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Abstract

Forests play a vital role in global ecosystems, and accurate monitoring of tree crowns is essential for forest management and biod-
iversity conservation. This study investigates the use of hyperspectral imagery and dimensionality reduction methods for individual
tree-crown (ITC) segmentation, a crucial task in forest monitoring. Traditional LiDAR-based methods are often expensive and
computationally intensive, making hyperspectral imagery a promising alternative due to its data-richness. However, since most
deep learning segmentation methods accept only 3-channel images, we adapt hyperspectral images from a benchmark dataset by
applying dimensionality reduction techniques such as Principle Component Analysis (PCA), Factor Analysis, and Uniform Mani-
fold Approximation and Projection (UMAP) to transform high-dimensional data into 3-channels, before performing segmentation
using Segment Anything Model (SAM). The results show significant improvements over RGB imagery with dimensionality reduc-
tion methods, however the overall segmentation accuracy remains poor. With an average F1-score of 0.26, some methods achieved
up-to 0.38 at specific sites. The results varied between sites due to different density and tree types in the image data. Factor Analysis
and an approach with UMAP utilising vegetation indices produced the most promising results.

1. Introduction

Forests play a crucial role in biodiversity conservation and cli-
mate regulation. Effective forest monitoring requires up-to-date
data on tree species, crown sizes, and forest structure. Remote
sensing, especially hyperspectral imagery, has emerged as a key
tool for capturing this information over large areas. A central
challenge in forest monitoring is individual tree crown (ITC)
segmentation, which aids in species classification, biomass es-
timation, and forest management (Ke and Quackenbush, 2011).

ITC segmentation research dates back to the 1980s, with early
efforts focusing on detecting tree crown centres and using wa-
tershed segmentation. State-of-art methods of ITC delineation
largely rely on the integration of LiDAR data and aerial im-
agery. Nonetheless, the acquisition of LiDAR data can be ex-
pensive and computationally intensive (Graves et al., 2023). As
an alternative, multispectral and hyperspectral imagery (HSI)
offer rich spectral information that can capture subtle differ-
ences in vegetation characteristics, yet the full potential of HSI
remains under-explored (Ke and Quackenbush, 2011).

Hyperspectral remote sensing data differs from traditional RGB
(red, green & blue channelled) imagery by offering a higher
spectral resolution with hundreds of bands spanning a continu-
ous spectrum across various wavelengths. Yet, processing this
high-dimensional data presents challenges including increased
computational complexity, overfitting, data sparsity and noise
accumulation, and therefore it is frequently referred to as the
“curse of dimensionality” (Powell, 2007). To address these
challenges, dimensionality reduction techniques are employed
to reduce the number of bands while preserving critical inform-
ation. This also helps to compress data, improve computa-
tional efficiency, and facilitate visualisation (Li et al., 2022;
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Ruiz Hidalgo et al., 2021). Due to the continuous nature of HSI,
adjacent spectral bands frequently exhibit high correlation, res-
ulting in redundant information. Dimensionality reduction aims
to eliminate this redundancy while preserving the intrinsic di-
mensionality of the data, which refers to the minimum number
of dimensions required to represent the essential characteristics
of the dataset (van der Maaten et al., 2007).

Different dimensionality reduction methods applied to HSI
yield varying image characteristics, which significantly impact
the accuracy of tree crown delineation. Therefore, selecting
an appropriate dimensionality reduction method is crucial for
improving segmentation results. However, only a few studies
have addressed the optimal selection of dimensionality reduc-
tion methods for tree crown segmentation (Xi et al., 2021).

Segmentation plays a crucial role in remote sensing applica-
tions like urban planning and precision agriculture, but hand-
ling large data volumes remains a challenge, necessitating effi-
cient processing techniques (Minaee et al., 2022). Additionally,
availability of accurate annotations remains a major challenge
for tree crowns compared to other segmentation tasks due to in-
herent complexity of tree crown structures in nature. This res-
ults in lack of adequate good quality training data, presenting
difficulties in developing supervised deep learning algorithms
for ITC segmentation (Steier et al., 2024).

