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Abstract 
 
Given the vital role bees play in our ecosystems and their increasing endangerment, it is highly important to develop new methods that 
assist in gaining a deeper understanding of the spatial dimension of insect behavior. Conventional methods for monitoring bees are 
subject to accuracy limitations, experimental setup complexity, and lack the explicit spatial dimension. This study presents a novel 
approach for detecting and identifying honey bees (Apis mellifera) and Asian hornets (Vespa velutina) using hypertemporal LiDAR 
point clouds. We employed an experimental setup of a permanent terrestrial laser scanner (Riegl VZ-600i) to capture point clouds in a 
region of interest of 3 x 2 x 5 m at regular intervals (30 s) over ca. 1.8 h. By training a random forest classifier based on local 
neighbourhood features, the classified points can then be clustered in single and distinct objects of bees/hornets. Ultimately, a simple 
logical operator is employed to ascertain whether an object is a bee or hornet, according to definable knowledge-driven thresholds 
(e.g., size of bees). Our proposed method demonstrates high accuracy and precision in bee (n = 7,084, acc. = 97.44%, prec. = 99.07%) 
and hornet detection (n = 296, acc. = 87.71%, prec. = 67.65%), offering a fully automatic and 3D spatial monitoring alternative to 
traditional techniques. Furthermore, it allows for the identification of insect activity zones and times, as well as their relative change 
over time. We could identify zones of bee activity in front of the hive with observable flying slowdowns before entering and defensive 
behaviors in response to predators. This approach provides new insights into the spatial and temporal dynamics of insect populations, 
especially in the context of environmental and climate change.  
 
 

1. Introduction 

Bees are an essential species for maintaining the health of 
ecosystems, performing a range of ecological functions, 
particularly as pollinators of plants (Brown and Paxton, 2009). In 
many parts of the world European honey bees (Apis mellifera) 
are regarded as a key species, playing a significant role in 
agriculture. This includes the production of honey and the 
pollination of crops. In other words: bees fulfill a crucial role in 
food security and ecosystem conservation (Hung et al., 2018). 
However, honey bees and other wild bee species are particularly 
vulnerable to the impacts of climate change and anthropogenic 
alterations to landscapes and ecosystems (Vercelli et al., 2021, 
Tennakoon, 2024 and Rodet and Henry, 2014). Severe effects 
(e.g., declining populations, higher risk of diseases, etc.) are 
already observed by beekeepers and farmers around the world 
(Vercelli et al., 2021 and Brown and Paxton, 2009). 
 
An understanding of the flying behavior of honey bees is crucial 
for comprehending their spatio-temporal distribution and 
interactions with the environment. Honey bees are known for 
their complex foraging patterns, which are influenced by a 
variety of environmental factors, including temperature, floral 
availability, and the presence of other pollinators (Ropars et al., 
2019). These factors directly impact the flight behavior of the 
bees, which, in turn, affects their pollination efficiency and 
survival rates. 
 
To gain a deeper insight into the underlying causes of behavioral 
change, it is essential to examine the bees in relation to a range 
of parameters, including the number of bees per colony, flight 
distances, flight duration, swarming period and so forth. A study 
conducted by Rodet and Henry (2014) investigated the flight 

distances of honey bees in changing landscapes. However, a 
significant challenge in such studies is the experimental setup and 
the associated effort, given that bees are relatively small and have 
a high level of mobility. This often necessitates the use of 
individual bees as the unit of observation, employing techniques 
such as RFID tracking (He et al., 2016) or manual counting 
(Rodet and Henry, 2014) to measure the entry and exit times of 
the hive.   
 
The objective of this paper is to address these methodological 
constraints with often invasive setups, and propose a novel 
approach for measuring the number of bees and their spatio-
temporal distribution using LiDAR technology. We employ a 
static terrestrial laser scanner (TLS) to scan a predefined area at 
regular intervals. The generated data is analyzed with an 
algorithm that integrates machine learning techniques. This 
allows for the identification of individual bees and hornets in the 
scene and the utilization of the number of bees and hornets as 
well as their spatial information to determine indices of activity. 
In other words, our method uses a time series of TLS point clouds 
as input and the outputs are detected individual bees and hornets 
as single objects in space and time, their spatial and temporal 
activity zones in 3D and their relative change over time. Our 
study serves as a scientific proof-of-concept of potential future 
application of permanent TLS (PLS) to monitor bees in 
particular, and insects in general. This could assist biologists in 
gaining a deeper understanding of the flight patterns and spatial 
as well as temporal distribution of bees, which could potentially 
be extended to even more insects. Furthermore, it could benefit 
beekeepers in enhancing their understanding of colony behavior 
and the early detection of attacks by predators (e.g., hornets) or 
the impact of other disruptive factors (e.g., climatic stress, 
pollution, weather, etc.).  
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2. State of the Art 

