversarial Network for Super
Resolution (SRGAN), Enhanced Deep Super-Resolution Network (EDSR), Efficient Super-Resolution Transformer (ESRT), and
Hybrid-Attention Transformer (HAT), although highly effective in SR tasks, were originally designed for broader image enhance-
ment challenges; in contrast, Hybrid-Scale Self-Similarity Exploitation Network (HSENet) and Multi-scale Enhanced Network
(MEN) are tailored for the unique complexities of remote sensing, such as varied textures and intricate scene features. By lever-
aging LAMs, we highlight how different networks prioritize and process features such as edges, textures, and high frequency details
to generate super resolved outputs. The comparative study between general purpose and remote sensing specific networks outlines
each model’s strengths and weaknesses in managing the data present in remote sensing imagery. This approach addresses the pre-
viously unexplored application of LAMs in remote sensing for SR, contributing to the research in this field and providing deeper
insights into the interpretability and transparency of widely used SR models. Furthermore, by drawing parallels between feature at-
tribution in SR and classification tasks, we suggest new pathways for integrating semantic information to refine model transparency
and performance in remote sensing applications.

1. Introduction

Remote sensing is a crucial tool in various fields like agricul-
ture, meteorology, urban planning, environmental monitoring,
and military reconnaissance (Sishodia et al., 2020, Surendran et
al., 2024, Tmušić et al., 2020, Smith and Doe, 2023). It enables
the collection of extensive imagery from satellites and airborne
platforms, providing essential data for resource management,
environmental assessment, and strategic planning. However,
the effectiveness of remote sensing imagery is often limited by
its resolution (Johnson and Thompson, 2022). High-resolution
images are vital for detailed analysis, yet their acquisition is re-
stricted by current imaging technologies and the high costs of
high-resolution sensors (Williams and Lee, 2021).

Super-Resolution (SR) techniques aim to mitigate these limita-
tions by reconstructing high-resolution (HR) images from low-
resolution (LR) inputs (Nasrollahi and Moeslund, 2014) using
specialized neural networks. Recent advances in deep learning
have significantly enhanced SR performance, resulting in the
development of cutting-edge, highly effective neural networks
like Generative Adversarial Network for Super Resolution (SR-
GAN) (Ledig et al., 2017), Enhanced Deep Super-Resolution
Network (EDSR) (Lim et al., 2017), Efficient Super-Resolution
Transformer (ESRT) (Lu et al., 2022), Hybrid-Attention Trans-
former (HAT) (Chen et al., 2023), Hybrid-Scale Self-Similarity
Exploitation Network (HSENet) (Lei and Shi, 2021) and Multi-
scale Enhanced Network (MEN) (Wang et al., 2023).
∗ Corresponding author

Despite the successes of SR techniques, their application to
remote sensing imagery poses unique challenges, such as the
complexity of scene features, texture diversity, varying illumin-
ation, and the presence of small, intricate objects (Wang et al.,
2022a). Additionally, the scarcity of high-resolution training
data further complicates the training of deep learning models.
Our study evaluates the above state-of-the-art SR networks on
remote sensing datasets, with a focus on using Explainable AI
(XAI) techniques, specifically Local Attribution Maps (LAMs)
(Gu and Dong, 2021). LAMs uses integrated gradients to ana-
lyze how different parts of the input image influence the output,
emphasizing features such as edges and textures over mere pixel
intensities. Such a detailed attribution analysis can provide deep
insights into the internal mechanisms and decision-making pro-
cesses of SR networks, elucidating how these models enhance
image resolution. By applying LAMs, we aim to bridge the gap
in understanding the interpretability of SR networks in remote
sensing. This approach not only can advance comprehension
of SR algorithms but also ensures their reliable and transparent
application in critical remote sensing tasks, guiding the devel-
opment of more effective and interpretable approaches tailored
for remote sensing applications.

