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Abstract 

 

Unmixing mixtures in images is one of the challenges for extracting information from data. Forest environments are particularly 

complex due to the relatively irregular structure of trees, shrubs and low vegetation. The amount and condition of vegetation, i.e. thin 

vs thick branches, trunk vs leaves, understorey and litter provide information to infer the amount of burnable fuel and consequently a 

key factor for predict fire behaviour. In this work we test a deep learning framework for training and testing the performance of 

detecting logs and litter of broadleaves and conifers in imagery of forest environments recorded through smartphones. Roboflow and 

YOLOv8 were employed, using a dataset of forest images manually segmented in four classes: “broadleaf-litter”, “broadleaf-logs”, 

“conifer-litter” and “conifer-logs”. The results indicate that the "Extra-large Instance Segmentation" model achieved the best 

performance with F1-score value of 0.79 at a confidence of 0.763 on familiar images in the validation phase with 214 epochs, 

whereas the "Large Instance Segmentation" model was more effective on new images in the test phase, as expected with a lower F1-

score of 0.24 and a confidence value of 0.492. It was observed that this was due mostly to omission errors due to low light conditions 

in the forestry environment. We conclude that segmenting key elements and including varied images in terms of seasonality and 

lighting conditions could potentially improve performance. This work lays a useful foundation for refining the use of AI in forest 

fuel monitoring. 

 

 

1. Introduction 

Forest fires represent a sensitive issue within the forestry sector. 

They are a difficult phenomenon to investigate in depth, as they 

depend on ecological, physical and anthropogenic factors that 

combine to provide a high heterogeneity of variables. They 

represent natural phenomena in many ecosystems, promoting 

biodiversity and natural regeneration, although human activity 

often alters their natural regimes, leading to different scenarios 

(Chuvieco et al., 2021).  

 

Europe is widely affected by wildfires, to a lesser extent in the 

north, while Mediterranean areas contribute 94 percent of the 

total area burned. Moreover, forest fires in southern Europe 

have largely increased since the second half of the 1900s, partly 

due to the abandonment of rural areas (Xanthopoulos et al., 

2006). This phenomenon involves, among other things, the loss 

of control over the growth of herbaceous, shrub and tree 

vegetation and thus over the quantity and quality of forest fuel, 

which is one of the three components of the fire triangle, along 

with the igniter. These are the three basic elements that allow a 

forest fire to occur. Fuel is perhaps the element that can be 

manipulated the most, but at the same time is difficult to 

control.   

 

In a forest fire, in fact, the flame front advances mainly through 

herbaceous or litter fuel. The rate of advance of the flame front 

is influenced by load, bulk density, size of fuel components 

(leaf size), caloric content, and extinction moisture (Rothermel, 

1972). Changing any of these variables results in changes on the 

propagation of a possible phenomenon. Delving into their 

dynamics and behavior, therefore, has become a challenge for 

research groups that invest economic resources each year with 

the aim of learning about and then controlling such natural 

events.  

 

Regarding fuel models, those proposed by Scott and Burgan 

(2005), provide mathematical models of fire behavior for 

several possible situations. Aragoneses et al. (2023) took up 

those of Scott and Burgan (2005), developing a 1-km spatial 

resolution map on a pan-European scale to identify possible fire 

behavior in different areas, which was later updated by 

Kutchartt et al. (2024) at 100 m resolution, providing the dataset 

in an interactive Web-GIS server.  

 

The H2020 FIRE-RES Project interpolated these data with the 

other satellite-derived data mentioned earlier, as well as from 

Corine Land Cover mapping to obtain a raster with spatial 

resolution of 100m x 100m (i.e., one hectare) that allows the 

creation of increasingly detailed fire propagation models. The 

data obtained through these interpolations, however, are 

certainly not error-free. Certainly, obtaining data over such a 

small area from satellites is relevant, but still in one hectare of 

area the actual situation may not coincide with the remote 

sensed data.  