Recent advances in computer vision have introduced novel ap-
proaches to unsupervised image segmentation in an attempt re-
duce these issues. One such promising tool is the Segment
Anything Model (SAM) by MetaAI, which demonstrates not-
able results in general image segmentation applications without
the need of training data (Kirillov et al., 2023; Wu and Osco,
2023). SAM represents a significant advancement in zero-shot
segmentation, offering a foundation model that can be adapted

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-705-2025 | © Author(s) 2025. CC BY 4.0 License.

 
705



to a wide range of image segmentation tasks without requiring
task-specific training (Kirillov et al., 2023). SAM’s flexibil-
ity and computational efficiency make it particularly useful for
high-resolution remote sensing applications (Osco et al., 2023).
While SAM excels in 3-channelled RGB image segmentation,
integrating it with multi-channel data such as HSI remains an
active research area (Osco et al., 2023).

Our contribution: To address these research gaps, we propose
the use of dimensionality reduction as a method to aid hyper-
spectral band-reduction for usability with SAM. By using the
zero-shot principle based SAM, we also address challenges in
developing a segmentation algorithm without the availability of
adequate training data. The aim of the study is to compare vari-
ous dimensionality reduction methods in order to find the op-
timal method resulting in the best segmentation performance
using SAM. We assess the methods by using a benchmark data-
set that contains multiple images from different forest sites with
varying tree types and densities. We particularly focus on the
effectiveness of the approach in answering the following re-
search questions:

1. How does each dimensionality reduction method perform
for the different forest type and density?

2. Does the high dimensionality of hyperspectral data
provide additional latent spectral information that is use-
ful for more accurate ITC segmentation?

The evaluation will determine whether reduced hyperspectral
data offer clear advantages in terms of accuracy and seg-
mentation performance. Through this, the study will in-
vestigate whether the dimensionality-reduced hyperspectral
data provides meaningful enhancements compared to RGB or
multispectral data, ultimately assessing its suitability for advan-
cing tree crown delineation techniques.

2. Preliminaries

In this section, key dimensionality reduction (DR) methods for
hyperspectral image segmentation considered in this work are
outlined below. DR methods are categorised as supervised or
unsupervised, with the latter not requiring labelled data (Li et
al., 2022). Given the zero-shot segmentation nature of SAM,
this study focuses on unsupervised methods, further divided
into linear and non-linear approaches (van der Maaten et al.,
2007).

2.1 Linear Dimensionality Reduction Methods

Linear dimensionality reduction techniques are particularly ef-
fective for datasets with intrinsic linear structures that can be
captured by linear equations. However, they fail to adequately
represent non-linear relationships present in real-world data,
potentially missing important underlying structures (van der
Maaten et al., 2007).

Principal Component Analysis (PCA) is a classical, widely
used linear dimensionality reduction technique. PCA projects
data onto orthogonal axes (principal components) ordered by
variance. The initial components capture most of the vari-
ance, while later ones often represent noise (Li et al., 2022).
Factor Analysis (FA) is another linear method that identifies
latent variables explaining observed correlations, distinguish-
ing between common and unique variances for more nuanced
data representation (Yong and Pearce, 2013).

2.2 Non-linear Dimensionality Reduction Methods

Non-linear DR methods capture complex relationships within
data but are more computationally demanding and sensitive to
parameters (Khodr and Younes, 2011).

Independent Component Analysis (ICA) finds independent
components, useful for hyperspectral unmixing but can produce
noisier outputs than PCA (Lennon et al., 2001). Multidimen-
sional Scaling (MDS) maps data into a space preserving dis-
tances between points, effective for non-linear datasets (Saeed
et al., 2018). Non-negative Matrix Factorization (NMF) de-
composes data into interpretable non-negative matrices, applied
in hyperspectral unmixing (Wen et al., 2016). t-Distributed
Stochastic Neighbor Embedding (t-SNE) preserves local data
similarities for visualizations but struggles with high intrinsic
dimensionality (Hinton and Roweis, 2002). Uniform Manifold
Approximation and Projection (UMAP) balances local and
global structure preservation with efficient processing, making
it suitable for diverse high-dimensional data types (McInnes et
al., 2020; Li et al., 2022).

