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Abstract

Modern mobile devices offer advanced capabilities for navigation and Location-Based Services (LBS). This study investigates the
use of Ultra-Wideband (UWB) and Wi-Fi Round-Trip Time (RTT) measurements for pedestrian localization across various scen-
arios. We analyze the ranging accuracy of these techniques and evaluate positioning performance using different fusion algorithms.
Our proposed collaborative positioning (CP) methodology enhances localization accuracy for user groups within a defined area.
Results demonstrate significant improvements in position trueness, with UWB and Wi-Fi RTT achieving enhancements of 74% and
54%, respectively. Additionally, our localization algorithm, leveraging a Peer-to-Infrastructure (P2I) and Peer-to-Peer (P2P) hybrid
configuration, increases anchor availability by up to 10%. Even in short-duration anchor loss scenarios (P2P-only), position true-
ness improves by up to 53%. These findings highlight the potential of UWB and Wi-Fi RTT in real-world pedestrian localization,

particularly for urban navigation, smart mobility applications, and emergency response systems.

1. Introduction and Motivation

Tracking vehicles, pedestrians, and assets in different environ-
ments is crucial for various societal applications nowadays due
the increasing use of “smart” devices (Papathanasopoulou et
al., 2024). These devices can provide high-quality position-
ing services which have become essential, especially for wire-
lessly connected devices. While Global Navigation Satellite
Systems (GNSS) offer satisfactory accuracy outdoors, their per-
formance decreases in hybrid environments, such as in GNSS-
challenged/denied environments, and is impractical indoors. In
addition, a seamless transition between outdoor to indoor po-
sitioning systems is crucial. This paper has two main object-
ives: (1) creation of a framework to characterize and model RF
(Radio Frequency)-based ranging observables from various ra-
dio localization technologies using empirical models; and (2)
to design a methodology for collaboratively localizing groups
of autonomously moving nodes, such as pedestrians. This is
achieved by utilizing data from rover units, on-site fixed devices
like Wi-Fi (Wireless Fidelity) Access Points (APs), and neigh-
boring rovers. For the estimation and validation, this paper also
includes the development and implementation of assessment
procedures for performance evaluation. It assesses RF-based
technologies through controlled experimental trials, analyzing
range observable errors from Ultra-wide Band (UWB) and Wi-
Fi Round-Trip Time (Wi-Fi RTT) technologies. The analysis
provides insights into each technology’s performance under dif-
ferent conditions and suggests techniques for range error mitig-
ation. A key aspect of this evaluation is trueness, a quality met-
ric that quantifies how closely the estimated position aligns with
its actual (nominal) value. The methodology for collaboratively
localizing groups of users combines UWB and Wi-Fi RTT sys-
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tems, leveraging their complementary strengths. By integrating
pre-existing Peer-to-Infrastructure (P2I) ranging infrastructure
with ad-hoc Peer-to-Peer (P2P) ranging, this combination en-
hances coverage and flexibility for indoor positioning. By cal-
culating standalone positions using existing infrastructure and
combining them with UWB ranges and orientation observables,
the collaborative positioning (CP) system improves accuracy
and availability without extensive infrastructure. Localization
algorithms are tested with field and simulated datasets to evalu-
ate performance.

The paper is structured as follows: After the introduction, sec-
tion 2 presents the research questions and objectives as well
as the methodology for resolving them. In the following, the
range-based CP approach is introduced in section 3 and then
range correction models in 1D and 2D are discussed in sec-
tion 4. Section 5 then introduces the position computation al-
gorithm and section 6 the data correction and the error mitiga-
tion. Before the conclusions and outlook in section 8, section 7
deals withe the position estimation in the CP framework.

2. Research Objectives and Methodology

The main research questions and their primary and secondary
objectives of this research can be summarized as: (1) to de-
velop and test a methodology for identifying and mitigating
errors in TWR (Two-way Ranging) RF range observations by
conducting methodical field tests in controlled environments to
examine TWR RF range errors; (2) to develop and test a robust,
RF range-based positioning approach for groups of pedestrians
walking in dynamic environments considering the hybrid nature
of TWR measurements where the proposed algorithm computes
the standalone position of the moving nodes in question aided
by the existing communication infrastructure; and (3) to estab-
lish and implement a unified Quality Control (QC) framework
for the assessment of the correctness and efficiency of the pro-
posed solutions.
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The research methodology followed in this study consists of
three distinct but interrelated implementation steps: (1) the range
measurements calibration and correction phase which includes:

(a) the pre-analysis stage, (b) the correction models develop-

ment, (c) the error mitigation and models validation and the (d)

kinematic range error correction; (2) the positioning algorithms

development which includes: (a) the tuning of the positioning

filter, (b) the collaborative positioning algorithms and (c) the

cross-correlation effect mitigation; and the QC of the position-

ing engine utilizing real datasets which includes: (a) the field

testing campaigns, and (b) the performance evaluation.

