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ABSTRACT:

3D Gaussian Splatting (3DGS) is an innovative solution for explicit point-based 3D representation where each point is repres-

ented as a Gaussian distribution. Using calibrated images and sparse point cloud for initialization, the scene is reconstructed by

optimizing the Gaussian position, orientation, shape and appearance. In this contribution, we present a comprehensive overview

of 3DGS methods available on complimentary radiance field reconstruction platforms namely, the original 3DGS implementation

as reference, Splatfacto, 3DGS-MCMC and 3DGS-LumaAI to address a broader audience in industry and non-technical users as

well. Being an indispensable part of our environment, we are particularly interested in vegetation since the irregular and complex

shape of plants and trees, especially dense foliage can challenge the 3D reconstruction. We evaluate the geometric accuracy and

completeness in two real-world scenarios, one occlusion-free indoor and one outdoor scenario where the object of interest is placed

behind vegetation to investigate how the methods can reconstruct the underlying geometry behind occlusion. To investigate if 3DGS

methods can challenge traditional and state-of-the-art 3D reconstruction approaches we compare the results with Multi-View Stereo

(MVS) and Neural Radiance Fields (NeRFs). The evaluation is based on point cloud comparison against a ground truth mesh. Just

behind MVS, the original 3DGS implementation achieves second best accuracy results outperforming NeRFs in both scenarios,

making it the most accurate 3DGS method. 3DGS-MCMC achieves the best and third best completeness for each scenario re-

spectively, making it competitive with MVS and NeRFs in real-world setting. Moreover, we demonstrate 3DGS ability to reliably

reconstruct the geometry behind vegetation occlusion indicating the potential for large-scale forestry applications, allowing canopy

reconstruction, biomass estimation and agricultural monitoring.

1. INTRODUCTION

In recent years, the field of computer vision has witnessed re-

markable advancements in 3D reconstruction from multiple cal-

ibrated views compared to the traditional Multi-View Stereo

(MVS) algorithm which relies on cross-view correspondence

matching and triangulation to estimate per-pixel depth value.

Innovations such as Neural Radiance Fields (NeRFs) (Milden-

hall et al., 2021) have achieved substantial breakthrough in im-

plicit scene representation by leveraging neural networks to rep-

resent a scene as a continuous 5D function that takes as input

3D spatial coordinates and 2D viewing direction and outputs

the density and color at that spatial location. Despite these ad-

vancements, NeRF-based methods still contend with challenges

such as computationally expensive optimization due to the sig-

nificant cost of ray tracing and uninformative data for storing

points in empty space. Moreover, the geometry is only learned

implicitly, encoded in the density field which is a continuous

function and carries uncertainty (Goli et al., 2024, Jäger et al.,

2023) leading to incomplete and noisy surface representation

(Petrovska et al., 2023, Oechsle et al., 2021).

After NeRFs, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023)

has become an innovative solution for explicit point-based 3D

reconstruction where each point is represented as a Gaussian

distribution. Incorporating images with corresponding poses

initialized on a sparse point cloud usually obtained by Stucture-

from-Motion (SfM) or depth maps (Jäger et al., 2024), the scene

is captured by optimizing the Gaussian position, orientation,

shape and color represented as spherical harmonics (SH). While

3DGS does not require dense point sampling for each ray, it

does need a substantial number of Gaussians to maintain a high
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level of detail. Optimizing the Gaussian primitives is performed

through gradient descent, thus the Gaussians with large gradi-

ents are densified by cloning or splitting. Unlike ray-based

approaches which sample points for each pixel from training

views, 3DGS optimizes on full images requiring different train-

ing formation and doesn’t compute points in empty space.

