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Abstract 

Mangrove is a vital natural resource, satisfying the various demands of both humans and other aquatic habitats. Also, it shields against 
natural disasters. Extensive researches were conducted on the benefits of mangrove to combat climate change. But limited works were 
done to assess the impact of microclimate factors on mangrove. This study examined the impact of climate represented by Land Surface 
Temperature on mangrove forest health (i.e., Normalized Difference Vegetation Index) for Abu Dhabi Mangrove National Park, 
covering the period: 2015-2020. To accomplish this, Local Bivariate Analysis was performed. Firstly, satellite images from Landsat 8 
covering the study area were downloaded and pre-processed. Then, values of the variables were computed, extracted as points and 
then analysed. Results showed that the mangrove exhibited different temperature and vegetation health relationships (i.e., Positive 
Linear, Negative Linear, Concave, Convex, Not Significant, etc.). Also, results showed that mangrove health has degraded due to 
surface temperature increase. Furthermore, the coefficient of determinations of the bivariate analysis of the mangrove and the land 
surface temperature in 2020 is higher compared to that of 2015 with the highest R2 = 0.8512 (Convex) followed by R2 = 0.8192 
(Concave) and R2 = 0.7281 (Negative Linear). 

1. Introduction

Mangroves dominate a significant portion of the Earth’s cover, 
providing coastal inhabitants with protection from a number of 
natural calamities (Rostami et al., 2022), (Morris et al., 2023), 
(Liu et al., 2022). Furthermore, mangroves provide consumable 
resources for both aquatic creatures and humans (Malik et al., 
2017). Despite their resiliency against both natural and 
anthropogenic factors, mangroves perish globally as seen by the 
presence of their peat deposits (Alongi, 2015). 

The mangrove ecosystem in the UAE is located in two different 
areas:  Abu Dhabi and Northern UAE. In Abu Dhabi, mangrove 
spreads over 70 km2 with the Mangrove National Park spreads 
one third of the area (T.S., 2014). The mangroves in the Northern 
UAE are located in Ajman’s Creek, Dubai Creek, Khor Fakkan, 
Umm Al Quwain Hamriyah’s Creek, and Ras Al Khaimah. The 
average tree height in these areas is 2.5m (Moore et al., n.d.). The 
soil compositions in these zones are porous loamy silt and clay, 
retaining seawater for an extended period (Bashitialshaaer et al., 
2011). Generally, positive contributions of mangroves to 
stabilize climate change have been broadly covered, but factors 
affecting mangrove ecosystem are yet to be fully explored. Such 
one factor is Land Surface Temperature (LST). 

LST is one of the crucial parameters, affecting the growth and 
development of mangroves. Remote sensing is an excellent 
option to detect LST changes for coastal areas. For instance, at 
the coastal Kanyakumari district of India, LST was determined 
using MODIS (Moderate Resolution Imaging 
Spectroradiometer) satellite images to find that salt pan had high 
temperature (i.e., 31.57 ◦C). Whereas, waterbodies exuded low 
LST (28.9 ◦C) (Sam & Balasubramanian, 2023). Recently, 
several attempts have been made to establish a relationship 
between LST and mangrove NDVI. A weak but statistically 
significant negative relationship governing LST with respect to 
mangrove NDVI revealed that decrease in mangrove forests 

could end up increasing the LST of Sundarbans mangrove forest 
in Bangladesh and India (Kanjin & Alam, 2024). Although, with 
a weak correlation between LST and NDVI for mangroves, high 
mangrove health was yielded under a specific temperature 
window (i.e., 30-33 ◦C) for UAE mangrove system during 
summertime (Raihan et al., 2023). A further study on the 
relationship between UAE mangroves’ health with LST stated 
LST-NDVI relationship to be complex when spatial and temporal 
correlations were separately accounted. But the inclusion of 
several machine learning algorithms coupled merging both 
spatial and temporal aspects showcased highest mangrove 
biomass in the temperature range 30-35 ◦C (Raihan et al., 2024). 