Following these strategies and developments, a suitable posi-
tioning system is developed for further refinement. The impact
regarding the development and systematic evaluation of empir-
ical range error correction models for UWB and Wi-Fi RTT
can be summarized as: (1) development and implementation of
spatial (2D) error corrections models for RF-based technolo-
gies; (2) introduction of orientation and RSS (Received Signal
Strength) information within the corrections models; and (3)
detailed and systematic performance evaluation of the proposed
correction models leading to corresponding variations for both
UWRB and Wi-Fi RTT technologies.

In addition, the originality regarding the development and im-
plementation of the pedestrian indoor CP algorithm refers to:
(1) the combined use of Wi-Fi RTT and UWB in order to provide
a balanced solution by utilizing the strengths and restrictions
of each technology correspondingly; (2) the ability of the al-
gorithm to operate efficiently while a minimum number of an-
chor nodes is available for short periods by optimally combin-
ing P2P (Peer-to-Peer) range measurements between the rover
nodes in the CP network; and (3) the utilization of a range/
heading Split Covariance Intersection Filter for UWB/Wi-Fi-
RTT/IMU loosely coupled fusion in order to provide robust in-
door positioning for groups of pedestrians.

3. Range-based Collaborative Positioning (CP)

In this section, a brief background summary on the basic tech-
niques, the measuring principles and mathematical fundament-
als for indoor CP determination using range observables is given.
Inter-nodal ranging may refer both to range measurements ori-
ginating from roving nodes to static anchors as well as between
roving nodes. A description of the useable positioning tech-
niques and methods as well as optimization algorithms in posi-
tioning and sensor fusion is omitted as it can easily found in the
literature.

3.1 Range Error Identification and Mitigation

Obviously it is important that the raw observables (ranges, dir-
ections, etc.) have to undergo through decisive pre-processing
to mitigate gross and systematic errors, see e.g. (Hao et al.,
2018). Especially, in the indoor and GNSS-challenged/denied
environment which are characterized by NLOS (Non-Line-of-
Sight) conditions and severe signal multipath, the raw range ob-
servables can be of very low quality. Therefore it is important
to study the nature of RF-based range errors and model their
behavior aiming at minimizing their effect on the final posi-
tion solution. Ranging errors may be handled either through
theoretical modeling (e.g., probabilistic approaches handling
random errors) or through empirical modeling (e.g., geometric
approaches handling systematic) of observable-specific charac-
teristics. Various research efforts have focused on methodo-
logies aiming at mitigating NLOS effects (Wann and Hsueh,

2007), (Venkatesh and Buehrer, 2007). The distinction between
LOS (Line-of-Sight) and NLOS observables can rely either on
sequential range estimation and for outliers’ thresholding or
on channel statistics (Shijie and Dan, 2014). Studies suggest
that the non-Gaussian distribution nature indicates a challenge
when working with Kalman Filter (KF) algorithms since they
assume that the measurement errors follow a Gaussian distri-
bution (Conti et al., 2012). Especially indoors the distribu-
tion is of mainly non-gaussian TWR (Two-Way-Ranging) ob-
servations nature. This limitation usually is attempted to over-
come with the adoption of non-linear measurement error mod-
els leading usually to particle filters (PF) (Gentner et al., 2012),
(Ganti et al., 2014). The PF solution, however, leads to an in-
creased computational complexity which is not easy to sup-
port by handheld, low-cost positioning systems. Alternative
approaches include realizations of hybrid KF implementations
based on pseudo-position measurements that could handle non-
Gaussian error models (Li et al., 2016). These approaches still
require increased processing power. As an alternative, the non-
linear nature of the range error observables can be treated as a
Gaussian Mixture (GM) filter type. Such filters can handle er-
ror distributions with multi-peaks applying multiple Gaussian
models to approximate the complex nature of the transmitted
signals (Muller et al., 2014). While this approach offers in-
creased positioning accuracy for highly noisy measurements,
its computational complexity increases dramatically for multi-
node, range-based positioning. It is noted that while the KF
approaches reach their limit in highly non-linear cases, still the
EKF (Extended KF) offer a viable alternative when handling
moderately non-linear error models due to their computation-
ally efficient architecture (Wang et al., 2020).

The use of empirical RF range error models, on the other hand,
relies on the systematic collection of real range observables
to extract meaningful statistics that describe adequately their
nature and extract range variation behavior that might be en-
countered during real-life localization applications. Examples
of empirical modeling include an approach where asymmetric,
double exponential ranging error distribution model are em-
ployed (Li et al., 2015). Here, the error model is formulated
through fitting real data whereas an extension of tuning further
the suggested model using range-based parameters is proposed.
For that purpose, a Ranging Quality Indicator (RQI) can be es-
timated based on UWB signal characteristics paired with the
corresponding ranging error used to train a Machine Learning
(ML) algorithm (Jing et al., 2015). The algorithm produces a set
of RQI values in real-time, and dynamically assigns weights to
the range measurements in a UWB/IMU PF. In a study by Kop-
panyi and Toth (Koppanyi and Toth, 2014) the original UWB
ranges histograms are found to present multiple peaks attrib-
uted to multipath effects. To overcome this effect, a Maximum
Likelihood Estimator (MLE) is used for selecting the ranges
with the highest probability of true values based on a compar-
ison against the lateration-derived coordinates. Moreover, other
empirical error models use range and position-dependent cor-
rections produced using curve-fitting approaches on real data
(Orfanos et al., 2023). In a further study by Toth et al. (Toth
et al., 2017), range error calibration is implemented based on a
grid of calibration points used for the generation of an ad-hoc
model. Then the calibration values are used for the 2D linear
interpolation forming the calibration function.