2. Related Work

In this section, we review the evolution in Single-Image Super
Resolution (SISR) from early methods to advanced deep learn-
ing models, particularly in the context of remote sensing. Ad-
ditionally, we examine the evolution of XAI, focusing on how
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different techniques have emerged to provide transparency and
interpretability in deep learning models, with a specific look at
their application to remote sensing.

2.1 Remote Sensing Single-Image Super Resolution

In recent years, various methods have been proposed for SISR
in remote sensing (Wang et al., 2022b). Initially, methods such
as interpolation and reconstruction were used to enhance image
resolution (Cherifi et al., 2020). However, these approaches had
limitations, including loss of high-frequency information and
high computational costs (Wang et al., 2022a). The advent of
deep learning has revolutionized SISR, allowing for more ac-
curate and efficient high-resolution image reconstruction (Yang
et al., 2019). Early deep learning based approaches, such as Su-
per Resolution Convolutional Neural Network (SRCNN) (Dong
et al., 2015), introduced a lightweight three-layer CNN that
demonstrated significant improvements over traditional meth-
ods. However, SRCNN’s limited depth constrained its ability to
capture complex image structures. To address this, Deeply Re-
cursive Convolutional Network (DRCN) (Kim et al., 2016b),
introduced deep recursive layers, allowing for a more refined
image reconstruction but at the cost of increased memory con-
sumption and training time. The Very Deep Super Resolu-
tion (VDSR) model (Kim et al., 2016a), further optimized per-
formance by incorporating residual learning and gradient clip-
ping, making it more effective for handling multi-scale images.
An example of notable deep learning-based models is SRGAN
(Ledig et al., 2017), which leveraged a generative adversarial
network (GAN) framework to generate high-resolution images
with realistic textures. Despite its ability to produce visually ap-
pealing results, SRGAN’s limitations include the potential for
artifact and limited generalization to diverse real-world images.
To enhance both efficiency and performance EDSR (Lim et al.,
2017) removed unnecessary batch normalization layers, redu-
cing memory overhead while improving image quality. More
recent models incorporate transformer based architectures to
enhance feature extraction. ESRT (Lu et al., 2022) combines
CNNs and transformers, leveraging their strength to improve
performance while addressing high computational costs. How-
ever, transformer-based models often tend to excessively smooth
out fine details. To mitigate this, HAT (Chen et al., 2023) over-
comes limitations of traditional transformer models by combin-
ing channel attention and window-based self-attention mech-
anisms, effectively utilizing a larger input region while redu-
cing redundancy, reaching a better image reconstruction. Spe-
cialized models have also been developed for remote sensing.
HSENet (Lei and Shi, 2021), introduces spatial and channel-
wise attention mechanisms to enhance feature extraction, par-
ticularly suited for the complex textures and varying resolutions
of remote sensing images. MEN (Wang et al., 2023), employs a
multi-scale ensemble network, effectively handling diverse im-
age characteristics while balancing computational complexity
and performance.

2.2 Explainable AI in Deep Learning

XAI has emerged as an important area of research, driven by
the need to make complex models interpretable and transpar-
ent. Various methods have been introduced to generate human
understandable explanations for AI decision making processes,
broadly categorized into local or global, back-propagation-based
or perturbation-based approach and intrinsic or post-hoc meth-
ods. Intrinsic methods integrate explainability directly into the
model architecture, whereas post-hoc methods, applied to already

trained models, offering flexibility across different architectures.
Several methods have been developed to enhance the explainab-
ility, such as saliency maps, Layer-wise Relevance Propagation
(LRP) (Bach et al., 2015), and SHapley Additive exPlanations
(SHAP) (Lundberg and Lee, 2017) interpret the model’s de-
cisions by highlighting the input features most influencing the
output. These methods help to understand the inner workings
of deep learning models, building trust, as well as facilitating
model debugging and improvement.