Mangrove restoration practice is also affected by climate change. 
One study pointed that the presence of high temperature with 
eutrophication caused mangrove seedlings to have low root 
growth with long stems, resulting in structural imbalance to the 
plants which made them vulnerable to external forces by easily 
uprooting them (Cobacho et al., 2024). Manmade activities play 
a key role in degrading mangrove forest covers with increase in 
LST. An investigation on the effect of NDVI on LST along the 
southern Sumatra coast of Indonesia revealed that areas with 
temperature >20 ◦C were accompanied with mangrove loss. Also, 
there was a moderate correlation between LST and NDVI (r = 
0.74, p <0.05). Also, built-up index greatly influenced vegetation 
cover area at the study site (Rendana et al., 2023).  

Trend analysis between temperature variation and mangrove 
extents seems to be promising. Such endeavor was conducted in 
the mangrove located at southern Iran. It was found that 
mangrove extent was increased from 73.08 km2 to 88.73 km2 (by 
21%) between 1981 and 2017. Although the mean temperature 
did not show a significant trend during the study period but 
minimum temperature exhibited highest correlation with 
mangrove forest extent (i.e., 61%) (Rostami et al., 2022). 
Another work involved assessing spatio-temporal changes in 
LST over South Asia. Central and southwest Asia demonstrated 
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highest daytime cooling in December as opposed to nighttime 
warming in central and northwest in July and September. Under 
the research, nineteen ecoregions experienced monthly daytime 
cooling. However, one region called “Indus River Delta-Arabian 
Sea mangroves” had monthly and annual nighttime warming 
magnitude at annual scale (i.e., 0.06 ◦C/yr at 99% Confidence 
Level) (Shawky et al., 2023). Global mangrove NDVI variations 
in both spatial and temporal aspects were assessed using satellite 
and remote sensing techniques between 2000 and 2018. It was 
found that average mangrove NDVI of the Asian region was the 
highest (0.80). Whereas, the mean mangrove NDVI at African 
zones was the lowest (0.67). Also, global mangrove NDVI 
demonstrated positive correlation with temperature (Rtemp = 0.37, 
p value < 0.01) (Ruan et al., 2022). 
 
Some past researches also covered leaf damage of mangroves due 
to extreme low temperature (Chen et al., 2017), (Osland et al., 
2017), (Lovelock et al., 2016). High temperature could also 
negatively affect mangroves due to elevated respiration and 
lowered photosynthesis (Lovelock et al., 2016). Temperature in 
conjunction with additional climatic factors played a key part in 
maximum mangrove canopy heights, distribution and biomass 
and this phenomenon varied spatially (Simard et al., 2019). 
Microclimate changes due to temperature variation (i.e., 2◦C to 
14 ◦C) resulted in mangrove damage to winter temperature (Wu 
et al., 2018). Furthermore, LST variations could hamper 
mangrove expansion in some zones but facilitated mangrove 
growth in other areas (Osland et al., 2019). 
 
By referring to the previous studies, it is discerned that for 
determining LST at coastal areas, most of the works centered 
towards utilizing MODIS satellite images. Also, focus was given 
on the effect(s) of mangrove vegetation health on LST by 
figuring out weak yet statistically significant relationships 
between the two parameters. Also, the combined impact of LST 
with some man-made factors influencing mangrove NDVI was 
highlighted. Furthermore, general trend analyses were performed 
to represent both LST and NDVI variations over a period of time 
at a specific region of interest. Few studies considered the 
effect(s) of extreme low and high temperatures on mangrove 
health along with their associated influence with other 
microclimate parameters. To the best of our understanding, no 
study exhaustively covered the effect of LST on mangrove NDVI 
for the coastal areas of UAE by means of GIS and remote Sensing 
with the application of Local Bivariate Analysis (LBA). LBA 
could help explain in further details the local influence on the 
alterations of LST-NDVI associations over a time period. Also, 
LBA would cover the complexities of the relationship which 
would expand on the simple linear regression for LST-NDVI 
aspect. Therefore, the objective of this paper is to derive the 
relationship between LST and NDVI by the means of the 
aforesaid techniques for UAE mangrove ecosystem over the 
period: 2015-2020. 
 