The monitoring of individual bees can be accomplished by 
manually observing an area and consequently counting the bees 
or by outfitting the insects with miniature radio frequency 
identification (RFID) tags and measuring the times of entry and 
exit (Rodet and Henry, 2014 and He et al., 2016). For example, 
He et al. (2016) used this experimental setup to ascertain how the 
weather of the subsequent day exerts an influence on the foraging 
activities of the current day. By employing an individual animal 
tracking approach, they were able to demonstrate the impact of 
impending weather conditions on foraging duration and times. 
Shimasaki et al. (2020) used a video-based approach, utilizing 
high-frame-rate videos (500 fps) and detecting brightness 
fluctuations in pixels surrounding the wings to identify them. A 
similar video-based approach was used by Sun and Gaydecki 
(2021), which used image processing tools to track individual 
bees. Another approach to determine the location of insects and 
to distinguish between different species is used by Rydhmer et al. 
(2022) who are using a Scheimpflug LiDAR to measure a 
transect along a white clover field. In the general context of 
animal counting, Azmy et al. (2012) employed time-of-flight 
LiDAR technology to scan a cave where two colonies of distinct 
bat species were residing. By utilizing an automatic detection 
algorithm that considers the varying reflectance values between 
the bats' fur and the cave's surface as a detection criterion, they 
were able to map the bats within the cave and distinguish between 
the different species. This example also outlines the strengths of 
using an active monitoring system with LiDAR that is also 
working in weak/no-light conditions, which is not possible with 
video-based approaches. Given the feasibility of employing 
LiDAR technology to detect animals in general and the shown 
potential for insect observation in the literature, this study 
investigates the research gap on the utilization of a standard 
surveying LiDAR device for bee and hornet detection in space 
and time. This will be the first proof-of-concept study on PLS to 
derive near real-time spatio-temporal information for beekeepers 
and scientists. 
 

3. Methods and Data 

Our method to detect bees in hypertemporal LiDAR scenes is 
primarily motivated by the objective to develop a method that 
exclusively relies on spatial characteristics and relationships to 
accurately identify individual points in the point cloud and group 
them as distinct bees. Our workflow can be described by a four-
step procedure: 1) the acquisition of data; 2) the pre-processing 
of the data; 3) the training of a machine learning model; 4) the 
application of a detection algorithm and the error assessment of 
the results. To address the challenge, a machine learning model 
is trained on a range of spatial features related to the local 
structure of the point cloud neighborhood, coupled with a 
clustering algorithm, to categorize individual points as bees or 
hornets. Subsequently, these points can be grouped and 
abstracted as distinct insects, paving the way for further analysis. 
 
3.1 Measurement Setup and Data 

The 4D (3D + time) point cloud dataset was acquired in the zoo 
of Heidelberg on September 16, 2024, between 2:54 p.m. and 
4:47 p.m. as a near-continuous TLS time series. The scanning 
was conducted using a Riegl VZ-600i, with a nominal point 
spacing of 0.4 mm at a distance of 3 m, a pulse repetition rate of 
2,200 kHz and a horizontal field of view of 40°. This resulted in 
a median point spacing of 1.1 mm in the ROI and a scan duration 
of 15 seconds. The scanning was conducted every 30 s, resulting 
in 225 epochs. As illustrated in Fig. 1, the scanner was situated 

at an approximate distance of 3 m from the beehive throughout 
the scanning process. Moreover, the scanner was aligned with the 
front of the hive and scanned the front of the hive. This yielded 
an area of ca. 6 m2 in front of the hive.  

 

Figure 1. Experimental setup in the zoo of Heidelberg  
(Date: 16 September 2024, photo: J. Meyer). 