3. Method

Our method was designed to assess how various dimensionality
reduction techniques can improve tree crown segmentation. In
the first section we discuss the different approaches to the di-
mensionality reduction methods employed in this study. This
is followed by segmentation of the resultant 3-channel images
from the previous step using SAM. Finally the eligible segmen-
ted results are filtered for evaluation against annotated data. The
methodology is illustrated in Figure 1).

3.1 Dimensionality Reduction Approaches

Dimensionality reduction was performed using the Python
Scikit-learn library (Pedregosa et al., 2011), which offers
several established methods, including PCA, FastICA, MDS,
NMF, t-SNE, and Factor Analysis. The UMAP method was
utilised through the UMAP library (McInnes et al., 2020).
While most dimensionality reduction methods offer parameter
tuning, default values were used according to the respective
documentation.

3.1.1 Local, Semi-Global and Global approaches The
study tested various dimensionality reduction methods to de-
termine the most functional and stable approach. To ensure
comparability between different approaches, each method was
applied at three different levels: local (for individual plots),
semi-global (for all plots within a given site), and global (for all
test sites). This approach tests the transferability of a specific
method to different forest characteristics in the hyperspectral
dataset, as a single image-based method might not capture all
classes in the entire dataset.

For the local approach, PCA, t-SNE, ICA, NMF, MDS, FA, and
UMAP methods were applied independently to each plot, redu-
cing the hyperspectral data from 426 channels to three chan-
nels before segmentation. Each image consists of 1600 pixels
(40x40 pixels) following this process. In the semi-global ap-
proach, the images were combined side-by-side into a com-
posite image for each test site, with dimensionality reduction
subsequently applied to this composite. Afterwards, the com-
posite was split back into individual images. Methods PCA,
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SiteID Site Name State No. of Annotated Crowns Ecosystem Assigned Classification
ABBY Abby Road WA 160 Temperate rainforest Moderate Coniferous
BART Bartlett Experimental Forest NH 93 Northern hardwood forest Dense Broadleaf
BLAN Blandy Experimental Farm VA 73 Temperate deciduous forest Dense Broadleaf
BONA Caribou-Poker Creeks Research Watershed AK 255 Boreal forest Dense Coniferous
CLBJ Lyndon B. Johnson National Grassland TX 116 Temperate grassland Sparse Trees
DELA Dead Lake AL 87 Deciduous forest and wetlands Dense Broadleaf
DSNY Disney Wilderness Preserve FL 87 Wetlands and pine flatwoods Sparse Trees
HARV Harvard Forest MA 117 Temperate deciduous forest Dense Broadleaf
JERC The Jones Center At Ichauway GA 101 Longleaf pine forest and wetlands Moderate Deciduous
LENO Lenoir Landing AL 75 Bottomland hardwood forest and wetlands Dense Broadleaf
MLBS Mountain Lake Biological Station VA 481 Mixed hardwood forest Dense Broadleaf
NIWO Niwot Ridge CO 1777 Alpine tundra and subalpine forest Moderate Coniferous
OSBS Ordway-Swisher Biological Station FL 497 Pine flatwoods and wetlands Moderate Deciduous
SCBI Smithsonian Conservation Biology Institute VA 73 Mixed deciduous forest Dense Broadleaf
SERC Smithsonian Environmental Research Center MD 94 Tidal marshes and forest Dense Broadleaf
SJER San Joaquin Experimental Range CA 422 Oak savanna and grassland Sparse Trees
SOAP Soaproot Saddle CA 114 Mixed conifer forest Moderate Coniferous
TALL Talladega National Forest AL 92 Mixed pine and hardwood forest Dense Broadleaf
TEAK Lower Teakettle CA 1468 Mixed conifer forest Moderate Coniferous
UNDE University of Notre Dame Environmental Research Center MI 186 Northern hardwood forest Dense Broadleaf
WREF Wind River Experimental Forest WA 178 Temperate rainforest Dense Coniferous