 

2. Materials and Methods 

This research endeavour encompassed Abu Dhabi mangrove 
national park of UAE. The primary steps to accomplish pre and 
postprocessing of the work are provided below (Figure 1): 
 

• Sample mangrove site selection (i.e., Abu Dhabi 
Mangrove National Park). 

• Pre-processing of the Landsat images: this process 
includes radiometric corrections, band-stacking, 
mosaicking for the raster layers, conversion of 

Geographic Coordinate System (GCS) to unified 
projected coordinate system (PCS).    

• Further methods used to study the impact of LST on 
mangrove NDVI. 

 

 
 
 
 
 
 
 
 
 
2.1 Sites selection and Acquisition 

Abu Dhabi Mangrove National Park (54.4230091°E 
24.4561825°N) was selected based on its importance, relevance, 
size, etc. This site was specially considered for its potentiality to 
extract relevant climate data for local bivariate evaluation (Figure 
2).  

 
 

Figure 2. Locator map for Abu Dhabi Mangrove National Park 
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Figure 1. Flow chart depicting the main processes 
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Landsat Images for the years  2015, and 2020 covering the 
mangrove site were acquired from the USGS (United States 
Geological Survey) (USGS Earth Explorer, n.d.). For deriving 
the climate factors, all of the images were acquired between the 
summertime (i.e., June-July) with less than 10% cloud cover to 
eliminate atmospheric interferences and maintain consistency.  
 
Satellite images for 2015 and 2020 were obtained from Landsat 
8. It carried OLI (Operational Land Imager) and TIRS (Thermal 
Infrared Sensors) devices. Only the image paths and rows that 
aligned with Abu Dhabi Mangrove National Park were chosen 
(i.e., 160 043 and 161 043).  
 
2.2 Satellite image preprocessing 

Landsat images were radiometrically corrected to eliminate 
atmospheric interference resulting from absorption, scattering, 
etc. of solar radiation by clouds and other airborne particles to 
extract refined information obtained from the images to perform 
accurate quantitative analysis. This process involved the 
conversion of raw Digital Numbers (DNs) of satellite images to 
radiance and ultimately reflectance. At first, DN values were 
converted to radiance which is the energy flux (i.e., 
irradiant/incident energy) per solid angle leaving a unit surface 
area in a given direction. To accomplish this, a series of gains and 
biases obtained from the metadata of the satellite images was 
used. 

 
 𝐿𝐿𝜆𝜆 = 𝑀𝑀𝐿𝐿 ∗ 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴𝐿𝐿 (1) 
 
Where 𝐿𝐿𝜆𝜆= Spectral radiance at sensor’s aperture ( 𝑤𝑤𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤

𝑚𝑚2𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚
) 

𝑀𝑀𝐿𝐿= Band specific multiplicative rescaling factor from 
Landsat image metadata file 
𝐴𝐴𝐿𝐿 = Band-specific additive rescaling factor from 
Landsat metadata file 
𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐 = Quantized and calibrated standard product pixel 
value (DN) 

 
Radiance is depended upon illumination, orientation and position 
of a target feature(s) along with the light’s path through 
atmosphere (which is further influenced by absorption and 
scattering). Therefore, radiance introduces some variabilities in 
measurements. To rectify this,  spectral radiance was converted 
into Top of Atmosphere (TOA) reflectance, resulting in 
atmospheric influence removal with reliable measurements. 
Reflectance is the proportion of solar radiation striking a point to 
the radiation reflected from it (Parks, 2020).  
 
 𝜌𝜌𝑝𝑝 = 𝜋𝜋∗𝐿𝐿𝜆𝜆∗𝑑𝑑2

𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝜆𝜆∗𝑐𝑐𝑐𝑐𝑤𝑤𝜃𝜃𝑠𝑠
 (2) 

 
Where 𝜌𝜌𝑝𝑝= TOA reflectance (unit less ratio of the reflected 

solar energy to incident solar energy) 
 𝐿𝐿𝜆𝜆= Spectral radiance at sensor’s aperture 
 𝑑𝑑= Earth-Sun distance in astronomical units (provided 

in the image metadata file) 
 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝜆𝜆= Mean Solar exo-atmospheric irradiances 

( 𝑤𝑤
𝑚𝑚2𝑠𝑠𝑚𝑚

) 
 
After the preprocessing, Landsat images for each considered year 
were band stacked in order of the band numbers so that different 
band combinations could be applied to the color gun of the 
software to effectively visualize and further analyze different 
features found in the image along with making the images 
vibrant.  
 

