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Abstract

V2I collaborative perception improves awareness of the dynamic driving environment by exchanging multi-viewpoint information
through communication, establishing itself as a key element of intelligent transportation systems. Despite its advantages, this
method requires a balance between communication bandwidth and perception performance. To address this challenge, we propose
a map-mask designed to align with perceptual spatial features, enabling precise background filtering to isolate critical areas for
communication. During the sender’s compression phase, the map-mask filters out background elements and extracts key features
from critical areas, significantly reducing communication bandwidth consumption. During the receiver’s decompression phase,
the map-mask restores scene context and enhances spatial information surrounding critical areas, ensuring the preservation of
perception performance. Based on this map alignment, we develop Mapcooper, a unified collaborative perception framework that
optimizes the balance between communication bandwidth and perception performance. We evaluated Mapcooper’s effectiveness
via extensive experimentation using the large-scale V2X-Seq-SPD dataset. The results demonstrate that Mapcooper outperforms
existing collaborative perception approaches with respect to perceptual accuracy while minimizing communication transmission
costs.

1. Introduction

Accurately perceiving the complex driving environment is cru-
cial for ensuring the safe and reliable operation of autonom-
ous vehicles (AVs). Driven by the rapid advancements in deep
learning technologies, single-vehicle perception systems have
demonstrated significant improvements in tasks such as object
detection(Lang et al., 2019, Yin et al., 2021), semantic seg-
mentation(Yan et al., 2022, Zeng et al., 2024), and depth es-
timation(Chuah et al., 2022, Cheng et al., 2024). Despite these
advancements, single-vehicle systems still suffer from inher-
ent limitations. Challenges such as occlusions from obstacles,
sparse sensor data at longer distances, and limited field of view
constrain their ability to perceive the environment accurately
and comprehensively. These constraints arise from the funda-
mental nature of single-vehicle systems, which are limited to
capturing the environment from a singular, frequently obstruc-
ted viewpoint.

To address these limitations, Vehicle-to-Infrastructure (V2I)
collaborative perception has emerged as a viable solution(Yu
et al., 2024, Xu et al., 2022b), offering the advantage of fus-
ing information from multiple viewpoints to enhance environ-
mental perception. V2I systems leverage real-time data ex-
change between vehicles and infrastructure to extend the vis-
ibility range and enhance situational awareness. However, the
primary challenge in implementing V2I perception lies in strik-
ing an optimal balance between high perception performance
and efficient communication bandwidth usage. Transmitting
raw sensor data across a network in real time demands sub-
stantial bandwidth, which not only risks communication bottle-
necks but also increases the likelihood of delayed information
exchange, potentially compromising safety. Recent studies(Liu
et al., 2020, Wang et al., 2020, Wang et al., 2023) have ex-

plored various strategies to mitigate this issue by compressing
the transmitted data while retaining essential perceptual inform-
ation. Traditional approaches (Liu et al., 2020, Wang et al.,
2020, Li et al., 2021)often focus on reducing the size of global
feature maps; however, this can lead to inefficiencies, as much
of the transmitted data might not be directly relevant to the per-
ception task. As a result, these methods can inadvertently con-
sume excessive bandwidth while offering only marginal per-
formance gains. In response, contemporary approaches(Yu et
al., 2024, Hu et al., 2022, Wang et al., 2023) have shifted to-
wards more selective filtering mechanisms, where only the most
relevant perceptual features from critical regions are identified
and transmitted. Some of these methods employ mathemat-
ical models to compress high-dimensional data from targeted
areas, yielding reductions in bandwidth usage. Despite their
successes, these approaches still face challenges in accurately
isolating and compressing features from areas of high percep-
tual importance, limiting their overall effectiveness in achieving
both minimal communication bandwidth and optimal percep-
tion performance.

To address these challenges, we propose a novel communica-
tion compression and decompression strategy guided by map-
masks, which leverages high-precision map data to improve
efficiency. In the sender’s compression phase, the map-mask
serves as an intelligent filter, dynamically selecting critical
areas based on real-time environmental information and the
spatial distribution of key dynamic target features. This select-
ive approach optimizes the transmission of relevant data while
minimizing unnecessary communication overhead, thereby sig-
nificantly conserving communication bandwidth. In the re-
ceiver’s decompression phase, the map-mask not only restores
critical areas but also plays a pivotal role in reconstructing the
surrounding scene context. By leveraging spatial and semantic
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Figure 1. Overall framework of Mapcooper. It is composed of three consecutive stages: V2X metadata sharing, feature extraction,and
map alignment communication strategy (MACS).

relationships encoded within the high-precision map, the sys-
tem enriches the perception of the environment, ensuring ac-
curate representation of key features such as object boundar-
ies, spatial relationships, and dynamic movements This process
preserves perceptual quality and mitigates potential information
loss that may occur due to aggressive data compression, main-
taining perception performance.

