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Abstract 

This research investigates the application of hyperspectral imaging (HSI) for surface clay and mineral exploration, specifically 
targeting kaolin, hematite, saponite, and illite in the Udaipur region of Rajasthan, India an area known for its complex and diverse 
mineralogy. Traditional approaches such as geological mapping, geochemical assays, and field surveys, while fundamental, often 
prove inefficient in terms of time and resources, especially in the challenging topography of the Aravalli Range. HSI, leveraging data 
from the Hyperion sensor, offers a fine-resolution remote sensing method capable of discriminating minerals through their unique 
spectral reflectance profiles. The study employs advanced HSI processing techniques, including Minimum Noise Fraction (MNF) 
transformation for noise reduction and feature space optimization, and Pixel Purity Index (PPI) for endmember extraction, followed 
by mineral classification using Spectral Angle Mapper (SAM). A detailed pre-processing workflow is implemented, involving 
atmospheric correction, radiometric calibration, and the generation of endmember spectra based on USGS mineral spectra of key 
minerals. SAM is used to classify mineralogical components by computing the spectral angle between the pixel spectra and the 
known spectral profiles. Results demonstrate that this integrated approach—combining HSI with MNF, PPI, and SAM algorithms 
significantly enhances the accuracy and precision of clay and mineral detection, specifically identifying clay kaolinite, illite, 
saponite, and hematite, along with their spatial distribution within the study area. This methodology offers a scalable, cost-effective, 
and highly reliable solution for mineral exploration, particularly for identifying surface clay minerals and other mineral resources in 
geologically complex regions such as Udaipur. The study's findings not only enhance the understanding of mineral resources in the 
Udaipur region but also highlight the potential of HSI in climate change research. By providing precise data on mineral distribution 
and soil composition, HSI can be a valuable tool for creating adaptive land-use strategies, supporting sustainable agriculture, and 
mitigating the impacts of climate change, ultimately contributing to more resilient ecosystems and informed decision-making in 
geospatial research and sustainable development.

1. Introduction

The Udaipur region of Rajasthan, India, is renowned for its rich 

mineral deposits, including marble, limestone, phosphate, and 

other industrial minerals. These resources are a key driver of the 

local economy. Geologically, the region is part of the Aravalli 

Craton, located within the Aravalli-Delhi Fold Belt, one of the 

oldest mountain systems in the world. Udaipur’s unique 

geology, comprising a variety of metamorphic, sedimentary, 

and igneous rock formations, hosts significant deposits of 

industrial minerals (Magendran and Sanjeevi, 2013). Traditional 

exploration methods such as geological mapping, geochemical 

sampling, and geophysical surveys have provided valuable 

insights into the mineral wealth of this region. Nevertheless, 

these approaches are often, labour-intensive, and costly, 

especially given the rugged terrain and limited accessibility in 

parts of the aravalli range to complement traditional methods, 

remote sensing technologies, particularly hyperspectral 

imaging, offer an efficient and non-invasive approach to 

mineral exploration. (Kruse et al., 2003), Hyperspectral imaging 

captures detailed spectral information across many narrow 

wavelength bands (Molan et al, 2013). Enabling the 

identification of surface materials, including clays and minerals 

(Zhang and Li 2014), by detecting unique spectral signatures. 

This research focuses (Zadeh et al., 2013), on using 

hyperspectral imaging data, specifically from NASA’s 

Hyperion sensor aboard the Earth Observing-1 (EO-1) satellite, 

to explore surface clays and minerals in the Udaipur region. 

In this research, we utilized hyperspectral data from the 

Hyperion sensor's (L1R) product, which provides 

radiometrically corrected at-sensor radiance data. The Hyperion 

sensor, captures data across 242 spectral bands, essential for 

identifying and mapping surface clays and minerals. (Kruse, 

1988). Hyperspectral imaging (HSI) techniques were applied to 

explore surface clay and mineral deposits. With its ability to 

capture narrow spectral bands across a wide range of 

wavelengths (Awad et al., 2018). Hyperspectral imaging allows 

for precise mineral identification based on their unique spectral 

signatures. Unlike multispectral sensors that acquire data in 

broad wavelength intervals, hyperspectral sensors like Hyperion 

record reflectance data in narrow wavelength bands (400–2500 

nm), covering the VIS, NIR, and SWIR regions. Hyperion 

provides data across 242 bands, offering fine spectral resolution 
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to identify minerals based on distinct absorption features. 