Then, the band stacks for a specific year were mosaicked to form 
a whole image covering the desired area. Prior to mosaicking, all 
the images were re-projected into a common Projected 
Coordinate System (PCS), which is the WGS 1984 UTM Zone 
40N. 
 
2.3 Mangrove NDVI computation 

NDVI is one of the spectral indices, commonly used to examine 
the density, health and extent of mangrove vegetation. It is 
derived from the ratio of NIR and Red bands as shown in 
equation 5 below (Siddan & C.R., 2016): 
 
 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑠𝑠𝑑𝑑

𝑁𝑁𝑁𝑁𝑁𝑁+𝑁𝑁𝑠𝑠𝑑𝑑
 (3) 

   
For Landsat 5 and Landsat 7 satellite images, bands 3 and 4 are 
red and near infrared. For Landsat 8, bands 4 and 5 are red and 
NIR respectively. NDVI is favoured compared to other indices as 
it is reported to have high accuracy in mangrove mapping. In 
addition, its computation is simple (Akbar et al., 2020). 
Furthermore, in one specific study, mangrove vegetation density 
was accurately assessed by computing NDVI relative to 23 other 
indices (Muhsoni et al., 2018). 
 
2.4 LST computation 

For Landsat 8, LST was computed using band 10 (Thermal 
Infrared) with 100 m spatial resolution. Top of atmospheric 
spectral radiance was computed from band 10, followed by 
conversion of radiance to at-sensor temperature. After that, 
NDVI method was applied for emissivity correction. Finally, 
LST was computed from land surface emissivity (Avdan & 
Jovanovska, 2016). 
 

𝑇𝑇 = 𝐾𝐾2
𝑐𝑐𝑙𝑙�𝐾𝐾1𝐿𝐿𝜆𝜆

+1�
 (4) 

 
Where 𝑇𝑇 = Effective at-sensor brightness temperature  
 𝐾𝐾2= Calibration constant 2 (k) 
 𝐾𝐾1= Calibration constant 1( 𝑤𝑤𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤

𝑚𝑚2𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚
) 

 𝐿𝐿𝜆𝜆= Spectral radiance at sensor’s aperture ( 𝑤𝑤𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤
𝑚𝑚2𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚

)  
 
Then, the brightness temperature (i.e., surface temperature in 
kelvin) was converted into degree Celsius  (Siddan & C.R., 
2016). 
Finally, brightness temperature (T) was converted to LST by also 
considering emissivity (ϵ). 
 
 LST= T

l+�0.00115* 𝑇𝑇
1.4388

�∗𝑐𝑐𝑙𝑙 (𝜖𝜖)
 (5) 

 
For Landsat 8, thermal band 10 was used for LST to avoid large 
calibration uncertainty in thermal band 11. This is because, one 
study proposed that there was a negligible difference in LSTs 
when Landsat 8 band 10 was compared with Landsat 7 ETM+ 
thermal band when it came to vegetation cover. Whereas, a 
noticeable difference in surface temperature reading was 
obtained when Landsat 8 thermal band 11 was chosen against 
Landsat 7 ETM+ band 6 (Xu & Huang, 2016). 
 
2.5 LST and NDVI samples extraction from satellite images 

To study the relationship of LST with mangrove health (i.e., 
NDVI) on a local scale, Abu Dhabi Mangrove National Park 
(Number of samples = 136) in the UAE were considered. Then, 
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point feature was created and sample representations of both the 
aforementioned parameters (i.e., LST and NDVI) were extracted 
for the study periods. The number and location of the values were 
selected in such a way as to capture as many healthy mangrove 
vegetation states as possible with their corresponding surface 
temperatures.  
 
