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Abstract 

 

Given the increasing incidence of vector-borne diseases, there is a need for an effective predictive model, to support timely public 

health responses in urban areas. However, most of the study have been limited to district level and few climatic variables, which may 

not be sufficient for localized mitigation efforts. To bridge this gap an Early Detection model for dengue fever is developed, analysing 

key spatial-temporal variables influencing local transmission. The model integrates meteorological variables such as rainfall, 

temperature, humidity along with physical factors such as NDVI, land cover and population distribution. Dengue cases data was 

obtained form District Medical Office, Bhopal, while other independent variables were generated through Geographic Information 

System (GIS) operations on Earth Observation (EO) datasets such as Landsat, MODIS, etc. Multiple Linear Regression (MLR), 

Generalized Linear Model (GLM), and Sequential Regression Model (SRM) were employed to capture temporal and spatial 

dependencies. SRM emerged as the most effective model (Adjusted Pseudo-R2 = .407, RMSE Test = 1.810), outperforming MLR 

(Adjusted -R2 = . 256, RMSE Test = 1.701) and GLM (Adjusted Pseudo-R2 = .555, RMSE Test = 2.623), to identify high-risk areas. 

Humidity, NDVI, LULC water and forest significantly influenced dengue cases, as these factors favours mosquito breeding. The study 

highlights the effectiveness of GIS and Machine Learning (ML) in strengthening the disease surveillance and control. Applying this 

approach in Indian cities such as Bhopal, Madhya Pradesh, demonstrated its potential to facilitated timely, targeted, tailored and 

resource efficient interventions. 

 

 

1. Introduction 

Dengue, a disease transmitted by Aedes mosquitoes, impacts 

over 3.9 billion people globally, causing severe public health and 

economic burden (WHO, 2019).  In India alone, annual 

incidences of dengue rose form 12.5 thousand cases in 2008 to 

233.2 thousand cases in 2022 (The National Center for Vector 

Borne Diseases Control, 2023). WHO, (2019) advocates early 

detection as one such critical strategy. At present disease 

prevention mostly rely on vector control methods, therefore 

early detection is needed to enable public health authorities to 

respond swiftly to prevent outbreaks. 

Several literatures have linked the dynamics of disease 

transmission to meteorological and physical factors. Rainfall 

provides breeding habitats for vectors (Kakarla et al., 2019; 

Mutheneni et al., 2017). Higher temperatures promote longer 

lifespan for mosquitoes and reduce incubation period. Several of 

literature referred to mean, maximum and minimum 

temperatures (Choi et al., 2016; Hossain et al., 2022; Mutheneni 

et al., 2017; Sarma et al., 2022; Singh et. al., 2022), while 

Pakhare et al., (2016) used daily diurnal temperature variation. 

Pakhare et al., (2016) also used humidity, as it aided in vector’s 

ability to fly, expanding disease capacity to spread. Climate 

change has further worsened dengue transmission due to 

expansion of suitable habitats for disease vectors, exposing 

millions to previously unrecognized threat (Houtman et al., 

2022; Lowe et al., 2021; Mordecai et al., 2017). Harsha et al., 

(2023) stated that built-up areas have high dengue risk due to 

water collection potential. Scholars have (Harsha et al., 2023 and 

Sarma et al., 2022) identified Normalized Difference Vegetation 

Index (NDVI) as crucial variable, as overlooked areas with dense 

vegetation can act as habitat for vector breeding. Harsha et al., 

(2023) integrated Topographic Wetness Index (TWI) in there 

model, to highlight locations at risk of flooding. Sarma et al., 

(2022) used population distribution as an indicator as high 

population have higher probability of interaction with vector.  

Few methods have been implemented to act as an early warning 

system to aid in timely decision-making. Dengue forecasting 

Model Satellite-based System (D-MOSS) developed by HR 

Wallingford (Kaiser, 2019), launched in Vietnam in 2019, 

followed by Malaysia and Sri Lanka in 2020 (European Space 

Agency, 2020), projecting dengue at district level up to seven 

month ahead of time. Another is Early Warning and Response 

System (EWARS), in Mexico in 2012, projecting dengue at 

district level up to 3 months in advance (Cardenas et al., 2022). 