 

To optimize the accuracy of the information, the H2020 FIRE-

RES Project proposes an intuitive and easy-to-use smartphone 

application, even by inexperienced personnel, to collect fuel 

data, allowing you to take georeferenced photographs with your 

device. This application is called the FIRE-RES Geo-Catch app 

(Kutchartt et al., 2023), to date already used by over two 

hundred users, collecting more than six thousand images across 

Europe. These provide data on the plant formations present in a 

given area, which can be classified, depending on composition, 
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into fuel categories, echoing those proposed by Scott and 

Burgan (2005) and Aragoneses et al. (2023). 

 

2. Materials and methods 

2.1 Study area  

The images used in this work are taken from multiple users 

using their smartphones. Each image catches the forest 

ecosystem at a specific location, mostly in Europe (Figure 1). 

Therefore, there is not a specific defined area for this work, but 

a collection of images that represent very different scenarios. 

The training was done with a subset of images taken from the 

online repository that can be seen in Figure 1. This repository 

collects automatically users’ images that are taken with 

smartphone imagery and displays them immediately if there is 

an internet connection when the image is taken. As in forestry 

field work it is often the case that there is no internet 

connection, then in this scenario the images are stored on the 

smartphone memory and uploaded automatically once an 

internet connection is detected.  

 

2.2 Smartphone imagery FIRE-RES Geo-Catch app 

This synched method for collecting images is done via the 

FIRE-RES Geo-Catch app which was developed into the 

framework of the H2020 FIRE-RES project. The main objective 

of developing an app that collects images differently from 

existing apps for smartphones is to keep a simple interface, with 

a very flat learning curve and intuitive process. The app 

automatically embeds key information in the image EXIF tag. 

This information is the project name, coordinates for 

geolocation, orientation angles, and accuracy of geolocation, 

plus the user’s device identification, which keeps the privacy of 

the users that are providing the information by an unique user id 

(UID), containing a 10-character alphanumeric string that is 

assign to the user’s phone and browsers, instead of storing 

personal data (e.g., e-mails). This keeps the user privacy, while 

maintaining responsibility for images that get uploaded. If a 

user uploads images that are not part of any projects, the device 

will get blacklisted. 

 

 

 
Figure 1.  Pan-european collection of images in forest 

ecosystems used for image analysis. Each point is an 

image taken with a smartphone with project id, 

timestamp, location coordinates and orientation 

(azimuth and zenith angles). 

 

2.3 Machine learning and deep learning 

Once a number of images are available, machine learning and 

deep learning approaches are applied to train models to allow to 

detect specific elements in the image. Machine Learning is a 

technique that improves the performance of a system by 

learning from experience through computational methods (Zhi-

Hua, 2021). In computer systems, experience is manifested in 

the form of data. The main task of machine learning is to 

develop learning algorithms that build models from data. By 

providing the learning algorithm with data, it obtains a model 

capable of making predictions. Deep learning is a branch of 

machine learning that is composed of several layers, including 

input and output layers, which allow the realization of multiple 

stages of nonlinear information processing. These multi-level 

architectures are used for feature learning and model 

classification (Alom et al., 2019). 

 

2.4 Roboflow and YOLO-v8 

Roboflow is an online platform that allows developers and 

researchers to train artificial intelligence models from image 

datasets by segmenting and labeling the elements contained in 

them. It was here used for carrying out these tasks. It has 

various applications in a variety of fields, from healthcare, for 

cancer mass recognition (Al-masni et al., 2018), to security, 

through intrusion detection (Hanan Ashraf et al., 2022). The 

main artificial intelligence technologies employed by Roboflow 

include Machine Learning and Deep Learning models. These 

models, specifically, are based on convolutional neural 

networks (CNNs), which are employed for tasks such as object 

recognition and image classification and segmentation. For 

example, YOLO (You Only Look Once) represents one 

available algorithm and is used here. YOLO is composed of 

convolutional layers that extract features from the image (e.g., 

edges, textures, shapes, etc.). These are subsequently 

transformed into one-dimensional vectors (Figure 2) and used as 

input to fully connected layers that determine the final 

classification (Hussain, 2023). 