3.2 Collaborative Positioning (CP)

The increased necessity for CP systems comes both from the
technological developments for utilizing optimally P2P com-
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munication as well as from the need for the minimizing the
costs of permanently installed infrastructure (i.e., anchor RF
transceivers) used by traditional RF-based positioning systems.
P2P communication between nodes is based on technologies
that can also offer relative ranging such as Wi-Fi, UWB and
Bluetooth (Goel et al., 2016). CP implementations can make
use of them both for application-specific data transmission as
well as for supporting localization needs. The network archi-
tecture of a CP system can either be a centralized or distrib-
uted one (Goel, 2017). In a centralized architecture (Jing et
al., 2016), (Masiero et al., 2023), as the name suggests, the
positions estimation is performed centrally by a localization
engine typically located at a control center that collects data
from all the remote nodes. Central processing translates at in-
creased processing power considering that state (position, ori-
entation, velocity) computation of all nodes in the network is
undertaken by a single processing engine. This approach leads
to increased communication requirements as the information
from all nodes in the network needs to be transmitted to the
central unit. Notwithstanding an appropriately designed and
implemented centralized CP engine offers high accuracy pose
estimation for all nodes and inter-nodal state correlations it suf-
fers decreased robustness. On the other hand, distributed CP
architectures depend on their ability to self-estimate nodal po-
sitions based on the measurements and information collected
within the CP network (Zhu and Kia, 2018), (Han et al., 2020).
In order to achieve this goal, each node in the network needs to
be equipped with a portable processing unit and certain com-
munications infrastructure. The most crucial weaknesses of the
distributed CP approach, however, are their inability to maintain
inter-nodal correlation at network level leading to decreased
mitigation of inter-dependent errors.

4. 1D and 2D Range Correction Models

Section 4 presents the methodological framework for the de-
velopment of range correction models based on the statistical
measures obtained using UWB and Wi-Fi RTT observables. An
1D and a 2D fitting model are proposed and implemented. Fur-
thermore, model validation procedures are established. Follow-
ing previous studies, the correction process for TWR data could
be based either on empirical radial corrections applying a least
squares line fit to the range deviations as a function of the dis-
tance or using a 2D range deviations plane fit (Toth et al., 2017),
(Perakis and Gikas, 2018). In this study we examine both ap-
proaches and extend the examination to WILD Wi-Fi RTT data
in order to select the appropriate correction technique that suits
the corresponding data-set.

4.1 Radial 1D Fitting Model

The development of a radial 1D range correction model as-
sumes the collection of TWR data at known reference distances
with the chosen RF devices. Then for each pair of ranging
devices a set of range measurements are collected to estim-
ate their statistics and their deviation from the reference value.
The type correction models usually adopted are the “mean”, the
“linear” and the “polynomial” (in the 2nd order) fit.

4.2 Spatial 2D Fitting Model

The two-dimensional range correction approach is based on the
same underlying principle as the 1D approach. Here, the dif-
ferences between the measured and true (reference) ranges are
used for the generation of a correction database connecting the

correction points. Thus, this approach takes into account the
spatial distribution of the test ranges in the whole area of in-
terest and provides a bi-dimensional correction fit which ac-
counts for the location of each correction point. For the ne-
cessary interpolation the natural neighbor interpolation is used
(Sibson, 1981), which is based on the Voronoi tessellation method.
This Voronoi-correction approach is denoted as “vc” in this pa-
per. For the area found outside the polygons defined by the
correction points, linear extrapolation is performed in order to
extend the Voronoi correction values.

4.3 Orientation-assisted Range Correction Models

4.3.1 Orientation Assistance Due to NLOS effects gener-
ated by physical obstacles or multipath, the model has to mit-
igate these effects in the TWR ranges. For that purpose, ori-
entation assisted range error modeling is conceptualized and
evaluated. In the case of pedestrian holding a mobile device,
the user’s body is acting as an obstacle which has to be ac-
counted for by measurements in all four cardinal orientations,
i.e., North, East, South, West. According to the rlc correc-
tion model, this approach generates a linear approximation of
the correction values for each orientation. The expansion of
the spatial (2D) correction model by the orientation assistance
is proposed and termed as the orientation-Voronoi-correction
model (ovc).