In remote sensing, XAI methods address specific challenges
posed by Earth Observation (EO) tasks such as classification,
segmentation, and scene understanding. Techniques like ex-
plainable CNNs for land use classification, physically explain-
able CNNs for Synthetic Aperture Radar (SAR) image classific-
ation, and attention-based mechanisms for land cover mapping
provide clear and interpretable insights into how remote sensing
models process and analyze data. These enhancements improve
their reliability and applicability in real-world scenarios. Dif-
ferently than other areas of remote sensing, the field of SR re-
mains underexplored in terms of explainability. The complexity
of generating and explaining new image details, the continuous
nature of the output, and the sophistication of model architec-
tures make providing clear and interpretable explanations more
challenging than in classification and segmentation tasks.

LAMs (Gu and Dong, 2021) is a local back-propagation post-
hoc explainable algorithm that represent a promising approach
in this area. LAMs leverage path integral gradients for attri-
bution analysis, using a blurred image baseline to represent
missing high-frequency components. This method focuses on
specific patches, challenging areas, and local features such as
edges and textures to understand individual pixel contributions.
LAMs can provide a detailed analysis of how SR networks
process and enhance image resolution, revealing the network’s
learned knowledge and capabilities, which is particularly im-
portant for identifying the network’s performance in difficult-
to-reconstruct areas.

3. Methodology

First, the models under study, i.e., SRGAN, EDSR, ESRT, HAT,
HSENet, and MEN have been trained on a large remote sensing
dataset. To conduct the training, the dataset adopted is divided
between the training set and the validation set. Once trained,
these models are tested on a separate remote sensing dataset to
assess their ability to generate HR images from LR inputs in a
different dataset context. To conduct both the training and the
testing the original images from the datasets are taken and con-
sidered as the HR images and the LR version of them were ob-
tained using bicubic interpolation downsampling method, com-
puted by:

ILR = (IHR ⊗ k) ↓s +σ (1)

where (IHR ⊗ k) is the convolution operation between the HR
image IHR and the degenerate blur kernel k (e.g., Gaussian blur
kernel), ↓s is the down sampling operation with scale factor s
(with values such as 2, 3 and 4) and σ is an additive noise term.
Subsequently, local attribution analysis has been conducted to
gain insights into how these networks utilize input information
to enhance resolution. Specifically, we used the LAMs method
which adopt a progressive path function defined as:

γpb(k/L) = ω(σ(1− k/L))⊗ I (2)
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The Gaussian kernel ω parameters include σ, representing the
standard deviation of the Gaussian blur applied to the input im-
age. Higher σ values lead to more blurred baselines, resulting in
broader but less detailed attributions. Another key component
is the use of the path function for integrated gradients, which
involves the definition of the number of steps L that control
the smoothness of the gradient approximation. Higher L val-
ues provide more accurate attributions but increase computation
time. Additionally, the Fold parameter determines the number
of subdivisions in the input space. A higher Fold results in
finer granularity in attribution analysis but increases computa-
tional complexity.

The choice of window size for LAMs is also critical. A lar-
ger window size can capture more contextual information from
the image, leading to broader attribution but potentially diluting
specific details. Conversely, a smaller window size focuses on
finer details but may miss broader context, affecting the overall
interpretability. The position of the window is also important,
placing it over regions with relevant elements of the image (e.g.,
edges, textures) ensures that the most informative features are
highlighted in the attribution analysis. Incorrect placement can
lead to misleading attributions, thereby affecting the reliability
of the interpretation.

4. Experimentns and Results

In this section, we present the experimental setup and results
of our study. We start by describing the hardware and datasets
used for training and evaluation. Then, we present the imple-
mentation specifics, including training parameters and attribu-
tion analysis settings. Afterwards, we analyze the performance
of the considered super-resolution models across different im-
age classes and scale factors. Finally, we provide insights into
their effectiveness based on Peak Signal-to-Noise Ratio (PSNR)
and Structure Similarity Index Measure (SSIM), and discuss the
results of attribution analysis using LAMs.