Both these models relied on temperature, rainfall, and humidity 

factors only. Scholars have studied the correlation between 

dengue cases and diverse meteorological and physical 

parameters. But most of the predictive models have been limited 

to district level analysis and few climatic variables, which may 

not address the needs for localized mitigation efforts. In this 

research, an attempt has been made to create a predictive model 

at ward level (lowest administrative unit in Indian cities), 

incorporating both meteorological and physical variables. This 

will help identify the potential areas with high dengue risk and 

allow for targeted interventions saving time and resources.  
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2. Study Area: Bhopal Municipal Corporation 

The study is undertaken in the Bhopal Municipal Corporation 

(BMC), positioned at coordinates 23.25˚N, 77.40˚E. Bhopal is a 

Tier 2 city, with an area of 463 km2, population around 23 lakh, 

density of 5,039 persons per km2, and divided into 85 wards  

(Directorate of Town and Country Planning MP, 2020). Bhopal 

was selected for this study due to its climatic and topographical 

conditions that are suitable for dengue vector breeding. The 

city's rolling terrain and high annual precipitation (1260 mm) 

create favorable conditions for standing water, a critical factor 

for mosquito breeding. Additionally, its average temperature 

(25°C) falls within the optimal range for Aedes aegypti breeding 

(Pakhare et al., 2016), while high relative humidity (87% during 

monsoon) further supports vector activity. Bhopal's green cover 

(18.1%) also provides suitable habitats for mosquito breeding 

(Directorate of Town and Country Planning MP, 2020). These 

factors, combined with comprehensive data availability, make 

Bhopal an ideal location for developing the proposed Dengue 

Early Detection (DED) model. 

 

Figure 1. Location of the BMC in Madhya Pradesh, India 

In 2014, there was a dengue outbreak in Bhopal with 300 

reported cases. Since then, the city has experienced a significant 

rise in dengue incidences. By 2019, the number of cases surged 

to 1,705 (DMO Bhopal, 2023), a 14.9-fold increase compared to 

2014, far exceeding the 2.3-fold rise observed at the national 

level (Sarma et al., 2022). This sharp increase highlights the need 

for improved vector-borne disease management strategies. 

While there was a notable decline in reported cases in 2020, 

likely due to the impact of COVID-19 and underreporting, a 

subsequent rise in cases further emphasizes the ongoing 

challenge. Considering this the time-period of this study focuses 

on time duration between 2014 and 2019. 

Figure 2. Reported Dengue Cases – BMC (2012-2023) 

 

 

3. Methodology 

3.1 Data Collection and Preparation 

For predictive modelling a range of data acquired were Ward 

wise monthly dengue cases, Monthly precipitation, Land Surface 

Temperature (LST), Monthly specific humidity, NDVI, 

Topographic Wetness Index (TWI) and population distribution 

for year 2010. These datasets were generated through various 

GIS operations on EO data. Table 1 provides descriptions of the 

EO data used in this research. The LULC was created using the 

Landsat 7 and Landsat 8 Level 2, Collection 2, Tier 1 Surface 

Reflectance data (Vermote et al., 2016) tri-annually, pre-

monsoon (February – May), monsoon (June – September), and 

post-monsoon (October – January). Random Forest supervised 

classification (Khushaktov, 2023) on multi-spectral band 

composite (Blue, Green, Red, NIR, SWIR 1 and SWIR 2) was 

conducted and classified into five broad categories (Water Body, 

Built-up, Barren, Forest, and Agriculture). The data was trained 

and tested using 100 datapoint (sample size calculated using 

Stratified Random Sampling) collected from google earth pro 

historical imagery feature, with average accuracy and kappa 

coefficient of 84.5% and 77.9% respectively. Geospatial 

processes for LST, Humidity, NDVI, LULC were conducted in 

Google Earth Engine, due to its ability to analyze large data sets 

simultaneously. Population data of 2010 form GHSL (European 

Commission,2010 ) was used to estimate subsequent months 

data at a linear growth rate of 29.72% as calculated by 

Directorate of Town and Country Planning MP (2020) in draft- 

Bhopal Development Plan-2031. All the monthly raster data 

were resampled to 30 meters resolution and then aggregated at 

ward level using zonal statistics techniques in QGIS for further 

analysis. 