2.6 Local Bivariate Analysis for LST-NDVI relationship 
determination  

LBA was conducted to determine statistically significant 
relationships between LST and NDVI for the region of interest 
by using local entropy. The relationships between LST and NDVI 
were presented in six classes: Positive Linear, Negative Linear, 
Concave, Convex, Unidentified Complex and Not Significant. 
The output of LBA was used to visualize the areas where the 
LST-NDVI was related and how their association varied over the 
study region. To accomplish this, point feature containing LST 
and NDVI data for each of the considered years was introduced 
as the input feature. Then, NDVI was assigned as the depended 
variable and LST was introduced to be the explanatory variable. 
The number of neighbours around the feature that was used to 
identify local relationships between the two variables was kept at  
30 (i.e., the default value). This value had the sufficient 
magnitude to derive a relationship between LST and NDVI for 
the mangroves. Also, this value managed to identify local 
variations in pattern for the relationship. The number of 
permutations was set at the default value of 199. This value was 
used to compute pseudo p-value for the variables. With this 
specific number, the smallest pseudo p-value was 0.005 and all 
the other pseudo p-values were the multiples of this smallest 
pseudo p-value. Finally, the level of confidence was set at 90% 
of the hypothesis test for significant relationships. 
 

3. Results and Discussion 

Figure 3  shows how LST-NDVI relationship was locally varied 
throughout the study site for the year 2015 and 2020 based on the 
sample points through which LST and NDVI values were 
previously extracted from. The mangrove area was segmented 
into two zones (i.e., 1 and 2) in both cases.  
 
From Figure 3a, it is discerned that zone 1 mostly exhibited 
positively linear and Concave relationships between LST and 
NDVI with some non-significant associations at the north-
western, north-eastern and south eastern sides. Positively Linear 
relationship indicated that as LST values increased, the 
corresponding NDVI values also increased. Whereas, Concave 
relationship referred to the increase in mangrove NDVI with LST 
till the vegetation health state reached a certain maximum value. 
Then, further increase in temperature degraded the health 
condition. Zone 2 showcased quite a different type of LST-NDVI 
relationship from zone 1 for the major area. Firstly, it covered 
Negatively Linear relationship for more than 50% of the covered 
area, indicating that increase in LST caused decrease in 
mangrove NDVI. However, for the south-eastern portion of the 
zone, it showed the same Concave relationship that was found in 
Zone 1. 
 
From Figure 3b, zone 1 showed mostly Negative Linear LST-
NDVI association, with a bit of Concave distribution at the 
northern side. Whereas, there were few points depicting Not 
Significant LST-NDVI relationships, prevailing at the southern 
side of the zone. Zone 2 was governed by two types of LST-
NDVI relationships. Those were Convex and Negative Linear. 
Convex relationship meant the fall of mangrove vegetation health 
with increase in surface temperature up to a certain minimum 

value. Then, further increase in temperature increased mangrove 
health index.  
 
 

 

 

a 

 
b 

Figure 3. LBA to determine LST-NDVI relationship types for 
the year (a) 2015 and (b) 2020; Zone 1 circled in red and Zone 2 

circled in blue 
 
To further elaborate on the local LST-NDVI relationship 
variations, scatterplots were generated for the study area, 
covering each year which showcased in detail how and to which 
extent LST influenced mangrove NDVI for a specific portion of 
the study region for a given year. Under this situation, 
relationship types falling under Unidentified Complex and Not 
Significant were ignored. Since these correlations could not yield 
any kind of graphs for further analysis and explanations. The 
graphs containing both explanatory variable (i.e., LST) and 
dependent variable (i.e., NDVI) were rescaled to fit within the 
range 0-1 (this was accomplished by subtracting the minimum 
value of the dataset from each value and further dividing it by the 
difference between the maximum and the minimum value of the 
dataset for each variable) (Figure 4, Figure 5).  
 
From Figure 4a, it is observed that lowest temperature of 0.35 
corresponded to the highest NDVI of 0.76. As temperature 
started to rise, there was a linear fall of NDVI with the minimum 
value reached was 0.36, corresponding to the maximum LST of 
0.80 unit. Figure 4b showed a Concave trend between LST and 
NDVI for the mangrove at Abu Dhabi. 0.25 unit of LST provided 
around 0.11 unit of NDVI. As LST started to increase, so did 
NDVI. At LST of 0.47 unit, NDVI reached its highest peak, with 
approximately 0.60 unit. Beyond this LST value, mangrove 
NDVI started to decrease. Figure 4c showed a positive linear 
trend between LST and NDVI. With minimum LST of 0.25 
caused the NDVI to be around 0.35. Further increase in LST 
made NDVI to rise as well.  
 