 
With this TLS setup we were able to capture flying bees in the 
acquired data. The bees appear as a spatial cluster of points in the 
point clouds with a size between 10 mm and 30 mm and consist 
of 10-75 points. While the hornets are approx. 50 mm in size and 
consist of 150-850 points. Due to the high velocity of the insects 
and the movement of the scanner, they may be distorted in their 
point cloud representation (cf. Weiser and Höfle, 2024). 
Nevertheless, they remain discernible and identifiable as 
bees/hornets. Examples are provided in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Example point clouds of honey bees (left) and Asian 
hornets (right) (front view is equal to the view of scanner and 

lateral view is orthogonal to that). 

 
Additionally, the invasive species of Asian hornet (Vespa 
velutina), which is not native to Germany, was identified in front 
of the hive. Consequently, they were also discernible in the point 
clouds and matched the observations made during acquisition 
with regard to their location in space and time (Fig. 2 and 3). 
 
3.2 Workflow 

To accomplish the objective of detecting and identifying bees and 
hornets in LiDAR point cloud time series, an algorithm was 
developed which classifies points in the point cloud based on a 
machine-learning classifier that has been trained on real, 
manually labeled data. A random forest (RF) classifier was used 
because it can easily handle high dimensionality of the data and 
the complex, non-linear relationships between the features, as 
well as the relatively small and imbalanced training dataset (Alfio 
et al., 2024 and Breiman, 2001). Additionally, neighborhood 
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operations such as spatial clustering were utilized to group 
together and identify individual insects. This entailed a dual-
stage process: first, the training of the RF model, and second, the 
detection algorithm. The schematic workflow is illustrated in 
Fig. 4.  

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

Figure 3. Asian hornet visible in point cloud (purple dots are 
LiDAR points within the ROI) of epoch 15:02:26 and image of 
Asian hornet (V. velutina) and honey bee (A. mellifera). Photos 
slightly modified from (i) Charles J. Sharp licensed under CC 
BY-SA 4.0, (ii) Ivar Leidus licensed under CC BY-SA 4.0). 

 

 
 

 
 
 

 

 

 

 

 

 

 

 
 

 

 

Figure 4. Workflow of the complete bee-detection algorithm. 

3.2.1 Pre-processing 
 
The data underwent a pre-processing step in the training and 
application phase (step 1, step 5 in Fig. 4), during which it was 
segmented to the area of interest. For this purpose, our open-
source tool VAPC was employed (Tabernig et al., 2024). The tool 
was used to segment the individual scenes of the time series in 
accordance with a 3D mask. The 3D mask was defined by another 
point cloud, which was the point cloud scene without bees and 
hornets, and based on this scene the irrelevant “background” of 
the scene was removed: This “background” point cloud was first 
voxelized and then applied as a mask to each single scan. In 
comparison to a simple 3D bounding box approach, our 
technique allowed for the precise delineation of recurring objects, 
such as vegetation, while avoiding the removal of other points 
that would have been within the bounding box but not within the 
precise 3D mask (e.g., flying bees) (Fig. 5). This process was 
undertaken in order to only select the insects and thereby 
drastically reduced the amount of data for subsequent stages of 
the analysis.  
 

 
Figure 5. Pre-processing of example epoch (blue: mask point 

cloud, orange: points kept for further processing). 
 
3.2.2 Random Forest Model 
 
Our objective was to classify points in the LiDAR point clouds 
as either bees, hornets or miscellaneous (e.g., including ground, 
buildings, vegetation, etc.). To guarantee that the RF model was 
capable of differentiating between points belonging to bees, 
hornets and those that did not (i.e., miscellaneous), a manual 
training method was deemed the most appropriate. Prior to 
training the RF model, the point clouds underwent pre-processing 
(step 1). This entailed the selection based on 10 random scenes 
from the 4D point cloud dataset for training. These pre-processed 
scenes were then prepared for training through manual labelling 
(by visual comparisons of the photos captured by the scanner) of 
points (step 2) according to their respective classes (i.e., bees, 
hornets and miscellaneous). Over the 10 epochs there were 
2,468,945 points classified as misc., 3,083 points as bees and 
3,102 points classified as hornets, corresponding to 74 bees and 
9 hornets in real life. Subsequently, the manually classified 
epochs were integrated into a dataset and incorporated into the 
training algorithm with target classes: 0 = bee, 1 = misc. and 
2 = hornet. 
 