In this contribution, we present a comprehensive overview of

3DGS methods available on complimentary 3D reconstruction

platforms employing radiance fields, which are highly valuable

due to their efficiency, while allowing reconstruction with less

technical competence, to address a broader audience in industry

and non-technical users as well. We qualitatively and quant-

itatively evaluate the geometric accuracy and completeness to

offer deeper insights into the practical applications and limita-

tions in real-world scenarios. We are particularly interested in

vegetation since the irregular and complex shape of plants and

trees, especially dense foliage can challenge the overall accur-

acy and completeness of the reconstructed scene. Our invest-

igations are based on one occlusion-free indoor scenario and

one outdoor scenario where the object of interest is placed be-

hind vegetation to investigate how the methods can reconstruct

the underlying geometry behind occlusion. The evaluation is

based on point cloud comparison against a ground truth mesh,

since point clouds are a main 3D representation in computer

vision and photogrammetry. To investigate if 3DGS methods

can challenge traditional and state-of-the-art 3D reconstruction

approaches we compare the results with MVS and NeRFs re-

spectively.

In summary, our main contributions are:

• We qualitatively and quantitatively evaluate the 3D geo-

metric accuracy and completeness of 3DGS methods avail-
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able on complimentary radiance field reconstruction plat-

forms for real-world scenarios, tackling occlusions.

• We compare the results with MVS and NeRFs, to invest-

igate if 3DGS methods can challenge traditional and state-

of-the-art 3D reconstruction approaches.

• We demonstrate that 3DGS achieves second best accuracy

results outperforming NeRFs indicating a consistent per-

formance in real-world setting.

The contribution is organized as follows. In Section 2 we give

an overview of the 3D reconstruction methods, in Section 3 in-

formation about the dataset and evaluation metrics along with

implementation details is provided, the qualitative and quantit-

ative results addressing accuracy and completeness are presen-

ted in Section 4, the discussion is laid out in Section 5 and Sec-

tion 6 reports the concluding insights.

3DGS-Basic

Splatfacto

3DGS-MCMC

MVS

SfM Point Cloud

Camera Poses

NeRF

3DGS-LumaAI

Images

Figure 1. We estimate the camera poses and sparse point cloud

through SfM, followed by dense MVS reconstruction (Section

2.1). The images along with the poses are input to NeRF (Section

2.2) and 3DGS-LumaAI (Section 2.3.4), while 3DGS-Basic (Sec-

tion 2.3.1), Splatfacto (Section 2.3.2) and 3DGS-MCMC (Section

2.3.3) additionally require the sparse point cloud for initializa-

tion.

2. 3D RECONSTRUCTION METHODS

We evaluate how 3DGS methods available on radiance field re-

construction platforms can represent real-world indoor and out-

door scenarios. As a 3DGS representative we refer to the ori-

ginal implementation. Due to the explicit representation, the

Gaussian mean is considered object geometry in the form of a

point cloud for all methods. For more comprehensible insights

in the accuracy and completeness, we compare the results with

current 3D reconstruction methods, MVS and NeRFs (Figure

1).

2.1 Multi-View Stereo (MVS)

The camera poses along with a sparse point cloud are estim-

ated through the incremental SfM pipeline (Schonberger and

Frahm, 2016) using SIFT (Lowe, 2004) for feature extraction

and matching. Based on the SfM output, the dense point cloud

is computed from the matching points using multi-view triangu-

lation that effectively captures the spatial structure of the scene

through MVS (Schönberger et al., 2016). The depth and nor-

mal information for every pixel is computed by analyzing pixel

correspondences across the images. Fusion of the depth and

normal maps of multiple images in 3D produces a dense point

cloud of the scene.