4.3.2 RSS-based Orientation Selection In order to apply
the correction models discussed in section 4.3.1 in real case
scenarios user orientation should be known. This can be ob-
tained by the MEMS IMU embedded into mobile devices. The
implemented approach relies on two facts and assumptions: (1)
on the provided data of each RF-based conversation, includ-
ing both TWR observables along with signal quality informa-
tion (RSS), and (2) on the hypothesis that the main source of
RSS fluctuation for an otherwise static rover is the change of
orientation due to the imposed NLOS conditions. Then user
orientation estimation relies on the comparison of the collected
real-time RSS values against those obtained from previously
collected RSS values for consequently selecting the appropriate
orientation-based correction model. For this purpose, the cor-
rection database is also populated with RSS-based linear and
bi-dimensional models that are generated in a similar manner
as described above.

4.4 Range Correction Models Validation

In order to evaluate the appropriateness and operational effi-
ciency of the range correction models, certain validation ap-
proaches are implemented. At a first stage, correction model
validation refers to static ranges aiming at computing detailed
statistical measures, whilst at the same time providing initial
feedback for adopting a suitable correction model for the kin-
ematic case. The second stage deals with the model valida-
tion process intended for kinematic positioning; specifically,
for evaluating range error mitigation effects under realistic po-
sitioning scenarios.

4.4.1 Internal and External Parameters Affecting TWR
Quality Due to inherent characteristics of the TWR observ-
ables and indoor environment conditions which is of prime in-
terest in this work, several factors need to be accounted at model
validation stage. Internal factors effect refers to the varying
setups the TWR sensors may provide to the user such as dif-
ferent signal transmission configuration values and sampling
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rate. The choice of signal transmission configuration paramet-
ers such as signal bandwidth or Pulse Integration Index (PII)
affects ranging performance. On the other hand, external ef-
fects refer to variations in the environmental conditions when
performing TWR positioning. The indoor environment com-
plex geometry, the presence of surrounding obstacles (static or
mobile) as well as user body as such acting as the main source
of NLOS, are some of the determinant external factors. In ad-
dition, RF signal attenuation, scattering and fading needs to be
accounted for and evaluated within a validation procedure. The
different TWR technologies adopted in this research are expec-
ted to provide a somewhat varying performance in varying en-
vironmental setups. Therefore, a detailed analysis takes place in
order to gain insight that will facilitate subsequent experimental
evaluation of positioning using a combination of the technolo-
gies.

4.4.2 Validation Procedure of the Static Range Correction
Model The validation of the static range correction model
presupposes a series of suitable range datasets collected at dif-
ferent observation distances. They are collected at the same
environment as the correction datasets, since the ad hoc er-
ror correction models suit for the similar environmental con-
ditions. The performance assessment of the range correction
models at variable environments, however, exceeds the scope
of this paper. Naturally, the evaluation of the validation data-
sets is performed on data collected specifically for validation
purposes and not on those collected for error modeling. The
number of validation points selected ranges between 30 to 40%
of the total datasets points which is adequate for providing reli-
able evaluation results. The radial and spatial correction mod-
els and associated software are implemented as described in the
sections above. Subsequently, the corrected ranges are cross-
compared against the nominal distances resulting in a statistical
evaluation, i.e., using trueness, mean and standard deviation.

4.5 Validation Procedure of the Kinematic Range Correc-
tion Model

Since the aim is to enable a correction model for kinematic
(and/or dynamic) range evaluation for real-time applications,
the validation procedure needs to expanded. Usually, the es-
timation of a reference trajectory relies on the realization of
a predefined path along previously established and accurately
surveyed points. Positioning performance evaluation relies then
on the comparison of the estimated trajectories performance us-
ing the different correction models. Moreover, the assumptions
underlying each model implementation is different as the ra-
dial (1D) models relies only on the measured range, while the
spatial (2D) models relies on the previously estimated position.
This validation step allows for the evaluation of the model im-
plementation in real TWR data-sets intended for trajectory es-
timation. Trajectory quality metrics estimated against the refer-
ence trajectory enable the quantitative comparison among vary-
ing models.

5. Position Computation Algorithm

The development and evaluation of a suite of decentralized CP
algorithms to enable the localization of multiple rovers using
RF-based TWR observables collected in a network of roving
and static nodes architecture is the ultimate goal of this work.
The absolute localization engine which is experimentally eval-
uated in this study relies on an EKF realized in a collabor-
ative manner. The architecture enables to optimally combine

Pedestrian-to-Pedestrian (P2P) range measurements in a decent-
ralized manner based on Split Covariance Intersection (SCI)
grounds using the inter-device TWR ranges, the advertised rover
state and covariance information. In addition, the observation
setup relies on the provision of TWR observables from anchors
of known coordinates to the rover in a dynamic manner using
P2I ranges. The range measurements are then processed se-
quentially upon recording along with the reported accuracy (as
estimated by the device) and the system timestamp. In a scen-
ario of multiple rovers, each rover utilizes independently its cor-
responding measurements as they become available(Perakis et
al., 2024). While the SCI-based approach ensures robustness
in information fusion by avoiding overconfident estimates, its
computational complexity remains a concern, particularly for
low-cost mobile devices with limited processing power. Effi-
cient implementation strategies, such as selective update mech-
anisms or computational load balancing, may be required to
maintain real-time feasibility without compromising localiza-
tion accuracy.