(Kruse et al., 1990). This level of spectral detail is particularly 

beneficial for identifying key minerals such as chromite, clays, 

and iron oxides, which dominate Udaipur's surface composition. 

For example, clays like kaolinite and illite have diagnostic 

absorption features in the SWIR region, (Rama et al., 2014). 

While minerals (e.g., hematite, saponite) exhibit distinct 

spectral characteristics in the VIS and NIR regions. These 

unique spectral signatures enable precise mapping and 

classification of surface minerals, providing critical data for 

exploration. 

 

Using hyperspectral data in Udaipur offers several advantages 

over conventional exploration techniques. It allows for the rapid 

assessment of large, inaccessible areas, reducing the need for 

extensive field surveys. Hyperspectral imaging offers a 

comprehensive overview of mineral distribution, particularly 

useful in the rugged terrains of the Aravalli Range. 

Additionally, it can detect minerals that may not be easily 

identifiable through visual inspection or field-based methods. 

This comprehensive view of surface mineralogy enhances 

exploration accuracy and efficiency, helping to delineate 

potential mineralized zones (Gaurav et al., 2021). A significant 

advantage of hyperspectral imaging is its ability to differentiate 

between minerals with similar physical properties but distinct 

spectral signatures. This capability is crucial for identifying and 

targeting specific mineral deposits for further exploration. (Raj 

et al., 2015). 

 

1.1 Study Area 

The research site is situated in the Udaipur district of Rajasthan, 

India. At geographical coordinate’s 24°42'4.17"N latitude and 

73°48'39.16"E longitude. 

 

Figure 1. Study area of the selected region 

 

Udaipur is located in the southern part of Rajasthan, India a 

region known for its varied landscapes, including rugged hills, 

valleys, and lakes, alongside rich biodiversity and a deep-rooted 

cultural history. This diversity makes it an ideal location for 

comprehensive spatial analysis, allowing researchers to 

investigate a range of ecological and geographical patterns 

unique to the area. By identifying the precise coordinates of the 

study area, researchers gain a reliable reference point for 

analyzing spatial relationships, ensuring that data collected and 

interpreted maintains high accuracy. These coordinates also 

support reproducibility, allowing future studies to build upon 

this research with consistent spatial accuracy, contributing to 

long-term monitoring and comparative studies across time. 

 

2. Methodology 

2.1 Data Acquisition 

The L1R (EO11480432012276110KZ) Hyperion hyperspectral 

data was collected from the USGS earth explore using satellite-

based Hyperion sensors over targeted regions with known 

geological formations The sensors captured data across the 

visible, near-infrared (VNIR), and short-wave infrared (SWIR) 

spectral ranges, which are optimal for identifying clay minerals. 

The methodology follows a multi-step approach as shown in the 

figure 2. 

 
Figure 2. Methodological workflow 
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2.2 Pre-processing 

The raw hyperspectral data underwent corrections for 

atmospheric interference, sensor noise, and geometric 

distortions. As part of this process, the Hyperion data, which 

initially contained 242 spectral bands, was resized to remove 

irrelevant bands. After resizing, 198 bands were selected for 

further processing. The resized data was then radiometrically 

corrected to ensure that pixel values (digital numbers) 

accurately reflected surface properties by eliminating sensor-

specific and atmospheric distortions. A spatial subset of the data 

was created to focus on a specific area of interest, enabling 

detailed exploration rather than analyzing the entire region. The 

Hyperion data, originally in BSQ format, was converted to BIL 

format for further atmospheric correction using the Fast Line-

of-sight Atmospheric Analysis of Hypercubes (FLAASH) 

algorithm. FLAASH is designed for hyperspectral and 

multispectral data to address atmospheric effects like absorption 

and scattering caused by gases such as water vapor and carbon 

dioxide, as well as aerosols. This process preserved the true 

spectral signatures of surface materials, which is essential for 

accurate mineral classification (Felde et al., 2003). During 

preprocessing, 198 of the 242 spectral bands were selected to 

optimize data quality. Bands affected by atmospheric absorption 

(e.g., around 1,400 nm and 1,900 nm) and noise were excluded 

to improve the signal-to-noise ratio. The Minimum Noise 

Fraction (MNF) technique was used to identify and retain bands 

with high spectral information. By removing irrelevant or noisy 

bands, computational efficiency was enhanced without 

compromising the precision of mineral classification. This step 

was crucial to preserving key spectral features required for 

accurate detection and mapping of minerals. 