2.2 Neural Radiance Fields (NeRFs)

NeRFs approximate a 5D plenoptic function with a learnable

multi-layer perceptron (MLP), whose input is a 3D location

x = (x, y, z) and 2D viewing direction (θ, ϕ) and whose out-

put is volume density σ and emitted color c = (r, g, b) at that

spatial location. As NeRF representative we employ Nerfacto

(Tancik et al., 2023), which is a recommended method for real-

world data of static scenes. Although the core of the method

is heavily influenced by Mip-NeRF360 (Barron et al., 2022),

it combines several components from different NeRF methods

(Wang et al., 2021, Müller et al., 2022, Martin-Brualla et al.,

2021, Verbin et al., 2022) to achieve fast training and high re-

construction quality. The method uses a small neural network

with hash encoding for computational efficiency, while achiev-

ing comparable accuracy. To produce the initial set of samples

of the scene, a piece-wise sampler is employed. It allocates

half of the samples uniformly up to a fixed distance from the

camera, followed by samples that are distributed such that the

step size increases with each sample, to achieve a dense set of

samples for nearby objects. These samples are then fed into a

proposal sampler, which consolidates the sample locations into

regions of the scene that contribute most to the final render, typ-

ically the first surface intersection with the objective to learn a

guidance for the NeRF ray sampling near the surface of ob-

jects within the scene. For real-world unbounded scenes, a

scene contraction which compresses the infinite space into a

fixed-size bounding box is used. The point cloud is extracted

by back-projecting points from the depth maps and mapping to

3D coordinates with respect to the camera poses for each input

image. Per-pixel depth is derived from the expected ray termin-

ation in the density field and calculated by accessing the median

density response on the sampled ray.

2.3 3D Gaussian Splatting (3DGS)

In the following, we present the evaluated 3DGS methods, spe-

cifically 3DGS-Basic, Splatfacto, 3DGS-MCMC and 3DGS-

LumaAI.

2.3.1 3DGS-Basic. We refer to the original implementation

as 3DGS-Basic. The scene is represented with many differenti-

able 3D Gaussian primitives parameterized by position centered

in the Gaussian mean µ ∈ R
3, covariance matrix Σ ∈ R

3×3 de-

composed into a scaling vector s ∈ R
3 and a rotation quaternion

q ∈ R
4, opacity α ∈ R and color c ∈ R

3 represented via SH

coefficients. The scene is initialized on a sparse point cloud

where the initial covariance matrices have axes equal to the av-

erage distance of a point to its closest three neighbors, mean-

ing that initially the Gaussians are spheres. During training

the parameters of the Gaussians are optimized through gradient
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descent by many rendering iterations to best fit the training data-

set. The algorithm progressively densifies the scene by remov-

ing, splitting and duplicating the Gaussians at fixed iterations

based on the adaptive density control. This leads to perpetually

growing the number of 3D Gaussians over training time, result-

ing in a denser point cloud than the initial sparse point cloud.

The 3D Gaussians are trained to minimize the photometric loss

L, where L1 is norm of the per pixel color difference combined

with D-SSIM term and λ=0.2:

L = (1− λ)L1 + λLD−SSIM (1)

For visualization purposes, we also color code the point cloud

by converting the SH back to RGB values.

2.3.2 Splatfacto. The CUDA-based backbone of Splatfacto

is the gsplat library (Ye et al., 2024) which includes optimiza-

tion improvements for speed, memory and convergence times

compared to the original 3DGS-Basic implementation. It fea-

tures a front-end with Python bindings and a back-end with

highly optimized CUDA kernels.

2.3.3 3DGS-MCMC. Based on the principles of Markov

Chain Monte Carlo sampling, 3DGS-MCMC (Kheradmand et

al., 2024) reinterprets the placement and adjustment of 3D Gaus-

sians as a process of sampling from a probability distribution.

Instead of using heuristics for cloning and splitting the Gaus-

sians, it employs a relocalization scheme to move low opa-

city Gaussians to the locations of Gaussians with high opacity.

This removes unused Gaussians, thus managing their number

effectively, thereby reducing the computational overhead and

required amount of memory.

2.3.4 3DGS-LumaAI. We use the 3DGS method that it’s a

proprietary iteration of the original implementation. The goal

is to hybridize the performance gain of real-time with robust

cloud-based rendering. Build upon luma-web library for im-

mersive environments, it includes LumaSplatsWebGL, which

is a WebGL-only Gaussian Splatting implementation designed

to be integrated with 3D frameworks and LumaSplatsThree,

which is a Three.js implementation that uses LumaSplatsWebGL

under the hood.

3. EXPERIMENTS

After a brief description of the dataset in Section 3.1, we out-

line the evaluation metrics in Section 3.2, followed by the im-

plementation details for each method in Section 3.3.