 

There are several CNN architectures for feature extraction, such 

as AlexNet, VGGNet, GoogleNet and ResNet, each with 

specific features to improve performance and accuracy in image 

classification. Object detection can be divided into two main 

approaches. Two-stage methods initially select a set of possible 

regions where objects might be located (first stage), and then 

make a detailed prediction about the selected regions (second 

stage). One-stage methods simplify the process by turning it 

into a regression problem that performs region selection and 

prediction in a single step. This makes them faster and less 

complex to compute, although with lower accuracy than two-

stage methods (Figure 2). 

 

 

Figure 2. Schema of CNN workflows (Hussain, 2023) 

 

For this work, the Roboflow platform was employed only for 

the phase of segmentation and label assignment to the image 

dataset. After creating the personal account on Roboflow, it is 

possible to start the segmentation phase, uploading the photos to 

be processed. 
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2.5 Input imagery for training, validation and test 

A dataset consisting of 177 images was used. Of these, 136 

images were taken with a smartphone camera by one of the 

authors and were employed for the training and validation 

phase: 105 for training 31 for validation and 41 for the testing 

phase. These 41 images were taken from the images collected in 

the H2020 FIRE-RES project (Figure 1) and were used for 

independent testing of the accuracy of results. All the 117 

images for training were related to coniferous (Picea abies) and 

deciduous (Fagus sylvatica) forests during the late-winter 

season, which coincides with the period of maximum danger for 

forest fires for the reference geographic region in which the 

photographs were taken, corresponding with the Veneto pre-

Alpine belt. The test images, on the other hand, were taken from 

the FIRE-RES Geo-Catch app portal to use completely 

independent datasets for testing.  These two vegetation 

formations were chosen because they represent the standard of 

the most widespread forests along the Alps, with fairly 

homogeneous characteristics.  

 

The photos taken had to be blur-free, with good contrast and 

had to represent portions of the forest as homogeneous as 

possible. The following four different classes were used:  

 

- Conifer litter 

- Broadleaf litter,  

- Conifer stems  

- Broadleaf stems 

 

For each image, the different classes were assigned and 

manually segmented by contouring the elements in the image 

(Figure 3). 

  

  
 

  

Figure 3.  Result of the manual segmentation process of two 

images: the first (left column) related to the 

deciduous forest, the second (right column) to the 

coniferous forest. The process involves cropping the 

images to 640x640 pixels in Roboflow. 

 

2.6 Training, validation and testing  

For the next phases, i.e., training, validation and testing, 

YOLOv8 was employed in a remote HPC virtual machine with 

an Nvidia A40 GPU and 36 processors. All segmented images 

were assigned to the training (105 images), validation (31 

images) and testing (41 images) phases. Figure 4 shows the 

number of segments used to train the model. It can be noted that 

the number of segments are slightly unbalanced with many 

belonging to logs, and the litter being under-represented. This is 

due to the nature of the litter class, which is not found in all the 

images, whereas logs are always present in the photos. 

 

 

Figure 4.  Number of segments per each class.  

 

During the training phase, the model learns through the training 

data and optimizes the parameters. This phase involves n epochs 

of training to improve the performance of the model. At each 

epoch, the model processes all the samples in the dataset, 

updating the parameters with the aim of improving object 

recognition and classification capabilities. During each epoch, 

the model calculates the “loss”, which measures how far the 

predictions deviate from the correct labels. The goal of training 

is to gradually reduce this loss to improve model performance. 

The greater the number of epochs, the more opportunities the 

model must learn patterns in the data. However, training for too 

many epochs can lead to a problem known as overfitting, that is, 

the model learns the details of the training set too well and 

becomes less effective on test data or unpublished data 

(Srivastava et al., 2014). 