In order to identify bees and hornets, it is necessary to describe 
the local properties of a given point in relation to the neighboring 
points, considering the geometric relationships that exist between 
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them. Accordingly, the structure tensor, a 3x3 matrix obtained 
from the coordinates of the points near a query point, represents 
the structure of the local neighborhood. From this structure 
tensor, a total of seven different features were determined that 
showed characteristic values for the three different classes (step 
3). The neighborhood query for every point in the point cloud 
(i.e., the neighborhood query) was performed by a fixed distance 
(rs) search in 3D (Weinmann et al., 2013). Based on the set of 
neighboring points to any central point, the different features 
were conceptualized to represent class-distinctive characteristics 
(Mohamed et al., 2022). The equations for anisotropy, linearity, 
curvedness, omnivariance and eigenentropy were taken from 
Weinmann et al. (2013). With regard to the task of classifying 
points as bees/hornets/miscellaneous the three different classes 
could mainly be distinguished by types of features, which 
concerned the shape and characteristics of the local 
neighborhood. Therefore, following seven features were used 
which seemed suitable for the task of differentiating between 
bees, hornets and miscellaneous.  
 
The initial feature is anisotropy (A): 
 
 𝐴 =	 !!"!"

!!
     (1) 

where 𝜆# and 𝜆3 are the largest and smallest eigenvalues, 
respectively, derived from the covariance matrix of the 
neighboring points. For bees and hornets, this feature helped 
differentiate their flight in open air from denser, more complex 
objects like plants or hives, because of their small size compared 
to the query radius they showed low values for the anisotropy. 

The second feature is linearity (L): 

 
 𝐿 =	 !!"!#

!!
    (2) 

where 𝜆2 is the second largest eigenvalue. For hornets and bees, 
which often exhibit more elongated shapes when in flight, this 
feature tends to be higher compared to more scattered or less 
structured point distributions, such as plants or hive surfaces. 

The third feature, curvedness (C): 

 𝐶 =	 !"
!!&	!#&	!"

   (3) 
 

This feature is particularly useful for detecting irregular or curved 
shapes, which some of the bees and hornets show.  

The fourth feature is omnivariance (O): 

 𝑂 =	 (𝜆# ∙ 𝜆( ∙ 𝜆)
"    (4) 

High omnivariance indicates a three-dimensional, volumetric 
distribution of points, which is expected for the plants and hives. 
In contrast, bees and hornets in flight, due to their more defined 
and smaller shapes, typically exhibit lower omnivariance values. 

The fifth feature is eigenentropy (E): 

 𝐸 =	−	∑ 𝜆* 	 log(𝜆*))
*+#    (5) 

 
where 𝜆𝑖 are the eigenvalues of the covariance matrix.  
Eigenentropy provides insight into how uniformly the points are 
distributed around the central point. Higher entropy values 
indicate a more disordered or complex neighborhood, typical for 
highly variable structures like plants, while lower values are 

indicative of more ordered or regular point distributions, such as 
those point signatures produced by bees and hornets. 

The sixth feature is mean quadratic distances to the center of 
gravity (Rcog), which measures the spatial spread of the points 
around the center of the local neighborhood. It is calculated as: 

 
 𝑅-./ =	

#
0
∑ ‖𝑥* − �̅�‖	(0
*+#   (6) 

where N is the number of neighboring points, 𝑥* is the position 
of each point, and �̅� is the center of mass of the neighborhood. 
So, this feature quantifies the size of the local neighborhood, 
capturing the absolute spatial extent of points around the central 
point. Which means larger values of Rg are associated with bigger 
local point distributions, while smaller values correspond to more 
concentrated or compact distributions around the center of 
gravity. This is especially useful to distinguish between bees and 
hornets due to their different typical sizes (Fig. 2). 

The seventh feature is the local density (r) and represents how 
many points are located in a certain volume (which is based on 
the radius of the neighborhood definition) around the central 
point. 

  𝜌 =	 0
"
$12

#    (7) 

 
Based on the knowledge on the different sizes between bees and 
hornets as well as the fact that they are flying in the air, the 
density values of points classified as bees or hornets are quite low 
compared to miscellaneous points. This makes this feature 
helpful for the classification of the LiDAR data.  
 