In this paper, we introduce Mapcooper, a novel collaborative
perception framework designed to strike an optimal balance
between communication bandwidth and perception perform-
ance. The system architecture is illustrated in Fig.1, we pro-
pose a map alignment communication strategy(MACS), where
critical perceptual features are selected during the compression
phase to conserve communication bandwidth, and scene con-
text is restored during decompression to maintain perception
performance. To evaluate the effectiveness of Mapcooper, we
performed extensive experimentation on the large-scale V2X-
Seq-SPD(Yu et al., 2023) dataset. The results demonstrate that
Mapcooper outperforms state-of-the-art collaborative percep-
tion methods, delivering superior perception performance while
minimizing communication transmission costs.

2. Related work

2.1 Collaborative Perception

Collaborative perception aims to enhance autonomous systems
by enabling information sharing and fusion across multiple
agents, such as vehicles and infrastructure, to improve over-
all perception accuracy and robustness. The efficiency of such
systems largely depends on the strategy employed for mes-
sage sharing, which can be broadly categorized into early, in-
termediate, and late fusion. Early fusion(Chen et al., 2019b),
where raw sensor data is shared between agents, offers rich in-
formation but imposes high bandwidth demands, making it less
practical for real-time applications. Late fusion(Rawashdeh
and Wang, 2018), which aggregates final detection results like
bounding boxes or object classifications, typically reduces com-
munication costs but lacks the contextual depth needed for
complex scenarios. As a middle ground, intermediate fusion
has emerged as a promising approach, where intermediate fea-
ture representations from neural networks are exchanged. This
method strikes a balance between preserving rich perceptual in-
formation and minimizing transmission bandwidth. Most re-

cent methods in collaborative perception have focused on in-
termediate fusion strategies to balance perception accuracy and
communication bandwidth. DiscoNet(Li et al., 2021), for ex-
ample, leverages knowledge distillation to align feature rep-
resentations by constraining the student model to learn from
a teacher model based on raw data fusion. F-Cooper(Chen et
al., 2019a) introduced one of the earliest feature-level collab-
oration methods, employing a max-based function to equally
weight interaction information between agents. V2VNet (Wang
et al., 2020)further refines feature exchange by implementing
a spatially-aware message passing mechanism, where weights
are adaptively assigned to agents based on their spatial posi-
tions. When2com(Liu et al., 2020) utilizes an attention mech-
anism to dynamically adjust communication groups, optimiz-
ing bandwidth usage by selectively transmitting the most rel-
evant features. Similarly, Where2comm(Hu et al., 2022) cap-
italizes on the sparsity of foreground information in detection
tasks, reducing the communication load by prioritizing essen-
tial features. More recently, V2X-ViT(Xu et al., 2022b) has
proposed a Transformer-based framework that accounts for the
heterogeneity across V2X systems, unifying the fusion pro-
cess while considering the diversity of data sources. Lastly,
CoBEVT(Xu et al., 2022a) integrates multi-camera inputs to
generate BEV map predictions through feature-level collabor-
ation, further highlighting the trend toward optimizing multi-
modal data fusion in collaborative perception systems.

2.2 LiDAR-Map Fusion Perception

LiDAR-map fusion for 3D object detection has emerged as a
promising direction due to its ability to incorporate rich prior
knowledge from high-definition (HD) maps, which enhances
detection accuracy in complex environments. While most
LiDAR-based methods primarily rely on integrating data from
cameras and radars, the fusion of HD maps introduces valu-
able contextual information. Early work such as HDNet(Yang
et al., 2018) represented HD maps through rasterization and
concatenated them with LiDAR features in the bird’s-eye view
(BEV), demonstrating the potential of map-based fusion in 3D
perception. MapFusion(Fang et al., 2021) further refined this
approach by employing a 2D feature extractor for HD maps and
concatenating these features with those learned from a modern
LiDAR-based detector. This method highlighted the benefits of
integrating map and sensor data, though primarily at the feature
level. Additionally, LaneFusion(Fujimoto et al., 2022) explored
the use of lane maps along with LiDAR point clouds, improv-
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Figure 2. Architecture of the map alignment communication strategy (MACS)