5.1 Correction Models Adopted for the UWB and Wi-Fi
RTT Range Observables Internal Accuracy

Preliminary examination of the relationship between the RSS
values logged for the Compulab © WILD units against the es-
timated ranging trueness values indicates the existence of a cor-
relation. Moreover, the discrepancy between the reported Stand-
ard Deviation (SD) values and the TWR measurements trueness
leads to low range quality indicator integrity. The trend in the
correlation is analyzed further translating to a linear approxima-
tion of the standard deviation of range trueness against the RSS
values leading to the diagrams of Figure 1.
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Figure 1. Examples of empirical trueness SD versus RSS values
for Wi-Fi RTT observables.
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6. Data Collection and Error Mitigation

In this section the procedures adopted for the generation and
collection of simulated and field range data respectively for test-
ing the proposed positioning algorithms are introduced. Also,
the section presents the experimental evaluation procedures and
techniques used for error mitigation.

6.1 Test Data and Equipment

The experimental campaigns include data collection undertaken
both outdoors and indoors. Outdoor campaigns serve as early-
stage feedback of the performance of TWR technologies ex-
amined in this work while at the same time provide a basis
for the planning of the indoor experiments. Performance as-
sessment of the range correction models is implemented both
for the UWB and Wi-Fi RTT sensors on static as well as kin-
ematic data. In addition, testing with simulated datasets is per-
formed as it enables the generation of controlled and realistic
TWR datasets in a systematic manner facilitating the develop-
ment and optimization of the proposed CP algorithms.

The UWB system employed for field testing in the campaigns is
the P410 module by Time Domain®. For Wi-Fi RTT, the Com-
pulab ® Wi-Fi Indoor Location Device (WILD) modules are
utilized. The employed Android smartphone devices support
the Wi-Fi IEEE 802.11mc protocol. For the first campaign the
Wi-Fi RTT observables were collected using a Google Pixel 2,
while for the second campaign Google Pixel 3a XL. The second
device was also utilized for the collection of azimuth values
based on the embedded MEMS IMU (accelerometer, gyroscope
and magnetometer) sensors. During data collection, the An-
droid 9 operating software was installed on both smartphones.

6.2 Outdoor Field Test Campaigns

6.2.1 UWB Operational Range Assessment This campaign
aims to investigate the maximum operational range of the Time
Domain® P410 UWB modules in optimal environmental con-
ditions. The selected test site is a coastal area in Faliro, Attica;
Greece, where unobstructed LOS conditions are possible over
a large inter-node distance (approx. 700 m). Notwithstanding,
the maximum examined distances do not pertain to the typical
application categories targeted in this work, the investigation
of the equipment limits provides useful feedback for the over-
all potential of the employed equipment. Two UWB units are
fixed on compatible camera tripods facilitating installation and
transportation to each respective position. Inter-node reference
distances are determined using the geodetic total station Topcon
GPT 3107N for distances greater than 10 m whereas shorter
distances are carefully measured using a measuring tape. Us-
ing the embedded range correction functionality of RangeNet®
software (SW) the UWB pair-wise range error is mitigated by
estimating the mean bias value at a reference distance of 5 m.
Notably this functionality is available only for pairwise range
corrections.

6.2.2 UWB Range Error Correction and Trajectory Es-
timation This experimental campaign aims at the prelimin-
ary evaluation of the UWB range error models for the static and
kinematic case. The test area selection is based on the avail-
ability of ample space for the kinematic section, unobstructed
ranging among UWB nodes as well as the unobstructed sky vis-
ibility for the establishment of GNSS/INS reference trajectory.
A parking lot area located adjacent to the NTUA campus meets
the aforementioned requirements. Ranging is performed among

five UWB nodes four of which are utilized as static anchors of
known locations. The fifth node is installed using a dedicated
base on the roof top of a vehicle equipped with the Novatel®
SPAN GNSS/INS reference trajectory equipment. The use of
vehicle enables the generation of a high accuracy reference tra-
jectory, as it offers a controllable platform for safely and ac-
curately installing the reference equipment. Notwithstanding
the trajectory of a vehicle varies substantially from pedestrian
motion characteristics, this field test provides initial feedback
for the effectiveness of the correction models in a systematic
manner. The vehicle-mounted sensors’ lever arms are meas-
ured beforehand for implementing the required offset compens-
ation whereas the static anchors’ locations are estimated using
classical field surveying methods. In the kinematic session of
correction model estimation, the correction points are estab-
lished by performing the stop-and-go procedure at certain pos-
itions in the test areas. The estimated GNSS/INS positions for
the stop-and-go points are used for computing reference rover-
anchors ranges while at the same time UWB datasets are col-
lected. Inter-nodal ranging is performed between all UWB pairs
(both static and kinematic) for which a TDMA slot map covers
all conversations at a cycle sampling rate of around 5 Hz.