Table1: Description of the data used 

Type of data Period Source 

Monthly 

‘Dengue Fever’ 

cases of Bhopal 

2012-2019 
District Medical Office, 

Bhopal 

Monthly 

precipitation 
2011-2019 

Center for 

Hydrometeorology and 

Remote Sensing 

(CHRS) 

Land Surface 

Temperature 

(LST) 

2011-2013 

2013-2019 for 

months with 

high cloud 

cover 

Landsat 7 

Landsat 8 

MODIS 

LULC 
2011-2013 

2013-2019 

Landsat 7 

Landsat 8 

Monthly specific 

humidity 
2011-2019 FLDAS 

NDVI 

2011-2013 

2013-2019 

for months 

with high cloud 

cover 

Landsat 7 

Landsat 8 

MODIS 

Topographic 

Wetness Index 
2000 

SRTM DEM  

of 1 Arc-Second 

Population 

distribution 
2010 GHSL 

3.2 Studying Relationship between Dengue Cases and 

Influencing Variables 
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3.2.1 Temporal Relationship 

  

Figure 3. Time Series- Correlation Matrix 

To account for inherent biases, temporal relationships between 

variables were analyzed prior to model preparation. A 

correlation matrix was used to assess the relationships between 

the dependent variable and independent variables, as well as 

interrelationships among the independent variables as seen in 

Figure 3. Initial results showed low correlations between dengue 

cases and independent variables (-.093 < r < .363), likely due to 

non-linear relationships, outliers, or spatial-temporal lag effects. 

Multicollinearity among independent variables was low. A 

temporal lag analysis, adjusting for monthly lags up to six 

months, revealed that correlations improved after accounting for 

lag as shown in Figure 4.  

 
Figure 4. Monthly Lag Matrix 

As seen in Figure 4 and Figure 5, rainfall (r = .541), humidity  

(r = .616), NDVI (r = .317), and LULC barren (r = -.273) showed 

the highest correlation with a two-month lag, LULC water (r = -

.567), LULC built (r = -.383), and LULC agriculture (r = .493) 

with a three-month lag, and LST (r = .506) with a five-month 

lag. While moderate multicollinearity emerged in the lag-

adjusted dataset, the improved correlations indicated that the 

model could capture complex relationships, enhancing 

predictive accuracy. Key variables like rainfall, LST, humidity, 

and LULC agriculture were identified as important predictors for 

dengue case variation over time. 

 

 
Figure 5. Time Series - Lag Adjusted - Correlation Matrix 

3.2.2 Spatial Relationship 

Ward wise total dengue cases during the study period were 

correlated with the average values of the independent variables 

using a correlation matrix. Results showed mostly low 

correlations between dengue cases and independent variables, 

except for humidity (r = .481) and population (r = .484), which 

had moderate correlations as seen in Figure 6. The low spatial 

correlation may be attributed to factors such as non-linear 

relationships, outliers, or spatial-temporal lags due to the 

seasonal and dynamic nature of the variables. 

 
Figure 6. Spatial - Correlation Matrix 

The analysis revealed that lag-adjustment improved correlations, 

capturing complex relationships between predictors like rainfall, 

humidity, and land use. Moderate intercorrelations were 

observed after lag adjustment, while low spatial correlations 

suggested localized effects. These findings emphasize the need 

for incorporating lagged variables into predictive models. 