Table 1. Site information with updated image-segmented crowns, ecosystem types, and classification (Weinstein et al., 2020)

Figure 1. Flowchart of the Method, with main steps being dimensionality reduction (DR) of hyperspectral imagery and hyperspectral
vegetation indices (HVI). Segmentation is performed with Segment Anything (SAM).

ICA, FA, and UMAP were included in this approach, but ex-
cluded MDS, NMF, and t-SNE due to the computational com-
plexity and based on visual evaluation detailed in Section 4.2.
The semi-global approach aims to reduce noise while sacrifi-
cing some local variation. The global approach involved redu-
cing all plots simultaneously, using the same reduction methods
as in the semi-global approach. This approach includes diverse
surface types and spectral signatures, intending to further re-
duce noise at the expense of even more local detail compared to
the local and semi-global approaches.

3.1.2 Dimensionality Reduction with Vegetation Indices
Vegetation indices (VIs) are well-established tools for quan-
tifying vegetation cover and health based on plants’ spectral
characteristics (Xue and Su, 2017) and widely used in agri-
culture, forestry, and environmental monitoring. VIs combined
with Principal Component Analysis (PCA) can be used for in-
dividual tree crown (ITC) delineation to significantly increase
segmentation accuracy (Maschler et al., 2018).

In our approach, we computed seven commonly used vegetation
indices (Table 2) and applied dimensionality reduction tech-
niques to extract the most relevant information for segmenta-
tion. Because these indices were developed using multispectral
data, we averaged over close hyperspectral bands to determ-
ine hyperspectral vegetation indices (HVI). Next, these seven
single-channel vegetation indices were stacked into a seven-
channel image. The stack was then reduced to three channels
using PCA, FA, and UMAP. These three reduction methods
showed promising results in preliminary studies. Additionally,
the semi-global and global approaches were used also with the
HVI imagery using FA, PCA, and UMAP methods, followed
by the segmentation process.

Finally, to evaluate the benefits of hyperspectral data over con-
ventional RGB imagery, we run our method with hyperspactral

and high-resolution RGB images from the dataset. This allows
us to assess any bias in segmentation using SAM, as the model
was primarily trained on RGB data. To ensure a fair compar-
ison, the RGB images were down-sampled from 0.1 meters to
1 meter resolution to match the hyperspectral image resolution.

3.2 Segmentation using SAM

Segment Anything Model (SAM) was chosen for the segmenta-
tion task for its ability to perform instance segmentation across
diverse datasets with minimal manual intervention (Kirillov et
al., 2023). The model was used in its default configuration,
generating segmentation masks for each plot. Since SAM is
designed for RGB data, 3-channel imagery was necessary. The
dimensionality-reduced hyperspectral images, as explained in
the previous section served as inputs for SAM.

Segmentation was performed using a version of SAM suitable
for remote sensing datasets called GeoSAM (Wu and Osco,
2023). GeoSAM segmented each image into multiple masks
representing different objects, and then each mask was saved
as TIF files. These masks served as base for further tree crown
segmentation filtering objects by size and spectral properties.
A tree threshold was set from 4 m² to 200 m² to discard back-
ground and objects sizes unrealistic to represent trees. Addi-
tionally, objects below an Normalized Difference Vegetation
Index (NDVI) value of 0.4 were excluded, representing non-
vegetation objects, following the approach byMarconi et al.
(2019).