3.1 Dataset

Our investigations are based on two real-world scenarios from

the STELLA1 dataset (Petrovska and Jutzi, 2024), namely Ori-

ginal which is occlusion-free and Vegetation depicting vegeta-

tion as non-transparent occlusion (Figure 2). The object whose

geometry ought to be evaluated is 0.7m tall Buddha statue (fur-

ther on referred to as object) placed on a rectangular plate. Each

scenario consists of 125 high resolution images captured on a

circular trajectory around the object. Due to memory limita-

tions and efficiency the images are downsampled to 1840x1228

pixels and converted into .png format for lossless compression.

As ground truth, we use a mesh generated using Structured

Light Imaging (SLI) with 0.1mm accuracy.

1 https://github.com/sqirrel3/STELLA

3.2 3D Evaluation

We remove redundant data unrelated to the evaluation and keep

just the object. All point clouds are aligned in the same met-

ric space as the ground truth mesh for evaluation. After manual

coarse alignment, Iterative Closest Point (ICP) (Besl and McKay,

1992) which finds an optimal rigid transformation to align two

point sets is used. Subsequently, we report qualitative and quant-

itative accuracy and completeness of the reconstructed point

clouds (Petrovska and Jutzi, 2025).

Accuracy. Accuracy quantifies how closely the reconstructed

point cloud represents ground truth locations. We use cloud-to-

mesh which computes the displacements between each point in

the compared point cloud and the nearest facet in the reference

mesh through Euclidean distance. The geometric distortions

are estimated by: Mean Error (Mean), Standard Deviation (SD)

and Root Mean Squared Error (RMSE) in CloudComapre2.

Completeness. Completeness (Cpl) measures to what extent

the ground truth surface is covered and is calculated as the ratio

of the number of covered points to the total number of points

in the reference cloud. A higher percentage indicates higher

completeness, conditioned by the number of points (Npts). All

points in the ground truth within the threshold of 5mm dis-

tance of an estimated point contribute to the completeness. For

this purpose we converted the mesh into a point cloud by sub-

sampling 10M points on the mesh and perform the calculation

in our python script.

3.3 Implementation Details

MVS. In COLMAP3 we use the exhaustive matching strategy

in the SfM phase which involves comparing features between

every possible pair of images to find matching points. The im-

ages with corresponding poses are input to NeRF and 3DGS-

LumaAI, while 3DGS-Basic, Splatfacto and 3DGS-MCMC ad-

ditionally require the sparse SfM point cloud for initialization.

NeRF. We use the default parameters for Nerfacto in the Python-

based framework Nerfstudio4 v1.1.0. First 256 samples from

the piecewise sampler are generated, which get resampled into

96 samples in the first iteration of the proposal sampler, fol-

lowed by 48 samples in the second. For comparability, the pose

refinement is disabled.

3DGS-Basic. The training is performed on the default paramet-

ers with learning rates of 0.0025 for SH, 0.05 for opacity adjust-

ments, 0.005 for scaling operations, 0.001 for rotation trans-

formations and 0.0002 threshold of positional gradient norm

for densifying the Gaussians. The densification starts from the

500th iteration until 15.000 and the Gaussians are densified

every 100 iteration. The opacity is set close to zero every 3.000

iterations to prevent the method from getting stuck with floaters

close to the camera poses.

Splatfacto. For Splatfacto, also released in the scope of Nerf-

studio, we use the default hyperparameters which correspond

to 3DGS-Basic, only the limit that decides if points should be

densified based on the positional gradient is 0.0008.

3DGS-MCMC. Being the recommended reconstruction method

for most scenes, we use the 3DGS-MCMC implementation in

2 https://github.com/CloudCompare/CloudCompare
3 https://github.com/colmap/colmap
4 https://github.com/nerfstudio-project/nerfstudio
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(a) (b)

Figure 2. (a) Original reconstructed by Splatfacto and (b) Vegetation through 3DGS-MCMC reconstruction. The Gaussian splats which

act like blobs in space with view-dependent appearance are visualized along with the camera poses.

Postshot5 v0.4.0, which offers an end-to-end solution for train-

ing and rendering radiance fields within a seamless workflow.