6.2.3 WiFi-RTT range correction and trajectory estima-
tion At a preliminary stage, experimental evaluation of the
Wi-Fi RTT ranges took place at the rooftop of Lampadario build-
ing of the School of Rural, Surveying and Geoinformatics En-
gineering (SRSGE) of the NTUA, Zografou Campus, Athens,
Greece. For the stage of static 1D ranging, three WILD APs
are successively mounted securely on a geodetic tripod (with
a known height) whereas the Android device Google Pixel 2
is placed sequentially on the other end of reference distance.
The selected reference distances are realized at 1, 2, 5, 10,
15, 20, 25, 30, 35 and 45 m, exceeding the nominal effective
range of 40 m as reported by the manufacturer. The smart-
phone is installed on a geodetic pole using a modified smart-
phone holder in order to ensure repeatable placement over the
reference points at a manually measured height. For each ref-
erence point a dataset of around 100 observables are collected,
repeating the process for all three APs.

Concerning the kinematic positioning setup, three Wi-Fi RTT
APs are installed over points of known coordinates and their
height is measured at their anchor locations. The anchors are
installed in an area arrangement that realizes multiple check-
points preinstalled and accurately surveyed at a canvas pattern
that may be utilized for checkpoint-based reference trajectory
estimation. For data in kinematic mode a pedestrian carrying
the geodetic pole with the smartphone moves along predeter-
mined paths.

6.3 Range Errors Mitigation

The analysis of TWR observables using range correction mod-
els offers feedback concerned with the correctness of the pro-
posed procedures as well for the potential of tested technology
through empirical error mitigation. Both the UWB as well as
the Wi-Fi RTT sensors are assessed.

6.3.1 UWB Outdoor Operational Range Evaluation Ana-
lysis The collected UWB range datasets are pre-processed in
regard of logfile parsing and data grouping based on nominal
distances and relative antennas orientation sets. The levels of
accuracy and precision of the measurements are then calculated
as a function of the distance and orientation of the antennas.
Figure 2 shows the range deviation values obtained using the
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mean and median of the measurements respectively. The plots
reveal a trend in range deviation from the reference distance as
the inter-nodal distance increases. Also, it is evident that using
the median offers significantly improved performance. Outliers
can have a profound impact on the mean, distorting its true rep-
resentation of the data. However, the median value remains ro-
bust in the face of such outliers, making it a more reliable meas-
ure in certain situations. These statistics provide useful feed-
back for the UWB range error mitigation campaigns. Finally, it
is found that antenna orientation seems to affect the measure-
ment accuracy at distances greater than 500 m. It is noted that
the increase in values at 300 m for large relative antennas ori-
entation is attributed to the existence of a parked vehicle close
by the LOS between the receivers.
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Figure 2. Range deviation estimation using mean and median
values of UWB observables for campaign CO.1.

Figure 3 depicts the histogram of the observed range difference
from its mean value. The high repeatability of the measure-
ments is evident. Specifically, only few long ranges deviate
from the mean with a 6 cm maximum difference. It is also
noted here that the presented ranging results have previously
undergone the pair-wise range correction procedure (as indic-
ated by the manufacturer) prior data collection. Therefore, this
analysis does not concern raw uncorrected ranging observables.
Notably, the longest distance of 720 m in the experiment is con-
fined by the size of the measurement area, and therefore, it does
not represent the maximum operational range of the UWB sys-
tem.

6.3.2 UWB Outdoor Range Error Correction Analysis In
the static ranges error mitigation, data collection employed four
anchor nodes and one rover. Range measurements were con-
ducted among all anchors as well as from each anchor point to
the rover. Measurements collected between anchors facilitate
the assessment of distance correction process for multiple pairs
of transceivers at fixed relative distances. Indicatively, Figure 4
presents the ranging samples, the average value, the median as
well as the reference value both in the form of a probability
density function histogram as well as a timeseries. Table 1
summarizes the range statistics (mean and median) from the
nominal distance for all anchor pairs. Apparently, from Table 1

a range bias is evident as the range correction procedure us-
ing Time Domain® software cannot compensate for the total
network corrections. The values in the Table for the median
are utilized as pairwise correction values. This is due to the
absence of relative distance changes for anchors, making it im-
possible to estimate a more complex range error model. Con-
clusively, the median is chosen as it best approximates the value
recorded by satisfactorily ignoring outliers. By implementing a
least-square adjustment for the anchors network, the determina-
tion of local coordinates using UWB measurements is possible.
To solve the 3D grid, the following constraints are considered:
Point 101 position is held fixed, height values are constant as
measured at the test site, and point 102 is supposed to lie on the
X-axis (y101 = y102). Therefore, the independent determinants
of the model are [x102, x103, y103, x104, y104]. The process
of the Weighted Non-Linear Least Squares (WNLLS) method
is repeated to cover the entire dataset. Table 2 presents the devi-
ation in ranges between the WNLLS solution and the reference
distances for the cases before and after range correction. The
effect of range correction on resulting ranges is evident result-
ing in maximum deviation of 1.3 cm.