4.1 Experimental Data and Settings

4.1.1 Hardware Specifications We employed a 13th Gen
Intel(R) Core(TM) i9-13900k with two NVIDIA GeForce GTX
4090 GPUs to train the models and a 12th Gen Intel(R) Core(TM)
i7-12700H with an NVIDIA GeForce RTX 3070 GPU to test
and perform attribution analysis.

4.1.2 Datasets and Metrics In this work, we use the Aerial
Image Dataset (AID) (Xia et al., 2017) for training, that con-
tains 10,000 aerial images and each image has a resolution of
600×600 pixels and the UCMerced dataset for testing contain-
ing 2,100 images and each image has a resolution of 256×256
pixels. PSNR and SSIM are widely-used metrics for SR eval-
uation, which reflect the pixel-level difference between the SR
result and the groundtruth. PSNR is defined as follows:

10 · log10
(

MAX2
I

MSE

)
(3)

where MAXI is the maximum possible pixel value of the im-
age (for 8-bit RGB images, MAXI = 255). MSE is the Mean
Squared Error (MSE) between the original and the reconstruc-
ted image and it is defined as follows:

1

mn

m∑
i=1

n∑
j=1

(I(i, j)−K(i, j))2 (4)

where m and n are the dimensions of the image, I(i, j) is the
pixel values of the original picture at position (i, j) and K(i, j)
is the pixel values of the reconstructed image at position (i, j).
The higher the PSNR values, the better the reconstruction qual-
ity. Whereas, SSIM metric is computed as:

(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(5)

where µx and µy are the local means, σ2
x and σ2

y are the vari-
ances, σxy is the covariance of x and y, C1 and C2 are two
constants. Higher SSIM value indicates greater structural co-
herence and thus better SR capability. To evaluate the attribu-
tion analysis result the Diffusion Index (Gu and Dong, 2021),
which measure how many input pixels contribute to the final SR
output and it is defined as:

DI = (1−G)100 (6)

where and G is calculated by:

G =
Σn

i=1Σ
n
j=1|gi − gj |
2n2ḡ

(7)

where gi means the absolute value of the ith dimension of the
attribution map and ḡ is the average value of gi. Higher DI val-
ues indicate that the network utilizes information from a broader
range of pixels.

4.1.3 Implementation Details During training, all methods
utilize Adam optimizer with a learning rate of 10−4 except for
ESRT with a value of 2 ∗ 10−4 and HAT adopting a value of
10−5. Patch sizes of 96, 144, and 192 were considered to
achieve a good trade-off between performance and computa-
tional cost for the adopted scale factors of 2, 3, and 4, respect-
ively. Additionally, in this work attribution analysis was per-
formed using two different window sizes of 32 and 64, extend-
ing the experiments did in the official paper where a window
size of 16 was adopted. These windows were positioned in the
center of the images, where relevant features were most prom-
inent. For the integrated gradient with gaussian blur, the fol-
lowing parameters were employed L = 100, Sigma = 2 and
Fold = 9.

4.2 Networks Investigation and Analysis

4.2.1 SR models results In our study, we utilized HR im-
ages from the UCMerced dataset and generated LR counter-
parts through bicubic downsampling with scale factors of 2, 3,
and 4. These LR images, along with their corresponding HR
images, were used to produce the corresponding SR images.
Figure 1 illustrates the performance comparison of the con-
sidered models across the 21 image classes of the UCMerced
dataset and various scale factors. In particular, Figure 1a shows
the PSNR values, whereas Figure 1b shows the SSIM values
across the image classes of UCMerced dataset. Based on these
results, classes such as “beach”, “baseballdiamond” and “golf-
course” show higher PSNR and SSIM values across all net-
works, possibly because these classes contain more distinct and
repetitive patterns that are easier for the networks to learn and
reconstruct. On the other hand, classes like “parkinglot”, “har-
bour”, and “mobilehomepark” have more complex and less struc-
tured features, making them more challenging for the networks
to super-resolve effectively. Additionally, we analyzed the av-
erage PSNR and SSIM values on the whole UCMerced dataset,
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(a) PSNR across image classes (b) SSIM across image classes

Figure 1. Performance comparison of the considered models across the image classes of the UCMerced dataset and different scale
factors.