ing orientation prediction by incorporating geometric inform-
ation. However, recent developments such as MENet (Huang
et al., 2023)have tested several attention mechanisms as fusion
modules, revealing that dilated convolution is particularly ef-
fective in encoding HD maps, offering more nuanced feature
extraction capabilities. Additionally, MIM(Xiao et al., 2024)
utilizes an attention mechanism to effectively align multi-view
BEV features with HD map features, enabling efficient cross-
modal feature fusion between maps and images. Despite these
advancements, LiDAR-map fusion methods have yet to see ex-
tensive application in the V2X domain, where the fusion of HD
maps with real-time vehicle and infrastructure sensor data re-
mains largely unexplored. The potential to leverage HD maps
in vehicle-to-everything (V2X) communication could provide
significant benefits by enhancing situational awareness and im-
proving collaborative perception in connected vehicle systems.

3. Method

Overall framework of Mapcooper is illustrated in Fig.1, which
includes three key components: V2X metadata sharing, fea-
ture extraction and map alignment communication strategy
(MACS).In this section, we will provide a detailed introduction
to the proposed collaborative perception network and its related
technical modules.

3.1 V2X Metadata Sharing

In the entire process of vehicle-to-infrastructure (V2I) col-
laborative perception, the metadata sharing strategy serves as
the foundation for achieving cooperative perception function-
ality. Effective information transmission between participating
agents (vehicles, infrastructure, and map servers) is critical to
the performance and accuracy of the perception system. The
goal of metadata sharing is to ensure that all agents can obtain
each other’s key positional information, sensor data, and other
useful perception data under synchronized timestamps. As in-
telligent transportation systems continue to evolve, metadata
sharing via V2I has become a core component in vehicle-
road collaborative perception systems. Therefore, designing
a rational data-sharing strategy that ensures the synchroniza-
tion and accuracy of information transmission provides a solid
foundation for subsequent feature extraction and processing
stages. At the initial stage of V2I collaborative perception,
each agent shares metadata such as poses, timestamps, and
sensor states within the communication network. The vehicle

side communicates with the infrastructure side through a wire-
less network, while the infrastructure side, vehicle side, and
map server communicate via Ethernet connections. The map
mask feature map is stored offline on both the vehicle and road-
side devices, with periodic updates delivered through the cloud.
In this work, we assume that wireless communication trans-
mission for metadata achieves good synchronization, meaning
that each agent can receive pose information at synchronized
timestamps to perform collaborative LiDAR point cloud calib-
ration between different agents. Given the variety of sensors
involved, the metadata being shared includes not only posi-
tional information but also details about the sensor configura-
tions, such as intrinsic and extrinsic calibration parameters and
time synchronization data. For agent j at time t, the shared
metadata can be represented as:

M t
j =

{
P t
j , T

t
j , S

t
j

}
(1)

where P t
j represents the position and orientation of the agent,

T t
j the timestamp, and St

j the sensor configuration details. One
of the key challenges in V2I metadata sharing is ensuring syn-
chronization across multiple agents. All metadata must be
shared in real-time, with minimal delay, to guarantee that all
agents are working with temporally consistent information. In
this paper, we assume that the synchronization mechanism is
robust and that metadata from all agents can be shared within
a sufficiently small window of time to enable collaborative per-
ception.

3.2 Feature Extraction

Feature extraction is a crucial step in Vehicle-to-Infrastructure
(V2I) collaborative perception. After the completion of
metadata sharing, the system needs to perform feature ex-
traction on the point cloud data from each agent to generate
high-dimensional feature maps for subsequent processing. To
achieve real-time feature extraction while ensuring perception
accuracy, this paper adopts the efficient PointPillar(Lang et al.,
2019) network for feature extraction on both the vehicle and
infrastructure sides. PointPillar enables the processing of large-
scale point cloud data by voxelizing the point cloud into stacked
pillar tensors and generating 2D pseudo-images, effectively re-
ducing computational overhead and memory usage. The de-
tailed process begins by transforming the raw point cloud data
into a structured representation. Let P t

j denote the raw point
cloud captured by agent j at time t, which consists of a set of
3D points {p1, p2, . . . , pn}, where each point pi is described by
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its coordinates (xi, yi, zi) and associated features (such as re-
flectance or intensity). The PointPillar network first voxelizes
this point cloud data by discretizing the 3D space into a grid of
pillars. Each pillar can be described as:

Vx,y = {pi | pi ∈ Pillar(x, y)} (2)

where Pillar(x, y) represents the pillar located at grid cell (x, y)
in the horizontal plane. For each pillar, the point features are ag-
gregated into a fixed-size tensor through operations like mean
pooling or max pooling, forming a feature tensor Tx,y . These
pillar features are then fed into a 2D convolutional backbone,
transforming the voxelized representation into a 2D pseudo-
image:

Itj ∈ RH×W×C (3)

where H and W are the height and width of the pseudo-image,
and C is the number of feature channels. This pseudo-image
representation allows the system to apply standard 2D convolu-
tional operations to the point cloud data, significantly speeding
up the feature extraction process. The backbone network used
in this process is a series of 2D convolutional layers that extract
increasingly abstract features from the input pseudo-image. Let
F(·) denote the backbone network, and the resulting feature
map for agent j at time t is:

F t
j = F(Itj) ∈ RH′×W ′×C′

(4)

where H ′, W ′, and C′ represent the height, width, and number
of channels of the output feature map, respectively. The feature
map F t

j serves as the basis for further operations such as map-
based compression and fusion with other agents’ feature maps.
To ensure the efficiency and scalability of the V2I collaborative
perception system, the PointPillar network was chosen due to
its low inference latency and high memory efficiency, as well
as its robustness in handling large-scale point cloud data from
both vehicle and infrastructure sources. By voxelizing the point
cloud into pillars and reducing the problem to 2D feature extrac-
tion, the system can efficiently handle the large amounts of data
generated in real-world V2I scenarios. In summary, the feature
extraction process transforms raw point cloud data into high-
dimensional feature maps through voxelization, pseudo-image
generation, and 2D convolutional processing. The resulting fea-
ture maps F t

j for each agent are then used in subsequent stages
of the V2I collaborative perception framework, including dif-
ferential map compression and affine transformation-based de-
compression.

3.3 Communication Compression

To achieve efficient feature transmission in Vehicle-to-
Infrastructure (V2I) systems, we propose a communication
compression mechanism designed to filter out irrelevant back-
ground information and focus on key areas of interest, partic-
ularly dynamic objects. This mechanism aligns the map point
cloud with the infrastructure point cloud by converting both into
a unified spatial coordinate system. Since the map point cloud
remains geographically fixed relative to the infrastructure, this
transformation ensures an accurate comparison between the two
point clouds.

Due to differences in density and observation angles between
the map and infrastructure point clouds, as illustrated in Fig.2,
we first downsample the map data and apply a larger voxel-
ization scale to extract map voxel features, denoted as Fm =
{fm,j}j=1,...,N . A trainable multi-layer compression network

is then employed to compress both the map voxel features fm,j

and the infrastructure features f t
i,j ∈ RC,K,K . Pointwise con-

volution layers are used to reduce the dimensionality of these
features, transforming them into query feature maps Mm,j and
M t

i,j ∈ R C
128

,K
4
,K
4 . The process is supervised by a downstream

loss function, ensuring effective feature transformation. During
inference, the precomputed map query feature maps Mm,j are
directly used to accelerate the process, eliminating the need for
real-time point cloud transformation.

One key innovation in this method is the use of a map-mask
to selectively compress the feature maps. This approach signi-
ficantly reduces bandwidth while preserving essential percep-
tual information. The infrastructure feature map M t

i,j is filtered
using the mask Maskt

i , which focuses on extracting dynamic
areas relevant to the task:

Fmasked
i = Λv(M t

i,j ,Maskt
i) (5)

Similarly, the same mask is applied to the map feature map
Mm,j , ensuring alignment with the infrastructure feature map:

Fmasked
m = Λm(Mm,j ,Maskt

i) (6)

This process guarantees consistency between the extracted re-
gions, allowing for accurate comparison between the map and
infrastructure feature maps. Once the masked feature maps are
obtained, the system computes the differential feature map, cap-
turing the significant changes between the infrastructure and
map:

M t
i↔m,j = Ψ(Fmasked

i , Fmasked
m , λ) (7)

Here, Ψ(·) calculates the difference between the masked feature
maps, while a threshold λ filters out insignificant variations, re-
taining only the critical information necessary for transmission.