3.3 Evaluation

The filtered geometries from the segmentation results were en-
closed by bounding boxes and saved as rectangles in a CSV file
for each plot. These files were later used for evaluation with
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Index Full Name Formula Reference

NDVI Normalized Difference Vegetation Index NIR−RED
NIR+RED

Rouse et al. (1973)

EVI Enhanced Vegetation Index 2.5× NIR−RED
NIR+6×RED−7.5×BLUE+1

Huete et al. (1999)

LAI Leaf Area Index 3.618× (EV I − 0.118) Boegh et al. (2002)

RENDVI Red Edge NDVI NIR−RE
NIR+RE

Gitelson and Merzlyak (1994)

CCCI Canopy Chlorophyll Content Index RENDV I−min(RENDV I)
max(RENDV I)−min(RENDV I)

Li et al. (2014)

SAVI Soil Adjusted Vegetation Index NIR−RED
NIR+RED+L

× (1 + L), L = 0.5 Huete (1988)

NDWI Normalized Difference Water Index NIR−SWIR
NIR+SWIR

McFeeters (1996)

Table 2. List of implemented Vegetation Indices (NIR- Near Infrared band; RE- Red Edge; SWIR - Shortwave Infrared)

the NEONTreeEvaluation package in R. Using this package,
precision and recall were calculated, to generate F1-score as
the primary evaluation metrics following Marconi et al. (2019).
Further, a bounding box was classified as positive if its Inter-
section over Union (IoU) exceeded 0.4.

4. EXPERIMENTS AND RESULTS

4.1 Dataset

The benchmark dataset utilised in this study is designed to eval-
uate the performance of tree delineation algorithms (Weinstein
et al., 2020) and provided by the National Ecological Observat-
ory Network (NEON). The data includes RGB data and hyper-
spectral data acquired using aerial imagery, at 0.1 m and 1 m
resolutions respectively. Our study does not use the included
LiDAR data, and the RGB data is used solely for comparative
purposes. The benchmark also offers evaluation data, compris-
ing totally over 6,000 image-annotated crowns, with multiple
plots per site. The crowns were manually annotated by a single
observer based on the dataset’s RGB images. The 21 chosen
test sites for this study reach from Florida to Alaska, encom-
passing forests dominated by conifers, broadleaves, or a com-
bination of both (see Table 1). In total, 192 annotated hyper-
spectral images, each covering 40m x 40m plots from the 21
sites, were used.

4.2 Dimensionality Reduction Outcomes

The dimensionality reduction (DR) results varied considerably
by method and plot characteristics. With local DR methods
The performance of DR methods varied significantly depend-
ing on the specific plot and forest density. Plots with isol-
ated trees (e.g. TEAK and SJER) performed well across all
methods, while dense forest plots exhibited substantial noise in
many cases. Methods such as t-SNE, PCA, UMAP, MDS, and
ICA frequently produced noisy results, with 50% of the images
containing minimal usable information. NMF also produced
noisy results for some plots, often generating single-colour im-
ages. FA and HVI-based methods were notably more resistant
to noise, yielding clearer results (Figure 2).

Semi-global approaches generally produced less noisy images
compared to the local approach, although some methods, such
as UMAP, ICA, and PCA, still struggled with noise in many
plots (Figure 3). However, as noise reduced, object distinc-
tion suffered, with some images becoming almost monochro-
matic. FA and HVI-based methods performed best, with the
clearest object separations. Global DR approaches resulted

in the least noise across most methods, particularly for PCA
and ICA (Figure 4). However, this came at the cost of reduced
object differentiation, with many images appearing as single-
colour or two-tone, complicating segmentation. FA and HVI-
based methods maintained good performance in reducing noise,
but even they experienced diminished object separability in the
global approach. The final DR methods selected for segment-
ation were based on a visual evaluation, in order to manage
computational costs effectively, which are as follows:

• FA applied to HSI locally and semi-globally

• FA, PCA, and UMAP applied to HVIs locally

• FA and UMAP applied to HVIs semi-globally

• RGB images (downscaled to match HSI resolution)

4.3 Segmentation Results and Performance Analysis

The segmentation results, shown in Figure 6, demonstrated that
SAM performed well for high-contrast objects but faced limit-
ations in dense forest plots, where objects were often merged
into large “background geometries.” NDVI-based filtering ef-
fectively excluded non-vegetation but sometimes retained non-
tree vegetation, such as bushes or grass. Shadow segmentation
was an issue in specific DR methods, leading to false positives.