Once these features were computed, the RF classifier was 
employed to perform supervised learning based on the dataset of 
pre-classified epochs (step 4 in Fig. 4). The model was trained to 
recognize patterns in the feature space that correspond to the 
presence of bees and hornets, allowing it to classify new, unseen 
data effectively (step 7 in Fig 4).  
 
Parameter settings: In order to accurately identify bees and 
hornets, it was essential to set the parameters of the RF classifier 
to realistic and semantically meaningful values. The most 
significant and important parameter is the radius for the neighbor 
query (rs), which was set to 50 mm. This value is justified by the 
fact that the average size of a honey bee (Apis mellifera) is 
approximately 11-16 mm (Pertischak, 2021). This implies that, 
for a given point, the neighborhood operations were performed 
using at least the points that are part of the same bee, and at least 
every point within a sphere with a radius that is four-and-a-half-
times larger than the length of an actual bee. This condition 
resulted from the different possible point signatures which can be 
seen in the acquired data (Fig. 2), which are the result of the 
movement of the bees in relation to the movement of the scanner. 
Training settings: The machine learning model was trained 
using a RF classifier with 100 trees, with a maximum tree depth 
which is expanded until all leaves are pure or the minimum 
number of samples required to split a node (i.e., 2) is reached. 
Furthermore, the minimum number of samples per leaf was set to 
1. The dataset was split into training and test data by a 80/20 ratio, 
which meant using eight scenes for training and the other two for 
testing. Given the imbalanced nature of the dataset, where 
hornets and bees are underrepresented compared to the 
miscellaneous class (with ~3,000 hornet points, ~2,000 bee 
points, compared to ~2,500,000 points classified as 
miscellaneous), class weights were applied during training. The 
class weights were computed automatically based on the inverse 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-583-2025 | © Author(s) 2025. CC BY 4.0 License.

 
586



 

class frequencies to assign higher importance to the minority 
classes (i.e., bees and hornets). This approach ensured that the 
classifier did not favor the majority class, thereby improving the 
classification performance for the underrepresented classes. 
 
3.2.3 Clustering Algorithm 
 
In order to identify individual bees as objects, it was necessary to 
not only identify single points as bees, but also to group those 
single points into distinct bee objects and to confirm that they 
were indeed bees. Consequently, the entire point cloud was 
divided into clusters based on local neighborhood relations with 
the assistance of a Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) algorithm (step 8 in Fig 4) 
(Deng, 2020). The DBSCAN method employs a proximity-based 
approach to group points. If a point satisfies the condition that it 
was within the sphere (rs) and there were at least n points in the 
sphere (minsphere) and no more than m points (maxsphere), then all 
neighboring points were labelled with the same cluster ID. By 
doing this the entire point cloud was then divided into distinct 
clusters. 
 
Parameter settings: The resulting values of rs = 5 cm, 
minsphere = 1 pt., maxsphere = 1,000 pts. were determined by 
counting the points representing a single insect by hand (Fig. 2).  
  
Object-based identification criteria: In the final step, the 
cluster was definitively identified as a bee or hornet by applying 
a straightforward logical operator that necessitated the fulfilment 
of several conditions to classify the cluster as a bee or hornet (step 
9 in Fig. 4). From an implementation perspective, the following 
conditions must be met: In order for a cluster to be identified as 
a bee, it was first necessary that the number of points classified 
as bee (beecount) in the cluster in question exceeded the number of 
points classified as hornet (hornetcount) within the same cluster 
(beecount > hornetcount). And for a cluster to be identified as a 
hornet the number of points assigned to the hornet category 
within the cluster had to exceed the number of points assigned to 
the bee category (hornetcount > beecount). Furthermore, the 
following conditions had to be met: 
       

 

 

where clustersize = number of points in the inquired cluster 
beecount = number of points classified as bees in the  

        inquired cluster 
nbee = minimum number of points in cluster 
mbee = maximum number of points in cluster 
pbee = threshold value (percentage) for the number of   
          bees in relation to the cluster size 

 nhornet = minimum number of points in cluster 
mhornet = maximum number of points in cluster 

 hornetcount = number of points classified as hornet in    
       the inquired cluster 

phornet = threshold value (percentage) for the number  
      of bees in relation to the cluster size 
 