Model Method Scale Param PSNR↑ SSIM↑

SRGAN
Generative
Adversarial

Network

2x 5,801,931 31.88 0.91
3x 5,986,571 28.56 0.83
4x 5,949,644 26.53 0.74

EDSR
Enhanced Deep

Super-Resolution
Network

2x 40,729,603 30.23 0.86
3x 43,680,003 27.57 0.77
4x 43,089,923 26.11 0.70

ESRT
Efficient

Super-Resolution
Transformer

2x 677,783 30.96 0.87
3x 770,263 27.96 0.78
4x 751,767 26.15 0.70

HAT High-Attention
Transformer

2x 20,624,795 31.40 0.88
3x 20,809,435 28.27 0.79
4x 20,772,507 26.58 0.72

HSENet
High-Resolution
Swin Efficient

Network

2x 5,285,659 31.07 0.88
3x 5,470,299 28.07 0.79
4x 5,433,371 26.13 0.70

MEN
Multi-scale
Enhanced
Network

2x 2,592,899 31.07 0.88
3x 2,777,539 27.96 0.78
4x 2,740,611 26.12 0.70

Table 1. Comparison of models with PSNR and SSIM metrics
for different scale factors.

as shown in Table 1. The table reflects the expected trend where
SR images obtained with a scale factor of 2 exhibit higher PSNR
and SSIM values compared to those with scale factors of 3 and
4, which generally have lower values. Among the models, SR-
GAN demonstrates slightly superior results for both PSNR and
SSIM, attributed to its enhanced ability to capture and recon-

struct fine details in SR images. HAT, HSENet, and MEN
also offer competitive performance, with HAT achieving the
highest PSNR value for scale factor of 4 among all models.
Although EDSR and ESRT perform well, they are generally
outperformed by the other models. Additionally, the number of
parameters plays a significant role in its performance, capacity,
and computational requirements. On the one hand, models with
more parameters, such as EDSR and HAT, show an increased
memory usage and computational demands and require more
time and resources during training and inference. On the other
hand, models with fewer parameters, such as ESRT and MEN,
are generally lighter and faster, although these models might
struggle to capture intricate details possibly affecting the SR
quality. Instead, with its moderate parameter count, SRGAN
and HSENET is designed to balance quality and efficiency.

4.2.2 Attribution Analysis As it can be seen in Figure 2,
the LAMs analysis reveals significant differences in how vari-
ous neural network models focus on image features during super-
resolution tasks at different scales. Figure 2a, 2b and 2c shows
examples of LAMs analysis using window size of 32 for scale
factor of 2,3 and 4 respectively, whereas in Figure 2d, 2e and
2f a window size of 64 is used. In each figure, on the left it
is shown the original images with the window size considered,
while the subsequent images display LAMs, highlighting which
parts of the images are used by each model to achieve super res-
olution. To better understand these examples, Table 2 suggests
that models like HAT, HSENet show concentrated and well-
defined focus areas, indicating their superior ability to identify
and enhance critical image features. More in details, HAT’s
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(a) Scale Factor = 2