This multi-step process—from mask generation to differential
feature extraction—enables the system to focus solely on es-
sential dynamic information, minimizing data size and redu-
cing communication overhead. Before the differential opera-
tion, pointwise convolution is applied to reduce the number of
channels. This serves two key purposes: reducing bandwidth
consumption and facilitating subsequent processing. The com-
pressed feature maps generated through this method allow for
efficient data transmission without the need to preserve all per-
ceptual details at this stage. Instead, channel reduction optim-
izes the transmission of relevant data, making it easier to handle
in later stages.

By leveraging this approach, the communication compression
mechanism effectively minimizes bandwidth usage and pre-
pares the system for the decompression phase. When com-
bined with the decompression module, the system balances
bandwidth efficiency with perception accuracy. The extracted
dynamic object information is transmitted efficiently, support-
ing real-time collaborative perception with minimal bandwidth
consumption while ensuring the integrity of critical information
during reconstruction.

3.4 Communication Decompression

In the process of collaborative perception, the decompression
phase plays a vital role in reconstructing compressed data re-
ceived from the infrastructure. The Communication Decom-
pression mechanism ensures that the transmitted feature maps,
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Table 1. Comparison to different fusion methods on the V2X-Seq-SPD dataset, Mapcooper consistently outperforms all other fusion
approaches

Model Fusion mAP@3D ↑ mAP@BEV ↑ AB (Average Byte) ↓IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7
PointPillars VehOnly 48.25 26.55 51.94 47.80 −
Early Fusion Early 54.63 32.23 61.08 50.06 1.06× 106

Late Fusion Late 52.43 31.54 58.10 49.25 2.88× 102

FFNet Middle 55.81 30.23 63.54 54.16 1.24× 105

Mapcooper Middle 58.90 33.11 67.08 59.63 1.02× 104

which have undergone differential map compression, are ac-
curately restored. This step leverages affine transformation
matrices to map the compressed feature data back into a high-
dimensional feature space. Furthermore, the map background
information is integrated during decompression to provide ad-
ditional context and improve the accuracy of the perception sys-
tem.

The primary goal of this phase is to recover the transmit-
ted map-mask feature map M t

i↔m,j and reintegrate it with
local perception data. First, we compute affine transforma-
tion matrices Ti→v ∈ RN,2,3, where N denotes the batch size.
These matrices are derived using geometric calibration para-
meters between the infrastructure and the vehicle. With these,
we generate a sampling grid Gi→v ∈ RN,K,K,2, representing
the flow field from the infrastructure’s coordinate system to the
vehicle’s.

The next step applies affine transformations to the feature map
M t

i↔m,j , allowing for the recovery of the dynamic object in-
formation. This transformation is described by:

M t,m
i→v,j = Γ

(
Φ
(
M t

i↔m,j , Gi→v

))
(8)

Here, Φ(·) denotes the grid sampling function, which remaps
the feature map based on the transformation grid Gi→v . The
function Γ(·) represents bilinear interpolation, applied to en-
hance the finer details of dynamic objects after the transforma-
tion.

To reconstruct the complete feature map, we perform a similar
transformation for the map-side features:

Mm→v,j = Γ (Φ (Mm,j , Gm→v)) (9)

This equation similarly maps the query features from the map
side into the vehicle’s coordinate system, ensuring alignment
across different viewpoints.

Once the transformation is complete, the feature maps M t,m
i→v,j

and Mm→v,j are aggregated. This step is crucial for integrating
the complementary information from both sources:

M t
i→v,j = M t,m

i→v,j ⊕Mm→v,j (10)

The operator ⊕ denotes the element-wise aggregation, which
combines the information from both transformed feature maps
to form the restored query feature map.

After this aggregation, the decompression process utilizes
a trainable multi-layer upsampling network. This net-
work decompresses the aggregated feature map, generating
infrastructure-side features f t

i→v,j that are in the same spatial
coordinate system as the vehicle’s local features f t

v,j . The up-
sampling network ensures that the spatial and dynamic consist-

ency is preserved:

F t
i→v,j = Upsample(M t

i→v,j) (11)

This allows the infrastructure and vehicle feature maps to be
fully aligned and prepared for further processing.