Evaluation with the NEON-Tree-Evaluation package indicated
F1 scores ranging from 0.236 to 0.274 for most DR meth-
ods, with RGB images showing lower performance (F1 score
of 0.156). The best outcomes were observed with local FA
and HVI-based DR methods applied semi-globally. Segmented
and filtered bounding box counts varied, from approximately
2550 for RGB images to nearly 5000 in total for local HVI-
UMAP. Performance also depended on test site characterist-
ics; DSNY, WREF, BONA, and MLBS achieved the highest F1
scores, whereas NIWO, SERC, LENO, and ABBY performed
the worst. An average IoU of 0.233 for FA highlighted it as
the best-performing DR method overall. Detailed metrics and
site-specific evaluations are provided in Table 3.

5. DISCUSSION

5.1 Dimensionality Reduction

The results of the dimensionality reduction process were visu-
ally assessed, revealing significant variation across different
methods and test sites. For tree crown delineation, an effect-
ive DR method should allow clear separation of trees from the
background and other objects. The most common issues en-
countered during DR were the prevalence of noise and the dom-
inance of shadows in certain methods.
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Site FA local FA semi HVI FA HVI FA HVI PCA HVI UMAP HVI UMAP RGB Average
global local semi-global local local semi-global

Average: 0.274 0.267 0.266 0.272 0.244 0.263 0.236 0.156 0.261

ABBY 0.111 0.131 0.065 0.040 0.093 0.113 0.099 0.052 0.095
BART 0.000 0.035 0.182 0.192 0.164 0.284 0.296 0.091 0.169
BLAN 0.357 0.259 0.220 0.160 0.128 0.242 0.214 0.023 0.229
BONA 0.337 0.365 0.202 0.303 0.160 0.327 0.276 0.132 0.286
CLBJ 0.091 0.062 0.149 0.218 0.133 0.280 0.275 0.013 0.173
DELA 0.276 0.397 0.030 0.071 0.165 0.212 0.130 0.143 0.188
DSNY 0.380 0.310 0.398 0.247 0.248 0.358 0.315 0.384 0.324
HARV 0.296 0.333 0.162 0.208 0.151 0.212 0.140 0.040 0.218
JERC 0.268 0.218 0.144 0.171 0.107 0.244 0.260 0.055 0.205
LENO 0.111 0.142 0.037 0.063 0.081 0.110 0.083 0.000 0.092
MLBS 0.272 0.251 0.194 0.217 0.223 0.281 0.293 0.042 0.251
NIWO 0.072 0.068 0.075 0.079 0.079 0.086 0.068 0.048 0.076
OSBS 0.257 0.298 0.232 0.269 0.287 0.236 0.138 0.146 0.247
SCBI 0.076 0.058 0.132 0.135 0.112 0.210 0.215 0.059 0.135
SERC 0.063 0.084 0.051 0.019 0.031 0.186 0.144 0.034 0.087
SJER 0.208 0.213 0.251 0.257 0.207 0.207 0.213 0.131 0.224
SOAP 0.172 0.081 0.103 0.231 0.094 0.126 0.149 0.054 0.138
TALL 0.000 0.000 0.055 0.052 0.140 0.235 0.157 0.048 0.101
TEAK 0.219 0.217 0.256 0.260 0.242 0.245 0.137 0.147 0.227
UNDE 0.167 0.139 0.172 0.119 0.160 0.282 0.177 0.146 0.179
WREF 0.415 0.374 0.227 0.235 0.201 0.309 0.285 0.202 0.298

Table 3. F1 scores of various methods by site, with the best values (F1 score higher than 0.250) highlighted in bold

5.1.1 Noise Problem and its Impact Noise was most pro-
nounced in dense vegetation plots, while plots with distinct
objects showed better differentiation across DR methods. Al-
though semi-global and global approaches reduced noise, the
global approach compromised object distinction due to in-
creased pixel volume. This indicates that an optimal balance
between local and global DR may enhance outcomes, with
parameter tuning in methods such as UMAP and Isomap po-
tentially improving the balance of local and global structures
(Silva and Tenenbaum, 2002; McInnes et al., 2020).