4. Dengue Early Detection (DED) Model 

In the literature reviewed, scholars used various techniques to 

study relationship between variables. Choi et al., (2016); Singh 
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& Chaturvedi, (2022) used GLM with negative binomial 

regression, Hossain et al., (2022) utilised Quasi-Poisson 

Regression, Pakhare et al., (2016) employed MLR, Sarma et al., 

(2022) used distributed lag non-linear model combined with 

quasi-Poisson regression, and Harsha et al., (2023) used AHP 

and F-AHP. Considering the scope and limitations of the study, 

two methods were tested MLR and GLM with Quasi-Poisson 

Regression. MLR was conducted to assess a basic understanding 

of influence variables had on dengue cases, and GLM since the 

dependent variables satisfied the assumption of overdispersion 

i.e., variance (4.28) greater than mean (0.60). The independent 

variables were standardized using the z-score method (Zach, 

2021) for better relative interpretation of influencing factors. The 

dependent variable (dengue cases) was left unaltered to ensure 

compatibility with the GLM with Quasi-Poisson Regression 

(Log Link), which cannot process negative values.  

The models were trained for 4 years of data (66.7%) and tested 

for 2 years of data (33.3%), in temporal order as randomly 

selecting training data would violate temporal order and likely 

lead to poor model performance. The model was prepared in R-

Studio using ‘lm’ and ‘glm’ function for MLR and GLM 

respectively. To assess and compare the strength of models to 

select the best fit model, adjusted coefficient of determination 

(R2) for (MLR) Adjusted Pseudo1 R2 for (GLM) were used since 

GLM models does not have normal R2. Adjusted R2 measures 

how well the model explains variations in dengue cases while 

accounting for number of predictors. To check the magnitude of 

the errors, Root Mean Squared Error (RMSE) was utilised, 

showing how far the model’s value are from the actual values. 

Also, Pearson Correlation was calculated between predicted and 

actual values both temporally and spatially to measure how well 

the model capture the temporal and spatial variation of dengue 

cases. 

4.1 Model Preparation 

4.1.1 Multiple Linear Regression Model 

Table 2: MLR Results 
 

Coeff. P-Value Sig. Level 

Intercept 34.281 2.05E-10 < 0.001 

Rainfall 0.015 0.741 <1 

LST 0.166 3.02E-04 < 0.001 

Humidity 0.836 2.00E-16 < 0.001 

NDVI 0.389 <2.00E-16 < 0.001 

LULC(Water) 0.133 0.615 <1 

LULC (Built) -5.084 7.35E-05 < 0.001 

LULC(Barren) -0.282 0.473 <1 

LULC(Forest) 2.431 0.007 < 0.01 

LULC(Agriculture) -0.774 0.006 < 0.01 

Population 4.268 <2.00E-16 < 0.001 

TWI 0.167 4.62E-05 < 0.001 

First MLR model was developed using all variables. Most 

variables demonstrated high significance. Population and LULC 

(Forest) were the strongest positive predictors of dengue 

incidence, while LULC (Built) exhibited the most substantial 

negative influence as seen in Table 2. This model yielded a low 

Adjusted R2 (R² = .26), with RMSE values for the training and 

test datasets at 2.24 and 1.70, respectively. The model had good 

 
1 Adjusted Pseudo coefficient of determination in GLR, 

approximates R2 specifically adapted for GLMs (Smith & 

McKenna, 2013) 

Temporal Pearson Correlation (R = .79) and Spatial Pearson 

Correlation (R = .55). 

4.1.2 Generalized Linear Model  

Like the MLR results, Population and LULC (Forest) had the 

most positive influence on dengue cases, while LULC (Built) 

had the most negative effect. However, in the GLM model, the 

influence of humidity also increased notably as shown in Table 

3. The model achieved an Adjusted Pseudo R2 (R² = .55), with 

RMSE values of 3.40 for training and 2.62 for testing. In this 

case, Temporal Pearson Correlation (R = .86) improved but 

Spatial Pearson Correlation (R = .52) reduced slightly. 