The final restored feature map, now enriched with both infra-
structure and vehicle information, provides a comprehensive
understanding of the environment. This combined feature map
is then passed through a 3D object detection network, such as
a Single Shot Detector (SSD), which generates the final 3D
bounding boxes and classification results, including object pos-
itions, orientations, and types.

The Communication Decompression mechanism is essential for
reconstructing accurate perception data. By integrating affine
transformation and map background information, this process
not onq ly restores the original compressed data but also en-
hances the perception accuracy. The enriched feature maps en-
sure that critical dynamic information is preserved, allowing
the collaborative perception system to function effectively with
minimal loss during transmission.

3.5 Feature Fusion and 3D Detection Head

After the decompressed critical region feature map F t
i→v has

been restored, the next step is to concatenate the vehicle-side
feature map with the infrastructure-side decompressed feature
map to achieve feature fusion for collaborative perception. Let
the vehicle-side feature map be denoted as F t

v . The final fused
feature map can be represented as:

F t
fusion = concat(F t

v , F
t
i→v) (12)

Here, the concat operation denotes the concatenation of fea-
ture maps along the channel dimension, thus forming a uni-
fied feature representation. Through this fusion approach,
the system can simultaneously leverage both vehicle-side and
infrastructure-side perception information, ensuring that the
perception results for the critical regions incorporate both the
vehicle’s local view and the infrastructure’s global sensing cap-
abilities. The fused feature map F t

fusion is then fed into the 3D
object detection head for object detection and classification. In
this work, we employ a 3D detection head based on the Single
Shot Detector (SSD) architecture to perform this task. The 3D
SSD head operates by applying a convolutional neural network
(CNN) to process the fused features, generating 3D bounding
boxes and object class predictions. The detection head maps
the feature grid to each voxel in the spatial space and predicts
whether an object exists in that voxel, along with the object’s
class and precise location in 3D space. The output for each
detected object i includes both its 3D bounding box and its
classification result. The detection for the i-th object can be
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(a) veh only (b) FFNet (c) Mapcooper

Figure 3. The detection visualization results of Veh Only, FFNet and Mapcooper across several challenging scenarios.

expressed as:

BBoxi = {(xi, yi, zi), (wi, hi, di)} (13)

Classi = argmax(softmax(ci)) (14)

where (xi, yi, zi) denotes the 3D coordinates of the object’s
center, (wi, hi, di) represent the width, height, and depth of the
object along the x, y, and z axes, respectively, and ci is the class
score vector. The object class Classi is determined as the class
with the highest score from the softmax function. Through the
above process, the system finally outputs a set of 3D bound-
ing boxes and corresponding object classification results. This
information provides the vehicle with precise location data of
potential obstacles or objects in its surrounding environment,
aiding in further path planning and decision-making.

4. Experiments

4.1 Dataset

V2X-Seq-SPD: The V2X-Seq-SPD(Yu et al., 2023) dataset is
the first real-world dataset designed for V2X sequential per-
ception, capturing cooperative data between vehicles and infra-
structure. It consists of approximately 100 sequences of images
and point cloud data from both perspectives, with comprehens-
ive annotations including 3D bounding boxes and tracking IDs.
In total, the dataset spans over 15,000 frames from 95 distinct
temporal sequences. This paper focuses primarily on 3D object
detection using the V2X-Seq-SPD dataset. Additionally, the
temporal characteristics of the dataset were leveraged by apply-
ing the Direct LiDAR Odometry(Chen et al., 2022) algorithm to
map six intersections, providing valuable data for experimental
purposes.

4.2 Experimental Setup

Implementation details: We implemented our experiments us-
ing MMDetection3D as the primary framework, training the

baseline model on the V2X-Seq-SPD dataset for 40 epochs.
The initial learning rate was set to 0.001, and a weight de-
cay of 0.01 was applied for optimization. Model training
and evaluations were conducted on an NVIDIA GeForce RTX
4090 GPU. During the experiments, detection analysis was per-
formed solely on dynamic objects located within the predefined
rectangular area [0,−39.12, 100, 39.12].