We use the recommended parameters, with maximum splat count

of 3M. This specifies the number of splat primitives that training

will at most create in the scene and directly affects the required

memory and disk space as well as the level of fine detail.

3DGS-LumaAI. In the Interactive Scenes space released by

Luma Labs AI6 we upload the images with corresponding poses

and choose the camera type - normal in our case, which are the

only adjustable parameters. The 3D reconstruction is done re-

motely in the cloud.

The training for NeRF, 3DGS-Basic, Splatfacto, as well as 3DGS-

MCMC incorporates 30.000 iterations and every 8th frame is

taken for test during training, except for 3DGS-MCMC in Post-

shot where this parameter cannot be adjusted and all images

are taken for training. For 3DGS-LumaAI we used the de-

fault settings, whose access is not available. To convert the SH

back to RGB for the point clouds generated from Splatfacto,

3DGS-MCMC and 3DGS-LumaAI we use an open source lib-

rary7. All experiments regarding the pose estimation, training

(except 3DGS-LumaAI which is web-based) and evaluation are

performed on a desktop PC with an Intel i9 CPU with 32GB

RAM and Nvidia RTX3090 GPU.

4. RESULTS

We report qualitative, where the geometric reconstruction as

point clouds are visualized (Figure 3) as well as the cloud-to-

mesh errors (Figure 4) and quantitative results to numerically

present the accuracy and completeness for each method separ-

ately (Table 1).

MVS. MVS reliably reconstructs the object and achieves a sharp

result in both scenarios. However, in Original we can observe

black and white artifacts, especially noticeable on the spikes on

the head and left shoulder. Moreover, noise in the lap is present

due to lack of image information. These points have high er-

ror values. Overall, it demonstrates superior accuracy among

the methods in both scenarios with lowest error displacements,

thus achieving the highest correspondence with the ground truth

with RMSE of 1.43mm and 3.23mm respectively. This is com-

plemented by high completeness of 97.35% with a substantial

5 https://www.jawset.com/
6 https://lumalabs.ai/interactive-scenes
7 https://github.com/francescofugazzi/3dgsconverter

number of points, implying a well-balanced trade-off between

precision and surface coverage. Although it experiences a de-

crease in completeness to 75.95% in Vegetation, due to the gaps

in the geometry of the occluded parts, it still outperforms other

methods and exhibits the best results.

NeRF. NeRF point clouds show realistic representation and can

capture the overall spatial arrangement of the scene completely

while being able to capture complex geometric details, e.g. the

spikes on the head, even behind occlusions. The lap is also

reconstructed with more points compared to MVS. However,

triggered by the challenges of occlusions in Vegetation the re-

construction is fuzzy and has noise on the outer object sur-

face, but the occluded parts are better reconstructed compared

to all other methods. Hence, it achieves second best results in

both scenarios regarding completeness suggesting its strength

in generating detailed 3D reconstruction albeit with accuracy

trade-off where it performs considerably worse, with high RMSE

of 5.36mm and 12.67mm accordingly. This is mostly caused by

the points inside the object which have the highest error values.

3DGS-Basic. 3DGS-Basic shows better object reconstruction

compared to Splatfacto and 3DGS-LumaAI. Nonetheless, the

point clouds are very unstructured with uneven spread of points;

complex geometry and edges are represented with a signific-

ant number of points, while the homogeneous areas are sparse.

We argue that this is because the point cloud densification is

guided from the input sparse point cloud from SfM which is

able to identify only distinctive points in the feature extraction

and matching phase. Generally, 3DGS-Basic achieves second

best accuracy results in both scenarios and exhibits highest ac-

curacy results among the evaluated 3DGS methods. However, it

suffers from lower completeness with 82.75% for Original and

42.71% for Vegetation. It is worth noting that the completeness

is almost twice as lower for Vegetation making it sensitive to

occlusions, which applies to all 3DGS methods.