Table 3. GLM Results 
 

Coeff. P-Value Sig. Level 

Intercept 26.051 6.02E-15 < 0.001 

Rainfall -0.208 <2.00E-16 < 0.001 

LST 0.005 0.890 <1 

Humidity 1.768 <2.00E-16 < 0.001 

NDVI 0.160 <2.00E-16 < 0.001 

LULC(Water) -0.145 0.535 <1 

LULC (Built) -3.856 1.69E-04 < 0.001 

LULC(Barren) -0.611 0.166 <1 

LULC(Forest) 2.456 2.61E-06 < 0.001 

LULC(Agriculture) -0.965 7.84E-05 < 0.001 

Population 3.662 <2.00E-16 < 0.001 

TWI 0.152 3.36E-07 < 0.001 

4.1.3 Sequential Regression Model with GLM 

From the previous results it was seen that GLM showed better 

results than MLR but was not able to capture both spatial and 

temporal variations very well. To better capture both aspects 

sequential regression method (von Hippel, 2007) was adopted. 

Were first a dummy variable will be predicted which will capture 

temporal aspect of the data and then that dummy variable will be 

used as predictor in the next model to capture spatial aspects. 

Which variables will better capture temporal variation and which 

spatial was based on the time series and spatial correlation matrix 

discussed previously in part 3.2.  

Table 4 : SRM Model GLM Results (Temporal) 
 

Coeff. P-Value Sig. Level 

Intercept -6.681 2.03E-06 < 0.001 

Rainfall -0.207 < 2E-16 < 0.001 

LST -0.010 0.791 <1 

Humidity 1.823 <2E-16 < 0.001 

NDVI 0.177 < 2E-16 < 0.001 

LULC(Water) 0.551 0.008 < 0.01 

LULC(Barren) -0.780 0.082 <0.05 

LULC(Forest) 2.042 1.16E-04 < 0.001 

LULC(Agriculture) -1.199 2.22E-08 < 0.001 

First a temporal model was trained using Rainfall, LST, 

Humidity, NDVI, LULC(Water), LULC(Barren), 

LULC(Forest), LULC(Agriculture) as predictors in MLR. The 

results showed that Rainfall, Humidity NDVI, LULC (Forest) 

and LULC (Agriculture) were most significant variables, and 
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humidity, forest, and agriculture most influenced the dengue 

cases as seen in Table 4.  

This model was used to predict dengue cases (CasesP) which 

was then used as predictor variables in next step of the model. 

Next a GLM model with Quasi-Poisson Regression was 

modelled with CasesP, LULC (Built), Population and TWI, to 

capture spatial variation. Here the results showed that all the 

variables were most significant, but variables population and 

built-up area most influenced the dengue cases as seen in Table 

5. Final Adjusted Pseudo R2 (R² = .41) and RMSE Train and Test 

were 2.77 and 1.81 respectively. In this case Temporal Pearson 

Correlation (R = .83) was between previous two models but 

Spatial Pearson Correlation (R = .61) improved significantly. 

Table 5 : SRM Model GLM Results (Spatial) 
 

Coeff. P-Value Sig. Level 

Intercept 25.639 5.77E-12 < 0.001 

LULC(Built) -8.581 <2E-16 < 0.001 

Population 4.898 <2E-16 < 0.001 

TWI 0.099 2.87E-04 < 0.001 

CasesP 0.492 <2e-16 < 0.001 

4.2 Model Selection and Result 

After evaluating all three models, MLR, GLM, and SRM - the 

best fit was determined based on R2 and RMSE values. As shown 

in Table 6, the GLM model had the highest Adjusted Pseudo R2 

(R2 = .55), followed by the Sequential model and then the MLR 

model. However, based on RMSE values, the GLM had the 

highest error, MLR had the lowest error for both training and 

testing datasets, with the SRM model performing second best. 

Table 6: Model Results 

 MLR Model GLM Model SRM Model 

Adjusted R2 0.256 0.555 0.407 

RMSE Train 2.234 3.397 2.769 

RMSE Test 1.701 2.623 1.810 

 

Pearson correlation tests further showed that the GLM and SRM 

model captured temporal variation very well, but SRM 

outperformed the MLR and GLM models in capturing spatial 

variation as seen in Table 7.  Overall SRM performed better in 

capturing both temporal and spatial variation. 