 

In the validation phase, however, the model is evaluated on a 

separate dataset to optimize parameters and prevent overfitting. 

Finally, during the testing phase, the model is tested on 

completely new data to evaluate its overall performance and 

ensure that it can predict effectively. This process ensures that 

the model not only fits the training data well, but also that it can 

make accurate and reliable predictions on new data while 

maintaining good prediction ability (Yaseen, 2024). 

 

In order to train the model, once the images have been 

segmented via the Roboflow interface via manual segmentation 

(Figure 3), the created dataset was exported in a workstation 

with a A40 NVIDIA GPU and 30+ cores for processing. In this 

work, RStudio IDE was used to interact with the necessary 

Python libraries and scripts for running the commands needed 

to apply YOLO model training and testing. 

 

3. Results 

3.1 Validation 

The following table 1 reports on models that were tested and 

performance indicators for the training and validation phase.  

 

Model Epochs F1-Score Confidence 

n-seg 100 0.75 0.342 

n-seg 193 0.78 0.577 

s-seg 10 0.69 0.902 

s-seg 50 0.75 0.315 
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s-seg 100 0.78 0.478 

s-seg 242 0.79 0.436 

m-seg 100 0.78 0.559 

l-seg 100 0.78 0.557 

x-seg 50 0.79 0.535 

x-seg 100 0.81 0.407 

x-seg 214 0.79 0.763 

 

Table. 1.  Performance indicators: the first column shows the 

type of model used; the second column shows the 

number of training epochs; the third column shows 

the score for the F1-score parameter; and the fourth 

column shows the confidence interval within which 

the maximum score for the F1-score occurs. 

 

The best performance was achieved by the last training/model 

strategy, with 214 epochs, employing the extra-large Instance 

Segmentation model. The 0.79 value for the F1-score is 

achieved at a confidence of 0.763. 

 

3.2 Test and prediction 

The performance results presented in Table 1 reflect the model's 

ability to accurately predict images contained within the training 

and validation dataset. If instead we test the model on 

completely new images, the results change, as highlighted in 

Table 2. 

 

Model Epochs F1-Score Confidence 

n-seg 100 0.17 0.377 

n-seg 193 0.15 0.147 

s-seg 10 0.09 0.101 

s-seg 50 0.16 0.197 

s-seg 100 0.18 0.112 

s-seg 242 0.15 0.622 

m-seg 100 0.23 0.437 

l-seg 100 0.24 0.492 

x-seg 50 0.22 0.318 

x-seg 100 0.22 0.113 

x-seg 214 0.23 0.298 

 

Table 2.  Results obtained from the testing phase. See caption 

of table 1 for column definition.   

 

 

Figure 5.  The F1-Score of the most efficient model relative to 

confidence 

 
Figure 6.  The performance of the most efficient model relative 

to the F1-Score parameter as a function of 

confidence (A) and the relative confusion matrix 

(B). “Con”=Conifers and “BL”=Broadleaves. 

 

Table 2, in contrast to Table 1, shows results where the data 

used are completely new to the model and independent from the 

training set. As expected, the values of accuracy have dropped 

significantly with respect to Table 1. 

 

The model that would seem to perform best with the test images 

is the large Instance Segmentation (l-seg) with 100 training 

epochs. The F1-Score index scores 0.24 at a confidence value of 

0.492.  

 

 

Figure 7.  Examples of predicted outputs generated by the 

YOLOv8 model during the interface process. 
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Additional insights into the model’s performance is seen in 

Figure 5, Figure 6 and Figure 7.  First, we can note that a large 

number of elements were not assigned to any class and were 

identified as “background.” This misclassification contributes to 

a high number of false negatives that weight a lot in the final F-

score and overall values of accuracy metrics. Furthermore, it 

can be seen also that 45 of the elements belonging to the class 

“broadleaf-logs,” were assigned to the class “conifer-logs,” and 

one element even to the class “conifer-litter.” Only 8 were 

assigned correctly. 