Splatfacto. In Original, Splatfacto reliably reconstructs the ob-

ject depicting complex texture - the spikes on the head, edges

- lines of clothes and homogeneous object parts - knees. How-

ever, the point cloud is very sparse for Vegetation which in-

dicates difficulties in managing the complexities of occlusions

in unbounded scenes. Nevertheless, the complex geometry on

the head is still reliably reconstructed. Splatfacto shows poor

accuracy and large RMSE values of 7.28mm and 13.80mm,

combined with relatively low completeness scores, 79.83% and

31.80% for each scenario respectively.
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Figure 3. Point cloud geometric reconstruction for all evaluated 3D reconstruction methods in both scenarios. Due to the occlusions all

point clouds in Vegetation have less points compared to the occlusion-free Original scenario. The geometry for all 3DGS methods is

represented by the Gaussian mean.
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Figure 4. Geometric accuracy through cloud-to-mesh distances against the ground truth mesh for both scenarios, Original and Veget-

ation. The error displacements correspond to the color ramp. Taking into account the orientation of the normal vector the calculated

cloud-to-mesh distance is signed; a point is considered outside the mesh when the distance is positive and inside when it is negative.

Except MVS, the reconstructed point clouds have artifact points inside the object which distort the accuracy.

3DGS-MCMC. The 3DGS-MCMC method shows highly de-

tailed object reconstruction for Original, outperforming all meth-

ods in completeness achieving almost absolute point coverage

with 99.45% and strikes a favorable balance between point cov-

erage and accuracy with moderate displacements below 6mm.

In Vegetation, the intricate geometry - spikes on the head are

still detailed, but the homogeneous - plate and lap are sparse. In

addition, the edges - lines on the clothes are not recognizable

which is in some part conditioned by the occlusions. The num-

ber of points significantly drops, but it’s still enough for third

best completeness results. However, it fails to accurately recon-

struct the object with highest RMSE of 17.36mm. Altogether,

it reaches the highest completeness in both scenarios among the

3DGS methods.

3DGS-LumaAI. Similarly to 3DGS-Basic, the point distribu-

tion in Original is scattered with homogeneous parts sparsely

represented. Nevertheless, the object geometry is reconstructed

with completeness of just below 90% outperforming Splatfacto

and 3DGS-Basic. In contrast, the completeness drops drastic-

ally in Vegetation to only 7.173 points and the object features

are almost unrecognizable. This leads to the lowest complete-

ness percentage of just 27.02%. When it comes to accuracy, it

shows robust results with errors in the range of 7mm for both

scenarios.

NeRFs and all 3DGS methods show lower accuracy than MVS

because the geometry is reconstructed based on minimizing the

image reconstruction loss between training and rendered im-

ages. The points don’t align tightly with the object surface and

moreover, artifact points inside the object are present which

distort the accuracy and don’t contribute to the completeness

(Petrovska and Jutzi, 2024). They are projections from input

views that weren’t moved into their correct place geometrically.
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Table 1. Quantitative results of the cloud-to-mesh comparison addressing the accuracy and completeness for each 3D reconstruction

method. The results depend on the chosen 3DGS method. 3DGS-Basic achieves second best accuracy results, outperforming NeRFs

in both scenarios. 3DGS-MCMC exibits the highest completeness among the evaluated 3DGS methods and overall for Original. The

first , second and third best results are highlighted.