Table 7: Pearson R Test 

Pearson R MLR Model GLM Model SRM Model 

Temporal 0.79 0.86 0.83 

Spatial 0.55 0.52 0.61 

               
                   Figure 6: Time Series - Model Results 

Visually, as seen in Figure 6. all models captured the seasonal 

dynamics of dengue cases, but the SRM closely followed the 

actual trend, while other models underestimated or 

overestimated peak cases. Also as seen in and Figure 7, SRM 

estimated the clustering in the south-east direction of the city and 

relatively lower cases in norther part of city, like observed cases 

better than other models. 
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Figure 7: Total Ward Wise Model Results (2014-2019) 

The results in Table 4 and Table 5 also show a significant positive 

relationship between dengue cases and humidity, NDVI, LULC 

water and LULC forest as these factors favor mosquito breeding 

and survival. Areas with such characteristics can promote 

mosquito density raising transmission risk. Also, the population 

had a highly positive spatial relationship as more human-

mosquito interaction facilitated more disease transmission. 

LULC Barren had a high negative relationship, due to a lack of 

vegetation and population, reducing breeding sites as well as 

human-mosquito interaction.  

Surprisingly, rainfall, LULC agriculture and built showed a 

negative relationship with dengue cases. Rainfall can increase 

mosquito populations, but excessive rain may flush out mosquito 

larvae. Irrigated agricultural land can increase mosquito 

breeding but the possible use of pesticides can have negative 

effects. Generally associated with higher dengue risk due to 

human-mosquito interactions, factors such as limited vegetation 

or better infrastructure can limit mosquito growth. Overall, the 

results highlight the complex interaction of environmental 

factors with mosquito breeding and dengue cases. 

 

 

 

   

5. Conclusion and Wider Implications 

This study has shown the potential use of GIS and ML in 

strengthening ‘Dengue Fever’ surveillance. By developing a 

Dengue Early Detection Model through analysis of spatial-

temporal meteorological and physical factors such as rainfall, 

temperature, humidity, land cover, vegetation index and 

population distribution. This study attempts to predict dengue 

cases by including both temporal and spatial dependences of 

dengue vector, which many prior studies have not addressed. The 

research also highlights the importance of considering exposure-

response lag effect which further enhances prediction accuracy. 

Three models—MLR, GLM, and an SRM—were developed to 

predict dengue cases. The SRM, which incorporated both 

temporal and spatial aspects, emerged as the best-performing 

model with an Adjusted Pseudo-R2 (R² = .407) and relatively low 

RMSE values for training and testing datasets. This model not 

only captures seasonal dengue dynamics but also is able identify 

high-risk areas at ward level. While the forecasting period is 

shorter compared to D-Moss, EWARS models, and other studies, 

this model significantly improved spatial resolution, from 

district to ward level. 

Beyond Bhopal, these results have broader implications for 

urban planning and public health in other dengue-endemic 

regions with similar characteristics. But the methodology can be 

used to create similar models for regions with different climatic 

or socio-economic characteristics. By integrating climate change 

and land use prediction models, it can be employed to forecast 

future dengue scenarios. Also, by incorporating local factors 

such as mosquito breeding sites identified by the District Malaria 

Office (DMO), poorly maintained green spaces, open drains, and 

waste disposal areas, the model's accuracy and relevance can be 

further enhanced. Additionally, integrating real-time 

environmental data and dengue case reports would improve the 

model's timeliness, allowing for quicker responses to outbreaks. 

This framework is also adaptable to other vector-borne diseases 

such as Zika and Chikungunya, making it a versatile tool for 

public health authorities. By enabling localized, data-driven 

interventions, this model can help save time and resources, 

empowering local authorities to implement more effective, 

targeted strategies for disease control and prevention. 
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