 

2.3 Spectral Analysis 

2.3.1 Minimum Noise Fraction (MNF) The MNF transform 

was utilized to reduce noise and enhance the signal-to-noise 

ratio (SNR) in Hyperion imagery. Given the noise typically 

present in hyperspectral data, MNF was essential in isolating the 

useful signal for clearer analysis. After doing mnf on the 

corrected data the bands with most engine values they are taken 

for the further processing of PPI (Boardman and Kruse, 1994). 

2.3.2 Pixel Purity Index (PPI) The Pixel Purity Index (PPI) 

is used to identify pixels with the highest spectral purity, 

referred to as endmembers, which represent distinct minerals or 

materials. Following the computation of noise statistics, bands 

with lower noise levels were selected for PPI analysis. The 

process involved 10,000 iterations with a threshold value of 2.5 

to filter out low-purity pixels. Spectrally pure pixels identified 

through this method were then projected into the n-Dimensional 

Visualizer, where endmember spectra were extracted and 

categorized into regions of interest. This approach ensures 

precise recognition and delineation of surface clay and mineral 

deposits (Boardman et al., 1995).  

The threshold of 2.5 is designed to eliminate pixels with low 

spectral purity, preserving only those with significant and 

distinguishable spectral features. This helps prevent noise from 

interfering with the endmember extraction process. The high 

iteration count of 10,000 enhances the reliability of the analysis 

by projecting each pixel along multiple random vectors in 

spectral space, minimizing the risk of missing critical spectrally 

pure pixels. This balance between threshold and iterations is 

crucial for achieving accurate mineral mapping, particularly in 

regions with complex mineral compositions. 

 

3. Result and Discussion 

Advanced image processing techniques are crucial for 

extracting and analyzing mineral information from 

hyperspectral data. These techniques leverage the rich spectral 

details in hyperspectral datasets to enhance mineral detection 

and classification. In this research, methods such as Minimum 

Noise Fraction (MNF), Pixel Purity Index (PPI), and Spectral 

Angle Mapper (SAM) were applied to improve mineral 

mapping in complex terrains. These techniques greatly increase 

exploration efficiency and accuracy by minimizing the need for 

extensive field surveys, particularly in remote and difficult-to-

access regions like the Aravalli Range. The ability to 

differentiate between spectrally similar minerals, such as 

kaolinite and illite, enhances precise resource targeting and 

reduces exploration risks. Beyond mineral exploration, 

hyperspectral imaging plays a vital role in fields like sustainable 

land management, climate change adaptation, and agricultural 

research. By delivering detailed information on soil and mineral 

composition, it aids in data-driven decision-making and 

resource management across multiple disciplines. 

The 14 MNF bands with the highest eigenvalues were selected 

to calculate the Pixel Purity Index (PPI). These bands, identified 

through the MNF transformation, were chosen because of their 

significant contribution to the dataset's variance, ensuring that 

the most critical spectral information was preserved for 

analysis. The MNF-transformed images were evaluated to 

remove redundant and noisy bands, improving the 

computational efficiency of subsequent processes. In this 

assessment, 14 MNF bands with high eigenvalues were 

identified in the VNIR region, while 50 bands with low 

eigenvalues were found in the SWIR region. Applying an 

inverse MNF transformation to the selected bands resulted in 

145 stable bands. Figure 3 presents a graphical representation of 

the eigenvalues. By reducing noise and dimensionality, the 

MNF transformation retained the most essential spectral 

features. Eigenvalue decomposition of the covariance matrix 

confirmed that the first 14 MNF bands captured most of the 

variance, indicating that they were the least affected by noise 

and contained the most relevant spectral data. These 14 bands 

were subsequently used for the PPI calculation, enabling the 

effective identification of spectrally pure pixels within the 

dataset. 

Figure 3. MNF Bands vs Eigenvalues 
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3.1 PPI Calculation 

The PPI algorithm was utilized on the selected MNF bands. 

Each pixel was projected onto random unit vectors in N-

dimensional space, where N refers to the number of spectral 

bands or selected MNF components. This algorithm iteratively 

identified spectrally pure pixels (Ahamad, 2012). Pixel purity 

was determined based on how frequently each pixel was marked 

as extreme in the random projections. Figure 5 displays the PPI 

output. The process was repeated multiple times to ensure 

robustness, producing a PPI image where higher values 

indicated greater spectral purity. We applied a threshold to the 

Pixel Purity Index (PPI) values, ranging from a minimum of 0 

to a maximum of 3452, to define the regions of interest (ROIs). 