Accuracy (mm) Completeness (%)
Scenario Method

Mean↓ SD↓ RMSE↓ Npts Cpl↑
MVS 0.16 1.42 1.43 845.456 97.35

NeRF -2.94 4.48 5.36 1.682.388 98.23

3DGS-Basic -2.02 4.29 4.74 352.298 82.75

Splatfacto -3.15 6.56 7.28 51.209 79.83

3DGS-MCMC -1.60 5.58 5.80 1.556.040 99.45

Original

3DGS-LumaAI -3.47 6.11 7.02 167.470 88.77

MVS 0.53 3.18 3.23 117.427 75.95

NeRF -5.43 11.44 12.67 181.058 69.95

3DGS-Basic -2.54 7.05 7.49 40.807 42.71

Splatfacto -6.21 12.33 13.80 10.518 31.80

3DGS-MCMC -7.35 15.70 17.36 69.719 65.93

Vegetation

3DGS-LumaAI -1.95 7.32 7.58 7.173 27.02

The error displacements tend to increase faster to the negative

because those are the points behind the mesh surface and in-

side the object. The errors with positive values lie above the

nearest mesh triangle and thus most likely represent noise and

outlier points. Overall, the 3DGS-Basic achieves second best

accuracy results, outperforming NeRFs in both scenarios, mak-

ing it the most accurate 3DGS method. Among the evaluated

3DGS methods, 3DGS-MCMC exhibits highest completeness

competitive with MVS and NeRFs. Without affecting the geo-

metry, we can observe color differences in the object recon-

struction between the scenarios. Original is captured indoors

under controlled lighting, which is different from Vegetation,

captured outdoors under non-constant natural illumination.

5. DISCUSSION

In this contribution we evaluate the 3D geometry reconstruc-

ted by 3DGS methods implemented on different radiance field

platforms against MVS and NeRFs, analysing the accuracy and

completeness in occlusion-free and non-transparent vegetation

occlusion scenario. In the following, we discuss the qualitative

and quantitative results and argue their application influenced

by the code base availability and training time (Table 2).

Table 2. Algorithm access and training time for the evaluated

methods. The code for the 3DGS-MCMC implementation in

Postshot and the 3DGS-LumaAI is not open-source, limiting their

application on account of ease of use. The fastest 3D reconstruc-

tion method is NeRF, followed by Splatfacto.

Method Open-source Training time

MVS ✓ 1h 15min

NeRF ✓ 15min

3DGS-Basic ✓ 49min

Splatfacto ✓ 25min

3DGS-MCMC ✗ 43min

3DGS-LumaAI ✗ 45min

MVS. Although MVS excels in pin-point accuracy while achiev-

ing high completeness, it is the slowest 3D reconstruction method

with average reconstruction time of 1h 15min, due to the costly

dense matching. However, the code is open-source meaning

that parameters for both SfM and MVS phase can be accessed

and modified.

NeRF. Since the number of exported points can be adjusted,

we chose a number close to the highest (according to 3DGS-

MCMC for Original and MVS for Vegetation scenario) for a

fair comparison. However, the number of points doesn’t neces-

sarily imply a higher completeness because they don’t repres-

ent object surface points. Both NeRF point clouds have outer

noise and contain artifact points inside the object which don’t

improve the completeness and decrease the accuracy. Neverthe-

less, NeRF achieves second best completeness results in both

scenarios while being the fastest method with just 15min of

training time, indicating its high efficiency. Released with an

open-source code, it is a competitive option for real-world set-

tings.

3DGS-Basic. 3DGS is a method for representing radiance fields

by explicitly storing a collection of 3D volumetric Gaussians

building upon the principles of MVS and NeRFs. Hence, it

achieves the best accuracy among the 3DGS methods and second

best overall, outperforming NeRF in both scenarios. The com-

pleteness is average due to the sparsely reconstructed homogen-

eous object parts, caused by the lack of points for these parts in

the SfM point cloud used for initialization. The code is open

for contributions, but the training time of almost 50min makes

it the slowest 3DGS method. This stems from the high compu-

tational complexity caused by the large number of Gaussians,

the non-linear operations for Gaussian optimization and large

memory requirements for storing all Gaussians along with their

parameters.

Splatfacto. Splatfacto achieves the least reliable results from

the 3DGS methods and performs worse than MVS and NeRF

(Haitz et al., 2024), limiting its usage in real-world scenarios.

Although it matches the original 3DGS implementation for the

most part, we suspect that the gradient descent threshold for

densification significantly affects the results, being the only hy-

perparameter that differs. The cloning, splitting and removing

of the Gaussians is more rigorous if this value is higher. In ad-

dition, we notice another difference from the original code: the

percentage of scene extent a point must exceed to be forcibly

densified, which is 0.01 by default and multiplies the scene ex-

tent. Splatfacto assumes that the scene is normalized to -1 and
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1 (default setting auto scale camera poses to -1 and 1 so the

scene extent is 1). This could explain the decrease in accur-

acy and completeness for the unbounded Vegetation scenario.