 

4. Discussion 

4.1 Validation images 

Based on the results obtained, it was found that the best 

performance of the model, when assessed during training and 

validation phases, was achieved, as might be expected, using the 

Extra-large Instance Segmentation. This model underwent a 

total of 214 training epochs before reaching its optimal 

performance (training automatically stopped at 264 epochs, 

identifying the best performance in the 214th epoch). However, 

it is important to note that this evaluation was conducted on 

validation images, which are taken under the same conditions as 

the training set. In fact, in terms of performance on test images, 

the model that responded best was the Large Instance 

Segmentation with 100 training epochs. This is probably since 

the greater the number of training epochs, the more likely the 

model is to have the overfitting problem, meaning that the 

model learns very well how to classify images similar to the 

training images, struggling to process new images due to low 

“elasticity” (Srivastava et al., 2014). 

 

Instance Segmentation, therefore, would seem to be an effective 

system for its intended purpose. Given access to a high-

performance remote machine, it was feasible to utilize the 

“extra-large” model, falling within a maximum training time of 

ten hours. However, it can be seen in the results that the “large 

segmentation” model also performed adequately; indeed, with 

these specific test images it proved to be the most effective 

model. Looking at the confusion matrices and graphs related to 

the F1-Score, it appears that the greatest difficulty lies in the 

correct classification of “broadleaf-logs,” which is almost 

always confused with “conifer-logs.” 

 

The best performing model on validation images, the Extra-

large Instance Segmentation with 214 training epochs, 

demonstrates strong classification accuracy. Notably, it 

classifies some conifer-logs as broadleaf-logs but maintains a 

very high accuracy (low omission error) of broadleaf-logs 

without confusing them with other classes (true positives). This 

may be due to several reasons. First, image quality may have 

affected the correct classification; the presence of shadows, 

blurring or variations in lighting conditions could have 

impacted the model’s ability to make correct classifications. 

Above all, segmenting some images in too much detail, where 

the model attempted to segment distant or poorly defined 

objects, potentially reducing classification effectiveness. This 

effect can be observed in Figure 8, where over-segmentation 

may have influenced the overall performance of the model. 

 

4.2 Test images 

When we use test images, however, most deciduous stems are 

classified as coniferous (false negatives). This may be due to the 

fact that the test images are sharper because they were made 

under more favourable atmospheric conditions (clear day, light 

high above the horizon), as well as during the growing season. 

Opposite conditions compared to the images used for training. 

The false negative rate is the parameter that, for our purpose, is 

best lowered as much as possible. Classifying a coniferous 

forest instead of a deciduous forest is a mistake that cannot be 

afforded to achieve the intended purpose. 

 

 
Figure 8.  Low quality image as it was taken with low light 

conditions. The model was unable to learn from the 

color of the trunk, only from the shape. In addition, 

manual segmentation included plants a little too far 

apart. 

 

To avoid this, it might be useful to create a dataset with training 

images that are as varied as possible, both in terms of conditions 

(seasonality, forest density) and brightness (different weather 

conditions). In this way, we provide a wide variability of 

situations, useful for the model to learn as many nuances as 

possible. However, it is necessary to have a fair number of 

images for each different situation, otherwise it is possible to 

incur “underfitting,” a phenomenon whereby the model 

struggles to learn unambiguous classification patterns due to the 

large variability of training images (Srivastava et al., 2014). 