Deviation
UWRB nodes pair | mean | median
101-102 0.368 | 0.367
101-103 0.352 | 0.351
101-104 0.355 | 0.355
102-103 0.741 | 0.741
102-104 0.741 | 0.734
103-104 0.752 | 0.742

Table 1. Anchor pairs UWB range deviation in [m] for campaign
C0.2 before range correction.

WNLLS ranges deviation
UWRB nodes pair | uncorrected | corrected
101-102 0.204 0.002
101-103 0.282 -0.002
101-104 0.422 0.005
102-103 0.803 0.001
102-104 0.697 0.013
103-104 0.604 -0.013

Table 2. Anchor pairs UWB range deviation in [m] after
WNLLS implementation using both corrected and uncorrected
ranges for Campaign C0.2.

The correction of UWB kinematic measurements based on the
stop-and-go points is implemented using 3 different empirical
models: the mean value, the linear fit and 2nd degree polyno-
mial fit (see section 4.2). The models are implemented radially
around each fixed transceiver, utilizing the varying deviation
values from the reference distance for each pair and distance.
Corrections are then applied based on the specific distance. Fig-
ure 5 (left) presents the results obtained from the three models
whereas Figure 5 (right) presents the correction values obtained
for transceiver 103 (red point — top left) displayed in the form
of contours. In this plot the magenta points refer to the stop-
and-go points. The different range error models’ effectiveness
is evaluated during the kinematic trajectory estimation.

6.3.3 WI-Fi RTT Outdoor Range Correction Analysis The
pre-processing stage concerned with the static Wi-Fi RTT ob-
servables aims at range reduction from sloped to horizontal and
data grouping. Figure 6 presents the histogram of the range dif-
ferences from reference value for all APs for a nominal distance
of 5 m. Notably, the standard deviation of each series of ob-
servations does not exceed 0.3 m except in very few cases. As

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-G-2025-631-2025 | © Author(s) 2025. CC BY 4.0 License. 636



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow...”, 6—11 April 2025, Dubai, UAE

m T . B8 -

Haainal Hewminal
70 | Distance; 200 m 70| Distamee: 400 m

| Bt

Samples #

& 2
Samples #
¥ & 8

]

Emnistegrars| |
wscitan

0 i W

. i a ’ ’ .
&5 -T0 £0 S0 40 36 3% 40 D 10 20 W 40 0 & O oM
Deviation from Mean (mm)

[ S " sl . e |
0 FO 0 S0 40 34 30 A0 6 W 20 M 40 S0 &0 TO @6
Deviation from Mean (mm)

Hominal
7o | Distases: 720 m

Samples i
&

m [ Te—
medisn

il Il_u._.d_._‘__-

a L .
80 70 44 5D 4D 30 20 A0 0 10 20 30 4 B0 60 FO 8%
Deviation from Maan {mm)

Figure 3. Histograms of UWB ranges deviation from the mean value for nominal distances 200, 400 and 720 m of Campaign CO.1.
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indicated in Figure 7 regarding AP1 data, range trueness for ref-
erence distance 20 m and 25 m exhibits an increase reaching a
maximum value 1.2 m. In addition, signal strength value shows
a drastic drop for ranges up to 15 m (approximately from -45 to
-65 dBm) and a milder drop for ranges 15 to 45 m (about -65
to -75m dBm). The reported standard deviation values suggest
stability, whereas the increase for the distance of 15 m suggests
the potential of the system to identify ranging quality deteri-
oration. Also, Figure 7 suggests that range observations for
a nominal distance of 20 m have been contaminated by mul-
tipath originating from a metal structure located at the side of
the ranging smartphone at distance of around 2 m resulting at
increased deviation values. Moreover, it is observed that even at
a nominal distance of 45 m, still there is no drastic reduction in
accuracy implying that the system reaches maximum effecting
range. The generated range error models are presented in Fig-
ure 8 for the cases of mean, linear and 2nd order polynomial ap-
proximation models. These results are produced using the EPD-
Fmax values of the respective ranging datasets. It is noted that

the values corresponding to distances of 10, 20 and 35 m are
not utilized during models’ generation in order to be utilized as
validation distances. Table 3 summarizes the resulting statistics
for the different correction models’ implementation. Clearly,
no drastic improvement is evident using the polynomial fitting
compared to the linear fit, whereas at some cases the resulting
values may even present lower accuracy. This is indicative of
the potential over-fitting effect. The linear correction model is
deemed sufficiently effective and is selected for the implement-
ation of kinematic trajectory estimation as demonstrated in the
following section.

WNLLS ranges deviation (m)
UWB nodes pair | uncorrected corrected
101-102 0.204 0.002
101-103 0.282 -0.002
101-104 0.442 0.005
102-103 0.803 0.001
102-104 0.697 0.013
103-104 0.604 -0.013

Table 3. Statistics of range correction models effect on Wi-Fi
RTT range datasets collected in in campaign C0.3 for the three
validation distances.

7. Position Solution Estimation

This section presents the experimental results obtained for the
position solution using the standalone positioning using UWB
P2I algorithmic approach and the data sources detailed in the
previous section. The evaluation of the proposed positioning
techniques for non-collaborative rovers relies both on simulated
and field data. he evaluation of the CP scheme, due to hardware
limitations and adversities, relies only on extensive simulated
datasets generated suitably for multiple, simultaneously operat-
ing rovers in varying availability conditions.