Evaluation metrics

Perception Performance: For 3D object detection evaluation,
we adopted the KITTI benchmark standards, including AP3D

(3D Average Precision) and APBEV (Bird’s Eye View Average
Precision). Average Precision (AP) was used to assess detection
performance at Intersection-over-Union (IoU) thresholds of 0.5
and 0.7. For this evaluation, vehicles detected by at least one
connected LiDAR were considered.

Communication Bandwidth: We employed AB (average Byte)
as the metric to assess transmission costs, disregarding calib-
ration files and timestamps. The overall transmission cost was
evaluated based on the transmission of raw data, detection out-
puts, or feature tensors, with the transmission cost calculated
per frame to quantify the bandwidth consumption.

4.3 Quantitative Evaluation

The experimental results highlight the significant advantages
of Mapcooper in both detection accuracy and communication
efficiency. As shown in Table 1, Mapcooper surpasses non-
fusion methods like PointPillars, with a notable 10.65% im-
provement in mAP@3D (IoU=0.5) and an 15.14% increase in
mAP@BEV (IoU=0.5). This demonstrates the benefit of in-
corporating infrastructure data into the perception process, im-
proving the system’s ability to detect objects in its surround-
ings. Although late fusion models are effective in reducing
transmission costs, they compromise on perception perform-
ance. In contrast, Mapcooper outperforms late fusion by 6.47%
in mAP@3D (IoU=0.5) and 8.98% in mAP@BEV (IoU=0.5),
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underscoring that communication efficiency alone is insuffi-
cient if it results in reduced detection accuracy. Compared to
early fusion methods, Mapcooper achieves superior detection
accuracy in both mAP@BEV and mAP@3D while dramatic-
ally reducing bandwidth requirements to only 1% of what early
fusion consumes. This shows Mapcooper’s ability to balance
high performance with lower communication overhead, making
it highly suitable for bandwidth-limited environments. Finally,
compared to other middle fusion approaches like FFNet, Map-
cooper delivers state-of-the-art detection results, with a 3.09%
improvement in mAP@3D (IoU=0.5) and a 3.54% increase in
mAP@BEV (IoU=0.5), while using only 1/12th of the trans-
mission cost. These results firmly establish Mapcooper’s effi-
ciency in achieving both optimal perception performance and
minimal communication cost, making it an ideal solution for
systems requiring high detection accuracy and bandwidth effi-
ciency.

4.4 Qualitative evaluation

Detection visualization:Fig.3 shows the detection visualiza-
tions of Veh Only, FFNet, and Mapcooper across several chal-
lenging scenarios. Mapcooper consistently demonstrates en-
hanced performance in identifying distant and smaller objects
within sparse point clouds. For instance, in the first scenarios,
only Mapcooper successfully detects the vehicle on the far-right
side, which is missed by the other models. Additionally, in the
second scenario, Mapcooper accurately identifies smaller ob-
jects that are undetected by other methods. This improvement
is largely attributed to the integration of the Map Mask module,
which effectively enriches the contextual information around
dynamic objects. By incorporating additional background con-
text, Mapcooper is better equipped to detect objects that are
otherwise hard to perceive, particularly in scenarios with sparse
or non-salient targets. These results highlight Mapcooper’s su-
perior detection accuracy compared to alternative approaches,
especially in situations where capturing subtle features is es-
sential.

5. Conclusion

In this paper, we presented Mapcooper, a unified framework
for V2I collaborative perception designed to optimize the bal-
ance between communication bandwidth and perception per-
formance. The proposed method leverages a novel map align-
ment communication strategy (MACS) to filter out irrelevant
background information during the compression phase, ensur-
ing that only critical perceptual features are transmitted. This
approach significantly reduces communication overhead while
maintaining high perceptual accuracy by restoring the contex-
tual scene information in the decompression phase. Through
extensive experimentation on the large-scale V2X-Seq-SPD
dataset, we demonstrated that Mapcooper enhances perception
performance with an average accuracy improvement of 4.59%
over existing state-of-the-art methods, while simultaneously re-
ducing bandwidth consumption to just 1/12 of that used by
the most bandwidth-efficient prior approaches. These results
highlight the potential of Mapcooper in real-world applica-
tions, offering a scalable and efficient solution for intelligent
transportation systems that demand high situational awareness
and resource efficiency. Future work will explore further en-
hancements to the map-mask filtering mechanism, focusing on
dynamic adaptability to varying environmental conditions and
communication constraints.
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