SRGAN
24.06dB/0.88G

EDSR
24.38dB/0.86G

ESRT
24.33dB/0.87G

HAT
25.18dB/0.89G

HSENET
24.48dB/0.87G

MEN
24.21dB/0.87G

(b) Scale Factor = 3

SRGAN
24.73dB/0.65G

EDSR
24.41dB/0.58G

ESRT
24.35dB/0.57G

HAT
24.94dB/0.63G

HSENET
24.46dB/0.59G

MEN
24.44dB/0.58G

(c) Scale Factor = 4

SRGAN
34.59dB/0.86G

EDSR
33.89dB/0.83G

ESRT
32.44dB/0.81G

HAT
33.77dB/0.83G

HSENET
32.99dB/0.80G

MEN
33.66dB/0.84G

(d) Scale Factor = 2

SRGAN
31.09dB/0.90G

EDSR
29.38dB/0.81G

ESRT
30.37dB/0.84G

HAT
30.70dB/0.85G

HSENET
30.44dB/0.84G

MEN
30.54dB/0.85G

(e) Scale Factor = 3

SRGAN
27.85dB/0.76G

EDSR
26.28dB/0.67G

ESRT
27.22dB/0.68G

HAT
27.61dB/0.68G

HSENET
27.12dB/0.69G

MEN
26.73dB/0.68G

(f) Scale Factor = 4

SRGAN
34.61dB/0.87G

EDSR
33.28dB/0.81G

ESRT
33.32dB/0.82G

HAT
33.41dB/0.82G

HSENET
33.14dB/0.81G

MEN
33.41dB/0.81G

Figure 2. Examples of LAMs analysis for the considered models on UCMerced images from different classes. On the left, window
size = 32 and different scale factors (a) scale factor = 2, (b) scale factor = 3, (c) scale factor = 4. On the right, window size = 64 and

different scale factors (d) scale factor = 2, (e) scale factor = 3, (f) scale factor = 4.

scattered red points and widespread focus show that its atten-
tion mechanism prioritizes different parts of the image, provid-
ing a more global view; this can be seen from the higher DI val-
ues. HSENet reveals distinctive patterns, frequently emphas-
izing edges and specific structures within the images. These
patterns become more defined and extensive with a larger win-
dow size, indicating that HSENet effectively utilizes the larger
window to refine its focus on significant structures. Further-
more, although ESRT also uses attention mechanisms similar
to HAT, its attribution maps display denser red points and a
focus on slightly finer features. This suggests that ESRT util-
izes attention mechanisms both to capture long-range contex-
tual information and enhance details resolution. In compar-
ison, MEN demonstrates a moderate density of red points in
its attribution maps and shows a balanced focus on features
across different resolutions. MEN’s approach involves a multi-
scale strategy that aggregates information from various scales
to enhance image resolution. Thanks to this strategy, MEN
maintains robust performance and consistency across a range
of scales and resolution variations. In contrast, SRGAN and
EDSR show dense scattered red points, indicating their focus
on various small, localized features for reconstruction and their
attention to fine local details. SRGAN, focuses on generating
realistic textures and high-frequency details, emphasizing per-
ceptual quality and realism through adversarial training. EDSR
maintains a concentration of red points that remain relatively
focused but spread slightly with a larger window size. This
suggests that EDSR continues to prioritize fine details through
its deep residual learning framework, but it also balances its fo-
cus between local features and broader context when provided

with more information.

Models WS32 WS64
SF=2 SF=3 SF=4 SF=2 SF=3 SF=4

SRGAN 0.9389 1.1627 1.5743 2.2985 2.8985 3.8363
EDSR 1.8648 2.2384 3.4693 3.9658 4.2671 5.8866
ESRT 7.7127 9.0338 10.5880 9.1631 10.4540 11.9729
HAT 9.3201 11.2121 12.9570 10.5320 13.0948 14.2539
HSENET 9.9865 11.6216 13.1241 12.0296 13.3035 14.4163
MEN 1.2053 1.8424 2.9482 3.0919 3.8955 5.1134