Noise issues were particularly severe for UMAP, ICA, MDS,
PCA and t-SNE, aligning with findings that outliers can degrade
local DR performance, suggesting the need for preprocessing
(van der Maaten et al., 2007). FA, NMF, and HVI-based meth-
ods showed greater noise resilience, though NMF occasionally
produced noisy results. The reduced noise seen in semi-global
and global approaches, especially with PCA and ICA, suggests
that while scaling helps, it may reduce local detail.

5.1.2 Shadow Problem Another prominent issue was the
handling of shadows. Shadows have distinct spectral signatures
compared to illuminated areas, and many DR methods accentu-
ated these shadows, sometimes more than the trees themselves
(Figure 6), thus shadows dominate in non-HVI-based methods,
complicating the segmentation process. As shadows meet the
NDVI threshold for soil vegetation, they are often retained in
the final geometries, resulting in two segmented objects: the
tree and its shadow.

HVI-based methods were particularly effective in mitigating the
shadow problem, as their use of spectral ratios helped minimise
the prominence of shadows (Figure 7). UMAP’s use of the ”co-
sine” metric further addressed the issue, reducing the shadow’s
influence compared to the ”Euclidean” metric, as shown in Fig-
ure 8. However, UMAP continued to produce noisy results
across most plots, indicating that parameter tuning, such as ex-
ploring alternative distance measures, may be necessary (Ke-
shava, 2004).

5.2 Segmentation Results

The segmentation results revealed that GeoSAM performed
well on high-contrast images with few distinct objects (Figure
5). However, in denser forests or low-contrast images, the seg-
mentation process often failed to distinguish between objects,
leading to over or under-segmentation.

Oversegmentation was most prevalent in the local HVI UMAP
method (Figure 5), which produced the highest recall(0.312)
but a below-average precision score (0.227). In contrast, un-
dersegmentation was observed across most DR other methods
except HVI UMAP, where multiple distinct objects were often
merged with the background, especially in dense forests. Ad-
justing contrast and saturation in the DR results or tweaking
SAM parameters could improve segmentation performance.

The geometry filtering process worked well but encountered
some issues with incorrectly including non-tree vegetation and
incorrectly excluding trees. The inclusion of bushes or grass
was attributed to the filtering thresholds based on area and
NDVI. Incorporating tree-specific vegetation indices or height
data from LiDAR could enhance filtering accuracy. Conversely,
annotated dead or dry trees were often excluded due to their
blending with the background or failing to meet the NDVI
threshold. This issue could be addressed by developing indices
specifically tailored to detect deadwood or incorporating addi-
tional spectral information.

5.3 Evaluation of Segmentation Results

The average evaluation results were similar across different DR
methods. No clear pattern has emerged predicting the perform-
ance of the methods (Table 3). This is further complicated due
to factors like forest density or tree species. Another reason
may be the small sample size, as the majority of sites have fewer
than five evaluation plots. Notably, the best results found in
TEAK and DSNY sites, which are characterised by single trees
on rocky terrain, making segmentation and filtering easier. This
highlights the potential for urban tree detection when similar
image characteristics are present.
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Figure 2. Dimensionality Reduction results using local approach of five example plots

Figure 3. Dimensionality Reduction results using semi-global
approach of five example plots

The evaluation process is limited to bounding boxes. Refer-
ence data is not given in the benchmark as detailed tree out-
lines, making much of the segmentation data redundant. These
bounding boxes, created by a single observer, may be prone to
human error, especially in dense forests. Additionally, SJER
and TEAK account for over 57% of evaluation plots, while
other sites have not enough annotations for a strong conclusion.
The 1-meter resolution of the hyperspectral images fails to cap-
ture small trees, resulting in some bounding boxes being classi-
fied as false positives. Compared to a 2019 competition based
on this hyperspectral benchmark dataset, this work achieved a
lower mean IoU of 0.23, though it remains competitive - the
top two teams scored 0.340 and 0.184, respectively (Marconi
et al., 2019). These findings suggest the approach has poten-
tial and should be further explored, with recommendations for
improvements provided in the next section.