Nonetheless, the high memory usage due to the memory frag-

mentation of Gaussian culling is resolved by actively emptying

CUDA cache, making it almost two times faster than the rest of

the 3DGS methods with 25min of training time.

3DGS-MCMC. Although it achieves the highest completeness

for Original with moderate accuracy, for Vegetation which is

unbounded, the point coverage drops to around 65% and it yields

the highest error displacements. We left the maximum number

of Gaussian primitives for both scenes to default 3M, which

is probably not enough because the scene is too big for the

amount of Gaussians. The code for the 3DGS-MCMC imple-

mentation in Postshot is not open-source with limited parameter

adjustment, restricting more detailed insights into the results.

Moreover, the evaluation strategy differs, as it doesn’t split the

dataset and all available images are used for training. The train-

ing time is moderate with slightly above 40min.

3DGS-LumaAI. Although the method shows robustness and

moderate accuracy for Vegetation, it exhibits the lowest com-

pleteness of just 27.02% which is not enough to reliably cap-

ture the object’s geometry and appearance. Moreover, we can’t

be certain about the initialization and evaluation, because the

user interface allows just images and camera poses to be up-

loaded. We believe that random initialization is used because

the object reconstruction is similar to 3DGS-Basic, except that

it has fewer points. The lack of technical documentation re-

stricts its applicability even though it is faster than 3DGS-Basic

with training time of 45min. On the other hand, the workflow is

straightforward, without requiring technical knowledge or high-

performance hardware and software since the processing takes

place remotely.

In general, 3DGS methods show competitive results with MVS

and NeRFs in both scenarios. However, all 3DGS methods

show a higher drop in the completeness in Vegetation com-

pared to MVS and NeRF, limiting their robustness in occlu-

sion scenarios. We can also notice color differences between

the 3DGS methods, which only affect appearance. In 3DGS-

Basic we converted the SH back to RGB in the codebase, while

for Splatfacto, 3DGS-MCMC and 3DGS-LumaAI another lib-

rary is used. The accuracy and completeness depend on the

chosen method and parameters. Out of the six evaluated meth-

ods, four are open-source: MVS, NeRF, 3DGS-Basic and Splat-

facto. These methods offer higher customization potential while

enabling fine-tuning based on specific scene requirements or

optimization criteria. In contrast, the pipeline is atomized in

Postshot and Luma AI, restricting parameter adjustments. This

last aspect represents both an advantage, for the simplicity of

the workflow doesn’t require technical knowledge, but also a

limitation as it does not allow data management and possibility

of intervening during the various phases of the reconstruction.

These methods are more user-friendly, requiring less technical

expertise, but also offer less flexibility in adapting to specific

scene characteristics (Basso et al., 2024).

6. CONCLUSION

In this contribution we evaluate the accuracy and complete-

ness of 3DGS methods available on complimentary radiance

field platforms namely, the original 3DGS implementation as

reference, Splatfacto, 3DGS-MCMC and 3DGS-LumaAI. We

compare the reconstructed point clouds with current 3D recon-

struction methods, MVS and NeRFs in two real-world scen-

arios: Original which is an occlusion-free and Vegetation tack-

ling vegetation as non-transparent occlusion. 3DGS accuracy

and completeness depend on the chosen method. Overall, the

original 3DGS implementation achieves second best accuracy

results outperforming NeRFs, while MVS is still the most ac-

curate 3D reconstruction method. Concerning completeness,

3DGS-MCMC achieves best and third best results for each scen-

ario respectively. Taking into account the training time, NeRF

is the fastest method, followed by Splatfacto. Due to the time-

consuming dense matching, MVS as expected is the slowest 3D

reconstruction method.

Moreover, we demonstrate 3DGS ability to reliably reconstruct

the geometry behind vegetation occlusion allowing canopy re-

construction, biomass estimation and agricultural monitoring.

Beside Light Detection and Ranging (LiDAR) (Dubayah and

Drake, 2000), an extended 3DGS shows immense potential for

forestry applications. However, processing extensive landscapes

require high memory usage and computational demands, partic-

ularly for dense and occluded forest regions.
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