Table 2. Comparison of the average DI value on the overall
UCMerced dataset with window sizes of 32 and 64 with

different scale factors

Image context analysis: Images not containing defined objects
(like cars, boats, houses or airplanes) exhibit clearer and more
consistent LAM results across all models, leading to higher
PSNR values, as shown in Figure 2. Images from classes like
“parkinglots” or “harbors” with finer details and complex fea-
tures are characterized by a lower PSNR than images like “ag-
ricultural fields” or “rivers”. This clarity can be attributed to
the homogeneous nature of these images, where textures and
patterns are more uniform, making it easier for the models to
identify and enhance relevant features consistently. Conversely,
images with defined objects present a greater challenge due to
the complexity and variety of features that need to be accur-
ately identified and enhanced. This complexity often results in
more scattered focus areas, especially in models without atten-
tion mechanisms or a hierarchical structure like SRGAN, EDSR
or MEN.
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(a) DI values with window size of 32 (b) DI values with window size of 64

Figure 3. DI values comparison of the considered models across the image classes of the UCMerced dataset with different scale
factors and window size of 32 and 64

Scale factor analysis: Using a lower scale factor can be more
useful for complex images with more details. At lower scales,
the models have less difficulties in preserving and enhancing
intricate features, leading to higher-quality results. As the scale
factor increases, the challenge of maintaining detailed feature
integrity becomes more pronounced. Therefore, higher scale
factors are better suited for images with fewer details, where
the focus can be on enhancing broader, less complex features
without losing critical information.

Window size analysis: The window size plays a crucial role
in the quality of the super-resolution results. Smaller window
sizes provide a more localized view, enabling the models to fo-
cus on finer details within a limited area. This can be beneficial
for detailed images but may lead to less context awareness for
broader patterns. Larger window sizes, instead, capture larger
patterns and context but potentially dilute focus on finer de-
tails. The choice of window size thus depends on the specific
characteristics of the images and the scale factor used, with lar-
ger windows being more advantageous for less detailed images
and smaller windows better suited for highly detailed images.
To gain a more nuanced understanding, we examined the re-
lationship between the DI and window size across models for
the entire testing dataset and for all scale factors, comparing
window sizes of 32 and 64. The results are illustrated in Fig-
ure 3. This figure highlights that larger window size tend to
conduct higher DI values. Notably, larger window sizes cap-
ture a broader pixel context, leading to an approximate increase
of 2 points in DI across all cases. With a window size of 64,
models such as SRGAN, EDSR, and MEN achieve higher DI

values and generate more detailed maps, facilitating a more
precise analysis. This observation opens the possibility for a
discussion on the trade-offs between window size, model fo-
cus and computational cost. Larger windows generally require
more memory and processing power, which could be a limiting
factor. Conversely, smaller windows enable the model to fo-
cus on a smaller area, but may come with the benefit of lower
computational cost.

These results are further validated by the analysis of the heat
maps, which highlight the areas of interest for the various neural
networks on example images (see Figure 4). Figures 4a, 4b and
4c consider a window size of 32 for scale factor of 2,3 and 4,
respectively, whereas Figures 4d, 4e and 4f use a window size
of 64. In each figure, the leftmost image shows the original
image with the selected window size, while the subsequent im-
ages display the heat maps, illustrating the regions that different
models prioritize for super-resolution. For instance, SRGAN
and EDSR, which focus on localized, fine details, are better
suited for images containing intricate textures or small, well-
defined features, like individual cars in parking lots or specific
textures in agricultural fields. Their attention to fine details is
critical when HR enhancement of such small structures is re-
quired. In contrast, ESRT and HAT, which focus on broader,
more generalized patterns, perform better in images with sim-
pler, repetitive features, such as agricultural fields with striped
or grid-like textures. HSENet’s heat maps, which emphasize
larger regions and recurrent parts of the image, indicate that it
is well-suited for scenes with broad, structural patterns. For
surface features that require recognizing large, linear structures

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-575-2025 | © Author(s) 2025. CC BY 4.0 License.