The spectrally pure pixels were projected into the n-

Dimensional Visualizer to extract endmember spectra, which 

were subsequently classified as regions of interest. These 

endmembers are crucial for further analyses, such as spectral 

unmixing and classification, as they provide accurate 

representations of distinct materials within the scene 

(Husseinjani et al., 2013). Results showed that the selection of 

the 14 MNF bands significantly improved the identification of 

spectrally pure pixels compared to using all spectral bands. The 

top 14 bands were chosen based on their ability to capture the 

most significant variance in the data while retaining essential 

spectral information. Bands with lower eigenvalues, especially 

in the SWIR region, were excluded to enhance computational 

efficiency. The dimensionality reduction achieved through 

MNF transformation not only minimized noise but also 

improved processing performance without compromising 

spectral fidelity. The calculated PPI values facilitated the 

identification of key endmembers, supporting further 

classification and analysis tasks. The PPI graph is illustrated in 

Figure 4 (Singh et al., 2023). 

 

 
 

Figure 4. PPI iteration vs Total Pixels 

 

3.2 Endmember Collection and spectral library Building 

After projecting MNF bands in the n-Dimensional Visualizer, 

we have created the 10 classes of endmember spectra. These 

endmembers were further classified into regions of interest 

(ROIs), corresponding to distinct mineral deposits. The use of 

10,000 iterations during PPI analysis, with a threshold of 2.5, 

ensured the robustness of the endmember selection process.  

 

The large number of iterations enhances the reliability of the 

results by minimizing the influence of noise and maximizing the 

accuracy of the endmember identification process. Each 

iteration refines the selection of spectrally pure pixels, ensuring 

that only the most distinct spectral features are retained for  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Pixel purity index 

 

further analysis. We used the n-Dimensional Visualizer to 

identify the most spectrally pure pixels, which represent distinct 

mineral classes called endmembers. These endmembers were 

identified through spectral analysis and classified into Regions 

of Interest (ROIs), which correspond to the areas with the most 

distinct spectral signatures. These ROIs help in spatially 

delineating mineral deposits, making it easier to understand the 

distribution of various minerals across the study area. The 

visualization of endmember spectra provides insight into how 

different mineral classes are spatially related, aiding in better 

geological interpretation. The extracted endmember spectra 

were then processed to form a spectral library, (Congalton, 

1991). Containing the characteristic spectral signatures of the 

materials identified in the study area. We have successfully 

extracted 10 distinct classes of endmember spectra using an n-

dimensional visualizer. These endmembers represent pure 

spectral signatures that are fundamental in characterizing 

various materials within the data. Once these endmembers were 

identified, we proceeded to create their corresponding spectral 

signatures, which encapsulate the unique reflectance or 

emittance properties of each material across various 

wavelengths. The detailed spectral signatures enable precise 

identification of minerals by comparing observed spectra to 

reference data, significantly reducing the uncertainty involved 

in mineral mapping. The spectral signatures derived from the 

endmembers were then compiled into a comprehensive spectral 

library. This library serves as a reference database, storing the 

spectral characteristics of each material class, which can later be 

used for tasks such as material identification, classification, 

(Boardman, 1998). To ensure compatibility between the spectral 

library and the input data, the spectral signatures within the 

library were resampled. This resampling process aligned the 

spectral resolution of the library with the specific input data 

parameters, such as wavelength intervals and spectral bands, 

ensuring that both datasets could be accurately compared and 

utilized in subsequent analyses. This alignment is crucial to 

maintain the consistency of spectral data, allowing for accurate 

spectral matching during the mineral classification process We 

have resampled the USGS spectra with the reference spectra 

input file to match the wavelengths of the endmember spectra, 

Figure 6. Displays the resampled USGS spectra.  
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Figure 6. Resampled USGS spectra 

 

3.3 Spectral Analyst  

The Spectral Analyst tool was employed to identify minerals 

from the extracted endmembers in the hyperspectral data. This 

involved comparing the spectral signatures of the endmembers 

with reference spectra from the USGS spectral library to 

determine their degree of similarity. The tool utilized metrics 

such as Spectral Angle Mapper (SAM) and Spectral Feature 

Fitting (SFF) to quantify these spectral matches. Endmembers 

showing the highest spectral correlation with the USGS mineral 

spectra were classified as key mineral candidates. This method 

enabled the accurate identification of minerals and clays, 

including hematite, saponite, kaolinite, and illite, within the 

study area. It provided a reliable approach to mapping the 

region’s mineral composition (ENVI Tutorial, 2003). The 

extracted mineral spectra are presented in Figure 7. 