 

Looking at the confusion matrices, different elements are often 

classified as “background.” This means that the model is unable 

to assign them to any class. This is not a problem for the 

intended purpose, since it is not necessary for the model to 

recognize every single element within an image; rather, it is 

sufficient for those few key elements to be identified in order to 

determine the prevailing plant formation. For this reason, during 

the segmentation phase it would be best to highlight close and 

sharp elements, so that the model learns to recognize these 

components in detail, with good levels of confidence. For 

example, in images in Figure 9 below, two situations are 

depicted in which the number of elements identified by the 

model is not large, but sufficient to recognize vegetation 

formations. 
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Regarding litter classes, the model would seem to be quite 

reliable, although there are limitations: first, the classes are 

poorly represented. The other limitation is seasonal variability, 

especially in sparse forest situations. The vegetation that 

develops in different seasons can change its appearance 

considerably. For this reason, identifying litter classes may not 

be the best way forward; the type of surface fuel could be 

inferred through the species identified through stem 

classification.  

 

A different case, however, is the presence of herbaceous litter, 

which is why it would be interesting to understand how a 

classification model would respond by employing that class. In 

this case, the season in which the photos will be taken will 

prove decisive for proper classification: it will therefore be 

necessary to include in the dataset both images during the 

spring-summer period and during the fall-winter season. Linked 

to the latter element, it would be useful to develop models 

including the identification of the class “grasslands.” 

Identification of the latter, in fact, is crucial in determining 

possible flame front propagation (Rothermel, 1972). 

 

4.3 Image quantity and quality 

Currently, the number of participants in image sampling, as well 

as the total number of photographs collected, is 200+ users and 

about 10000+ images respectively at the time of the research. 

Figure 1 shows the number of users and photographs at the time 

of writing this article, 6 months later, with a definite increase in 

such numbers. These numbers, which are currently increasing 

and likely to further increase in the future, support the vision of 

using AI-based recognition for automatically extracting 

information from these images, as visual interpretation of 

thousands of images is not efficient. A validated YOLO model 

can provide a very valid support to having point-based 

information on fuels and forest parameters distributed across 

Europe. 

 

Some research in this sense has been carried out recently. 

Concerning the detection of certain foliar diseases Zhang et al. 

(2024) have used photographs for interpretation. To determine 

the shape, size and contours of flames during fires employing 

A.I. was the objective in Wang et al. (2024). The results 

obtained in this latter work in recent literature would seem to be 

encouraging, returning an accuracy of 91.23 percent (Wang et 

al., 2024).  The use of these modern technologies would seem to 

be quite reliable. Images can also support remote sensing 

estimation of biomass in complex scenarios where access to 

ground sampling is difficult, e.g. mountainous terrain (Kutchartt 

et al., 2022) or disturbances in forests (Piragnolo et al., 2021, 

Dalponte et al., 2023) and to validate estimation of bulk 

densities (Martin-Ducup et al., 2024). 
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Figure 9. Examples of segmented images in the Roboflow web interface for training (top) and testing (bottom). 

 

5. Conclusions 

The work presented here aimed to demonstrate that the use of 

A.I. can become a useful support for the management and 

analysis of discrete amounts of images by fulfilling the 

requirements for effective prevention activities. This, in fact, is 

one of the tools available to mankind to contain the risk of fire. 

Using modern technologies in various fields, including forestry, 

can be a valid support in getting as complete a picture as 

possible of the current state of forests on a large scale. 

 

In conclusion, it is suggested that forest litter classes be 

identified based on recognizing the stems of the species that 

make up the forest, while as for herbaceous areas, these should 

be determined by training specific models for direct recognition. 

By being shrewd in taking pictures and segregating the most 

defined and representative elements, it is probably possible to 

obtain a good model for the recognition of forest elements. 

 

However, the number of pictures used for the training phase 

(105) may not be sufficient to obtain a reliable model. In 

addition, the diversification of situations (brightness, 

seasonality) is probably an even more important factor in 

achieving good results. 

 

As a result of these considerations, it would be interesting to 

implement a classification system of the images segmented by 

the model based on the abundance and confidence level of the 

classified objects, so as to assign the correct fuel category with 

the aim of automatically assigning them to those proposed by 

Scott and Burgan (2005). 
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