The trajectory obtained for a single rover using field test UWB
data (Campaign C0.2) relies on a constant velocity EKF. In
total, four variations are produced for the rover trajectory. Three
of them implement the range correction models introduced above
“mean”, “linear approx.” and “polynomial approx.”) and the
fourth one represents the uncorrected (raw TWR data) position
solution. Figure 9 illustrates a typical example of the vehicle
trajectory for the linear correction model, accompanied by the
coordinate timeseries of the along-track and off-track trueness
values. Increased trueness values are observed for the along-
track estimates with values approaching 2 m. The improved
solution mainly for the cross-track trueness indicates the weak-
ness of the employed EKF dynamic model selection, as it is
specifically configured for pedestrian positioning. Expansions
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of this work aiming to tackle TWR-based vehicle localization
may implement appropriate filter tuning procedures for com-
pensating for vehicle kinematics.

8. Concluding Remarks and Outlook on Future Work

Two key objectives are attained through the proposed method-
ologies presented in this study. Firstly, to develop a method-
ology for performing quality characterization and assessment
of UWB and Wi-Fi RTT TWR observables that enables the
systematic range error mitigation through empirical correction
models. Secondly, to develop and test an algorithm for col-
laborative positioning of multiple kinematic nodes based on a
combination of UWB and Wi-Fi RTT ranges, using both P2I
and P2P observables. Figure 10 summarizes the performance
statistics for UWB and Wi-Fi RTT kinematic positioning ob-
tained utilizing the main empirical range error model categor-
ies (i.e., “no correction”, “linear correction” and “spatial cor-
rection”) for the entire field data available. The respective true-
ness values (mean and standard deviation) accompanied with
their associated availability measures, showcase the different
accuracy metrics obtained and underline the need for appropri-
ate model selection. For the UWB data, an improvement of
62% is apparent for the mean trueness using the “linear correc-
tion” and 74.3% accordingly for the “spatial correction” model.
Evidently, an improvement of 55% results in the standard devi-
ation values for both correction models. No availability issues
are identified for the UWB data which is expected given the
specifications of high sampling rate, accuracy and communic-
ation stability. Regarding Wi-Fi RTT data, an improvement of
54.1% is apparent for the “linear correction”, whilst the “spa-
tial correction” models lead in worse performance both in terms
of trueness mean and standard deviation values. This is attrib-
uted to the noisier nature of the Wi-Fi RTT observables that
make the more complex nature of the “spatial correction” mod-
els more prone to inaccuracies and extreme values. Neverthe-
less, in order to reach an impartial characterization of systems
performance, it is important to study range availability values
simultaneously with trueness. Notwithstanding, the Wi-Fi RTT
“no correction” case falsely reports better performance when
only trueness is taken into account, its corresponding availabil-
ity measures are reported to be 21.8% of the total sample, whilst
the “spatial correction” case reads a valid solution at 52.4%
of the sample. Overall, the selection of the appropriate cor-
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Figure 9. Vehicle trajectory (top) and position trueness
along-track (middle) and off-track (bottom) time histories using
UWB ranging assuming a linear correction model (Cam. CO0.2).

rection model depends primarily on user-specific requirements
as imposed by application type. In general, the “spatial cor-
rection” model is proven suitable for the more accurate UWB
ranges, while the “linear correction” model deems suitable for
both technologies.

Further enhancements of the system as well as the ability to
further investigate the different variations of the proposed ap-
proaches enable future expansion. Firstly, evaluating the cor-
rection methodology in different test areas with varying LOS/
NLOS conditions can further support its generalization ability.
As the proposed range error evaluation approach can be expan-

ded to virtually unlimited similar technologies, further evalu-
ation with additional RF-based ranging datasets (i.e., low-cost
UWRB sensors) is suggested. The distributed collaborative ar-
chitecture of the DCP algorithm ensures scalability and sup-
ports future implementation on mobile devices, making it suit-
able for various real-world applications such as urban naviga-
tion and disaster recovery. Notwithstanding that a great num-
ber of personal mobility applications rely directly on the po-
sitioning solution produced using a single device, a continu-
ously increasing number rely on additional state information
(orientation, elevation, etc.). Given the multi-sensory charac-
ter of today’s smartphones, numerous applications could bene-
fit from the fusion of additional sensor data introduced within
the loosely-coupled architecture of the DCP solution. For ex-
ample, as UWB functionality is already available on several
smartphones and given the cost limitations implicated by these
mass-market devices, investigating the proposed approaches us-
ing low-cost UWB sensors would provide valuable insight re-
garding their large-scale applicability. Moreover, incorporat-
ing elevation data from barometric sensors or integrating in-
door maps for map-matching could further enhance position-
ing robustness. Both rover self-localization improvements and
the subsequent collaborative steps propagating quality improve-
ments to neighboring nodes would benefit a potentially unlim-
ited number of users.
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