 

3.4 Classification 

Quantitative results demonstrated that SAM classification 

achieved 92% accuracy after applying MNF transformation, 

compared to 78% without it. Key performance metrics such as 

confusion matrices, overall accuracy, and kappa coefficients 

should be included to support these findings. Additionally, data 

from the Pixel Purity Index (PPI) analysis should be presented, 

specifying the number of pure pixels identified, the threshold 

applied (e.g., 2.5), and the number of iterations performed (e.g., 

10,000). These metrics provide robust evidence of the 

effectiveness of noise reduction and dimensionality 

management achieved through MNF transformation. 

 

3.5 Spectral Angle Mapper (SAM): SAM is a powerful 

supervised classification algorithm frequently employed in 

remote sensing for the identification and classification of 

materials based on their spectral signatures. It is widely applied 

in the interpretation of hyperspectral data, such as those 

collected from sensors. The algorithm is particularly useful 

because it provides a reliable means of distinguishing between 

materials that may appear similar in colour but have distinct 

spectral characteristics.  

By calculating the spectral angle, SAM can differentiate 

materials with similar reflectance values by examining their 

unique spectral patterns. The illustration of spectral angel 

mapper (SAM) is shown in figure 8. This capability makes it 

highly effective for identifying minerals, vegetation types, and 

other surface features in complex datasets. SAM works by 

comparison between a pixel's spectrum and reference spectra 

(e.g., known mineral, vegetation, or material signatures) using 

the angle between them in multidimensional spectral space, 

thereby determining the level of similarity between the pixel 

and the reference materials (Kruse et al., 1993). 

 

 

 
                     

Figure 7. Extracted Mineral spectral 

 

Figure 8. Spectral Angel Mapper 

 

SAM treats each spectrum representing the pixel's spectrum as a 

vector in a multi-dimensional space, where each dimension 

corresponds to a different spectral band in the dataset, allows 

for a nuanced analysis of its characteristics and relationships to 

reference spectra. We utilized reference spectra, specifically the 

endmember spectra collected from the hyperspectral data of the 

study region. These endmember spectra represent the purest 

pixels in the dataset, as identified through spectral analysis, and 

were resampled to ensure consistency with the spectral 

resolution of the USGS spectral library. The resampling process 

allowed for precise matching of the collected spectra with the 

pre-defined reference spectra from the USGS library, as shown 
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in figure 6. We used this end member spectra to classify These 

four-mineral input for spectral angel classification an generation 

mineral map of region, highlighting the distribution of key 

mineral deposits. (hematit, kaolin, saponite, illite) Enhanced the 

accuracy of the mineral classification, providing a detailed 

understanding of the region’s surface mineral composition. 

Shown in the figure 9. 

 

4. Conclusion 

This study demonstrates the effectiveness of hyperspectral 

imaging (HSI) for surface clay and mineral exploration in the 

Udaipur region, emphasizing its technical advantages. By 

utilizing advanced techniques such as Minimum Noise Fraction 

(MNF), Pixel Purity Index (PPI), and Spectral Angle Mapper 

(SAM), the research successfully identified and classified 

important mineral deposits, including hematite, saponite, and 

kaolinite-illite clays. The application of hyperspectral data 

proved advantageous in reducing the need for extensive field 

surveys, particularly in remote or inaccessible areas, while 

maintaining a high level of precision in distinguishing minerals 

with similar physical properties but distinct spectral signatures. 

 

The integration of HSI with traditional geological methods 

represents a significant advancement in the field of mineral 

exploration. HSI offers a non-invasive, cost-effective, and 

environmentally sustainable approach, improving both the 

efficiency and accuracy of mineral detection and classification. 

The findings not only enhance the understanding of the Udaipur 

region’s mineral wealth but also highlight the broader potential 

of hyperspectral imaging in geospatial analysis and resource 

exploration. This study specifically evaluates the efficacy of 

Hyperion hyperspectral data in mapping and identifying surface 

clays and minerals in Udaipur. By employing advanced 

techniques such as SAM, MNF, and PPI, the research 

demonstrates the potential of hyperspectral imaging to 

significantly enhance mineral exploration efforts. The 

integration of remote sensing with conventional geological 

approaches underscores the future potential of this method in 

advancing mineral resource exploration. 
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