If these conditions were satisfied, the cluster was either classified 
as a single and distinct bee or as a single and distinct hornet. 
Furthermore, the spatial center of gravity, inclusive of all points 
within a positively identified cluster, was calculated to generate 
a new 4D dataset (3D + time) comprising of points that represent 
individual and distinct bees and hornets. Additionally, the ID of 
the cluster, the species, the number of classified bees/hornets, the 

total number of points per cluster, as well as the mean and 
variance of all features were stored in the new point cloud. Based 
on the acquired data and testing of different values, it was 
determined that the optimal parameters for identifying single 
honey bees were nbee = 1, mbee = 75, and pbee = 0.1 and for 
identifying hornets nhornet = 10, mhornet = 850, and phornet = 0.25, as 
compared to other parts of the scan, such as trees, plants, the hive, 
and other animals. When using a different measurement setup 
those parameter can be fine-tuned according to the point-wise 
representation of the bees/hornets in the scans. 
 
3.3 Error Assessment  

In order to assess the error rate of the detection algorithm, it was 
necessary to ascertain the number of bees and hornets that were 
correctly identified as such. This was achieved through a visual 
comparison between the original point cloud and the processed, 
newly generated point cloud, which consists only of points 
representing individual, distinct bees and hornets. As the 
individual bees and hornets were readily discernible to the human 
eye within the original point cloud, the number of visually 
identifiable bees/hornets and the number of bees/hornets 
identified by the algorithm were determined. Additionally, the 
true positive, false positive, and false negative classifications 
were recorded. To obtain a reliable estimation of the quality of 
the detection algorithm, it is necessary to have a sufficient sample 
size of visual compared epochs in the time series. Accordingly, 
the requisite sample size was estimated with the finite population 
correction (Bishop, 2006) to ensure a statistically robust assertion 
with a confidence level of 95% and an error margin of ±5%. With 
a total of 225 epochs, the sample size that had to be visually 
verified is at least 120 epochs. To assess the efficacy of the 
detection algorithm, four key metrics were employed: accuracy, 
precision, recall and F1-score (Bishop, 2006).  
 

4. Results 

4.1 Random Forest Model Training  

The trained RF classifier showed high accuracies. The 
performance of the model was evaluated through a visual 
comparison (Fig. 6) and the analysis of confusion matrices over 
ten random scenes, which were not used for training. For the 
classification of bees, the mean accuracy, mean precision, and 
mean recall are 92.23% ± 2.25%, 96.61% ± 1.07%, and 91.04% 
± 2.34%, respectively. For the classification of hornets, the mean  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Classification of point cloud from epoch (15:51:56), 
which was not used for training the random forest classifier. 

bee: hornet: 

(8) 
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accuracy, mean precision, and mean recall are 85.61% ± 2.75%, 
89.93% ± 2.41%, and 81.02% ± 3.03%, respectively. These high 
values must be viewed with caution, given the limited size of the 
test set. Interestingly according to the RF feature importance, the 
most relevant ones were: eigenentropy (0.34), omnivariance 
(0.25) and density (0.22).  

 
The misclassification of points, as shown for a single epoch 
(Fig. 6), which in reality belonged to a hornet but were classified 
as bee, did not affect the overall correct identification of the 
hornet. This is because the point cluster was still identified as a 
hornet, as more than 85% of the points within the cluster were 
classified as points of the hornet class (Fig. 6 a). By this, the 
object-based identification criteria for a hornet (Eq. 8) were met. 
Given the high mean accuracy, precision, and recall, it can be 
reasonably concluded that the RF classifier is an appropriate 
method for classifying points in a point cloud as bees and hornets. 
  
4.2 Time Series 

By applying the bee detection algorithm to the entire dataset (225 
epochs), a time series has been determined in which the number 
of bees and hornets in front of the hive (1.60 x 1.99 x 1.02m) was 
calculated every 30 seconds. In total 7,084 bee and 296 hornet 
observations were counted over the 112.5-minute time span. The 
resulting data is presented in Fig. 7 a) and b). 
 