 

 
a 

1 

2 

1 

2 
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b 

 

 
c 

 
Figure 4. Scatterplots depicting a. Negative Linear (Zone 2), b. 

Concave (Zone 1 and 2), c. Positive Linear (Zone 1) LST-NDVI 
relationships for Abu Dhabi mangrove considering the year 

2015  
 
For 2020, Figure 5a demonstrated a negatively decreasing (i.e. 
convex) trend between LST and NDVI for the mangrove. As 
temperature reached 0.35 unit, the corresponding NDVI fell to 
the minimum value of about 0.30 unit. Figure 5b showed negative 
linear influence of LST on NDVI. Where a low LST of 0.07 was 
depicted to provide high NDVI value of over 0.82. As LST 
started to increase, mangrove vegetation health state fell linearly. 
From Figure 5c, it could be observed that a low LST of 0.10 unit 
caused peak mangrove NDVI at around 0.71. As temperature 
started to increase, there was increasing fall of mangrove health 
condition. When LST was found to be at 0.38 unit, mangrove 
NDVI decreased to at around 0.33. 
 

 
 

a 

 
 

b 
 

 
c 

 
Figure 5. Scatterplots depicting a. Convex (Zone 2), b. Negative 

Linear (Zone 1 and 2), c. Concave (Zone 1) LST-NDVI 
relationships for Abu Dhabi mangrove considering the year 

2020  
 

By observing all the LST-NDVI relationship patterns for the 
years 2015 and 2020, it could be postulated that the influence of 
LST on mangrove NDVI was complex as not a single type of 
association chiefly governed between the two environmental 
parameters. So far, focus was given to understand the effect of 
mangrove vegetation health on surface temperature (Kanjin & 
Alam, 2024), (Rostami et al., 2022), (Ruan et al., 2022). But this 
study attempted at deriving the localized impacts of LST on 
NDVI for mangrove in Abu Dhabi, UAE. General observation 
from the plots (Figure 4a, Figure 5a, Figure 5b, and Figure 5c) 
dictated that increase in LST caused decrease in NDVI in major 
portions of the study area for both the years and this phenomenon 
was supported by previously published literature(s) (Cobacho et 
al., 2024), (Lovelock et al., 2016). For this specific research, 
LST-NDVI relationships were diverse in nature when different 
zones of a chosen region of interest (i.e., Abu Dhabi Mangrove 
National Park) were considered over a certain timeframe (i.e., 
between years 2015 and 2020). Whereas, globally conducted 
previous studies either covered the detrimental effects on 
mangrove vegetation due to high temperature (Cobacho et al., 
2024), (Rendana et al., 2023) or substantially low temperatures 
(Chen et al., 2017), (Osland et al., 2017), (Lovelock et al., 2016). 
Furthermore, coefficient of determinations for the LBA trends 
obtained for 2020 were much higher compared to that of 2015 
with the highest R2 = 0.8512 (portraying Convex relationship) 
followed by R2 = 0.8192 (Concave) and R2 = 0.7281 (Negative 
Linear). This study could be further improved by conducting 
LBA on more mangrove sites in UAE for larger time durations to 
determine the most assertive LST-NDVI relationship(s). 
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4. Conclusion 

The impact of microclimate (i.e., LST) on mangrove health (i.e., 
NDVI) was shown to be quite spatially and temporally varied 
across the coastal area of Abu Dhabi, UAE. The variance 
encompassed Positive Linear, Negative Linear, Concave, 
Convex, and Not Significant relationships based on the point 
features used to extract LST and NDVI data from Landsat 8 
satellite imageries. Additionally, overall inspection of the 
scatterplots revealed that LST caused mangrove health to 
deteriorate for both 2015 and 2020. Moreover, the later year 
provided higher R2 values for the LST-NDVI models. The 
findings of this study could potentially help in formulating 
government/non-government policies towards mangrove 
conservation.  
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