 
580



(a) Scale Factor = 2

SRGAN
DI 1.59

EDSR
DI 1.52

ESRT
DI 6.67

HAT
DI 8.31

HSENET
DI 7.04

MEN
DI 1.08

(b) Scale Factor = 3

SRGAN
DI 2.68

EDSR
DI 2.89

ESRT
DI 11.14

HAT
DI 17.81

HSENET
DI 10.47

MEN
DI 1.79

(c) Scale Factor = 4

SRGAN
DI 3.58

EDSR
DI 4.52

ESRT
DI 19.67

HAT
DI 35.38

HSENET
DI 28.79

MEN
DI 3.73

(d) Scale Factor = 2

SRGAN
DI 3.58

EDSR
DI 2.04

ESRT
DI 6.17

HAT
DI 6.96

HSENET
DI 5.56

MEN
DI 2.56

(e) Scale Factor = 3

SRGAN
DI 2.95

EDSR
DI 2.16

ESRT
DI 12.98

HAT
DI 13.74

HSENET
DI 12.85

MEN
DI 2.78

(f) Scale Factor = 4

SRGAN
DI 6.18

EDSR
DI 6.39

ESRT
DI 9.30

HAT
DI 14.18

HSENET
DI 12.87

MEN
DI 5.82

Figure 4. Examples of the area of contribution for the considered models on UCMerced images from different classes. On the left,
window size = 32 and different scale factors (a) scale factor = 2, (b) scale factor = 3, (c) scale factor = 4. On the right, window size =

64 and different scale factors (d) scale factor = 2, (e) scale factor = 3, (f) scale factor = 4.

(e.g., roads, runways, or highways), ESRT, HAT, and HSENet
are particularly effective, as they leverage the larger context
to enhance the overall profile of these elements. HSENet and
HAT’s higher DI values across all scale factors confirm their
strength in capturing the structural integrity of large surface
areas, such as agricultural fields or urban landscapes with linear
features. Meanwhile, MEN exhibit a balanced approach, high-
lighting structural and textural features effectively across vari-
ous scales, making it a good choice for images where consist-
ency across different scales is important, such as in the case of
diverse environmental conditions with varying levels of detail.
For more complex, detailed scenes, such as “airplane,” “beach,”
or “sparseresidential” images, models like SRGAN and EDSR
may struggle to capture the full range of detail. In these cases,
it is essential to choose models that prioritize specific features
over broad patterns, as the complex textures and diverse ele-
ments in these classes make it challenging for models to pro-
cess the image globally. For simple, repetitive surface features
(like agricultural patterns or urban roads), models like HAT,
ESRT, and HSENet offer strong performance due to their abil-
ity to leverage broader context and structural information. For
more detailed or complex surface features, SRGAN and EDSR
should be preferred for their ability to enhance fine textures.

5. Conclusion

In this study, we evaluated the performance of state-of-the-art
neural networks on remote sensing datasets, addressing the crit-
ical challenge of enhancing image resolution. By integrating
XAI techniques, particularly LAMs, we provided a novel per-

spective on the internal mechanisms of these networks, offer-
ing detailed insights into how they process and enhance low-
resolution images. The usage of LAMs also demonstrated the
potential to bridge the gap in understanding the interpretability
of SR networks in remote sensing, an area that has remained
under explored. For future work, incorporating semantic in-
formation into SR models, as demonstrated in (Mc Cutchan et
al., 2021), could improve the interpretability of SR models in
remote sensing. Integrating high-level semantic metadata, such
as land cover types or object categories, with LAMs could en-
hance transparency and align with key features in SR models.
Additionally, examining feature prioritization, as seen in classi-
fication tasks, could offer further insights into how SR models
process edges, textures, and high-frequency details. Overall,
this research contributes to the advancement of SR techniques
in remote sensing by providing deeper insights into model beha-
vior, guiding the development of more effective and transparent
SR algorithms tailored for remote sensing applications.
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