To conduct an initial analysis of the time series, the time series 
was subdivided into bins of 300 s and the total number of bee and 
hornet observations per bin (i.e., during the 300 s period) was 
then calculated. This provides an aggregated count of insect 
observations while maintaining the 2 Hz temporal resolution. 
However, it must be critically noted that the first and last bin is 
lower than the actual value due to the calculation method. The 
results are presented in Fig. 7 c) and d), which clearly 
demonstrate a discernible trend, particularly in the time series 
aggregated over 300 s, although it is already perceptible in the 
original time series. 

 
A second analysis of the time series demonstrates the positions 
of all bees and hornets aggregated over the entire time series, 
thereby providing insight into the spatial distribution of bees and 
hornets over the 112.5-minute span. To enhance the visual 
representation of the results, the number of neighboring distinct 
insects for each insect (i.e., bee and hornet) within a radius of 
0.2 m was calculated (Fig. 8 and 9). 
 
The mapping of bees and hornets in space and time provides a 
basis for a more profound understanding of their flight patterns 
and insights into their spatio-temporal behavior, clearly 
indicating 3D spatial activity zones. As illustrated in Fig. 8, the 
bees and hornets exhibit a pronounced concentration in front of 
the hive and an elongated corridor leading to the hive is clearly 
visible over the observation period. This phenomenon can be 
attributed to four primary factors. Firstly, bees frequently 
congregate in front of their hive to patrol or go on orientation 
flights (Sun and Gaydecki, 2021). Secondly, this area is, where 
they tend to decelerate after returning to the hive (Sun and 
Gaydecki, 2021), a phenomenon that could be observed with our 
experiments. Additionally, the slowing down of the insects 
increases the probability of capturing them with TLS. Thirdly, 
the trajectory of the corridor appears to be largely influenced by 
the surrounding obstructions, including the trees and buildings 
adjacent to the hive, the fence at the front, and the branches above 
(Fig. 1). Fourthly, the area directly in front of the hive is where 
the hornets were observed to attack bees in the field. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. a) Number of bees b) number of hornets c) aggregated 

count of bees over 300 s and d) aggregated count of hornets 
over 300 s in examined area over time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Aggregated positions of bees and hornets over the 
whole time series (colored by the number of neighboring bees 

and hornets within a 0.2 m radius to query insect). 
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Figure 9. Aggregated positions of hornets over the time series 
(colored by the number of neighboring bees and hornets within 

a 0.2 m radius to query hornet). 
 

The phenomenon of hornets attacking in the vicinity of the hive 
is clearly visible in Fig. 9, which depicts the Asian hornets and 
demonstrates their tendency to congregate in proximity to the 
hive entrance. In response to such attacks by the Asian hornet, 
honey bees typically increase the number of drones in front of the 
hive to defend themselves (Chauzat and Martin, 2009). This can 
be seen, when examining the aggregated data for hornets and 
bees (Fig. 7 c and d), where it becomes evident that an elevated 
hornet count is associated with a corresponding increase in bee 
numbers. For instance, between 15:04:57 and 15:24:57, 26 hornet 
and 790 bee observations were recorded, whereas between 
16:04:57 and 16:24:57, 134 hornet and 1447 bee detections were 
observed. 

 
4.3 Errors 

The total number of identifiable bees (i.e., by visually counting 
the insects in the images captured by the scanner) in the test set 
is 3448 and the total number of detected bees (i.e., by our 
proposed algorithm) is 3417. Thereof 3387 were classified as true 
positives, 30 as false positives, and 61 as false negatives as well 
as 85 identifiable hornets and 94 detected hornets whereof 79 are 
true positives, 15 false positives and 8 false negatives. For the 
identification of bees, the mean accuracy, mean precision, and 
mean recall are 97.44% ± 0.32%, 99.07% ± 0.23%, and 
98.35% ± 0.25%, respectively. For the identification of hornets, 
the mean accuracy, mean precision, and mean recall are 
87.71% ± 2.66%, 67.65% ± 4.97%, and 94.91% ± 1.84%, 
respectively. Corresponding to an F1-score of 0.987 for the bee 
identification and 0.79 for the hornet identification. The results 
demonstrate a high degree of accuracy in the detection algorithm. 
Notably, for the bees, the precision is higher than the recall, 
indicating that each bee identified as such has a 97.44% 
probability of also being a real bee. Conversely, there is an 
98.35% probability that the number of bees determined by the 
algorithm accurately represents the actual number of bees 
present. Contrary for the hornets the recall is higher than the 
precision.  
 

5. Discussion 

It is important to note that due to the 30-second scanning time, it 
is highly probable that some bees were captured multiple times, 
while others may not be captured despite being present within the 
scanned area. This is because the scanner does not sample the 
whole area, which is to be scanned, at the exact same time and 

therefore, the number of bees present is only an estimation. The 
degree of over- or underestimation is influenced by many factors 
such as the specific constellation of flight paths and TLS scan 
pattern. This issue could be addressed by employing multiple 
scanners with complementary scan patterns or significantly 
reducing the scan time while maintaining a comparable 
resolution (i.e., narrowing the scanned area). But this problem is 
actually overcome by the assumption that for most applications, 
whether scientific or applied, the relative change is of greater 
importance or just as reliable as the absolute number of bees. This 
is particularly relevant in light of the fact that the average rate of 
over- and underestimation is likely to remain approximately the 
same.  
 
In the future, the combination of LiDAR and video-based 
methods has the potential to reveal the complementary strengths 
of both approaches. We expect that the use of video could be 
helpful in the close vicinity of the hive and will result in a higher 
temporal resolution. 
 
The efficacy and accuracy of the distinction between two 
different species of insects (A. mellifera and V. velutina) with the 
proposed algorithm demonstrate the potential for diverse future 
applications. For example, the study of interspecies behavior of 
insects, such as the attacking of honey bees by predator insects 
(e.g., Vespa velutina), would be particularly interesting because, 
as of today, only limited research has been conducted on the topic 
of flying patterns in moments of defense of the colony by drones. 
This could reveal a lot about defense and attacking strategies of 
different insect species. Additionally, the algorithm could 
provide beekeepers with near real-time information about attacks 
on their colonies, such as those by Vespa velutina, which could 
assist them in combating disruptive stress caused by predator 
insects. Furthermore, effects caused by the movement of the bees 
and hornets (e.g., flying direction or wing movement) which can 
result in “ghost points” in the point cloud and could disrupt the 
detection algorithm, are eradicated by the clustering algorithm 
leading to a low rate of overestimation. 
 
To illustrate, in the context of a management and early warning 
system for beekeepers, the ability to discern relative change in 
near real-time is of greater use than the absolute number, which 
would necessitate a more substantial measurement endeavor to 
ascertain. This is because the activity and the relative change with 
a high temporal resolution (i.e., near real-time) can be indicative 
of honey production, pollination activity, and the survival of the 
colony (Vercelli et al., 2021). 
 

6. Conclusion 

It is possible to use terrestrial LiDAR data to detect and identify 
individual bees and hornets within the point clouds. The efficacy 
of the identification algorithm is underscored by its high mean 
accuracy, mean recall as well as F1-scores (for bees: 
accuracy = 97.44% ± 0.32%, recall = 98.35% ± 0.25%, and 
F1 = 0.987, and for hornets: accuracy = 87.71% ± 2.66%, 
recall = 94.91% ± 1.84% and F1 = 0.79). As demonstrated by the 
presented time series of 225 epochs in intervals of 30 s and a total 
of 56,721,201 points, we were able to reduce the data amount 
while simultaneously extracting the information of 7,084 bee 
observations and 296 hornet observations from the point cloud 
time series. Furthermore, this data can be utilized to ascertain the 
activity zones and temporal dynamics of the bees and hornets, 
facilitating a deeper understanding of their behavioral patterns. 
For example, with our novel observation strategy we could 
observe and quantify a distinct increase of bee presence with the 
occurrence of hornets in front of the hive.  
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The insights that are made possible with 4D LiDAR-based bee 
monitoring can be integrated into improved management and 
conservation strategies in the future, while also offering a novel 
tool for the investigation spatial and temporal behavior of insects 
in addition to the already available video-based approaches. The 
here presented method of detecting insects (i.e., honey bees and 
Asian hornets) in LiDAR point clouds is able to measure them in 
space and time - allowing for a new method in a field of research, 
concerning the spatio-temporal patterns of insects and pave the 
way for a range of innovative applications.  
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