6. Conclusion and outlook

6.1 Conclusion

This paper presented an application of hyperspectral dimen-
sionality reduction (DR) methods to three channels for tree
crown segmentation, assessed the segmentation performance of

Figure 4. Dimensionality reduction results using selected global
approach of five example plots

the Segment Anything Model (SAM), and proposed a filtering
method for the segmented geometries. The effectiveness of the
DR methods was found to be highly dependent on the forest
characteristics of the sites and the method used. While some
plots performed consistently well across all DR methods, oth-
ers yielded unsatisfactory results for most methods. Notably,
Factor Analysis and DR methods utilising HVIs proved to be
the most effective and consistent, whereas other methods fre-
quently produced noisy images. Upon visual inspection of the
DR results, vegetation and non-vegetation could be effectively
differentiated, though distinguishing between different vegeta-
tion types or individual trees remained challenging. Factor Ana-
lysis and HVI-based methods also performed best in differen-
tiating between different trees in dense forest plots. The over-
all high performance of the HVI-based methods, also achiev-
able through the multispectral imagery, indicates that the higher
spectral content of hyperspectral was not sufficiently captured
by the non-HVI methods to sufficiently improve ITC segment-
ation.

SAM’s segmentation exhibited strong performance for isol-
ated trees but encountered difficulties when segmenting trees in
densely forested areas. The proposed geometry filtering method
was effective at discarding non-vegetation objects, though it
was less successful at removing non-tree vegetation, such as
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Figure 5. Results from HVI UMAP method, illustrating the
initial SAM segmentation results and the filtered segmented

geometries, demonstrating oversegmentation

Figure 6. RGB image, FA dimensionality reduction result and
evaluation results for a plot at SJER site, demonstrating the

shadow issue leading to oversegmentation

bushes or grass. Evaluation results confirmed that reduced hy-
perspectral data resulted in better tree crown delineation com-
pared to aerial RGB images with similar resolutions. How-
ever, none of the tested approaches achieved superior evaluation
scores compared to the ID-Trees competition results (Graves et
al., 2023), indicating that further improvements are necessary.

6.2 Outlook

Future work will explore additional DR methods to achieve
more consistent results across diverse images. Fine-tuning ex-
isting methods like PCA, FA, and UMAP may enhance their
performance. Employing supervised approaches, such as Lin-
ear Discriminant Analysis (LDA), could also improve differ-
entiation between trees and other objects, though these require
labeled data. Combining feature selection with feature extrac-
tion, such as selecting effective wavelengths for tree species
classification (Hennessy et al., 2020) followed by DR methods
like PCA or FA, presents another promising strategy similar to
the HVI-based method discussed in this paper.

SAM proved effective for high-contrast segmentation but
struggled with low-contrast objects, merging them into ”back-
ground geometries.” Adjusting SAM’s keyword arguments, as
noted in the GeoSAM documentation (Wu and Osco, 2023),
could improve recall, albeit at a potential cost to precision. The

Figure 7. RGB image, HVI FA dimensionality reduction result
and evaluation results for a plot at SJER site, demonstrating the
shadow issue being more successfully addressed in this method

Figure 8. RGB image, UMAP Dimensionality Reduction result
and evaluation results for a plot at SJER site, demonstrating the

shadow issue being more successfully addressed with the
UMAP-Euclidean method

newly released SAM 2, offering faster and more accurate seg-
mentation, warrants investigation. Refining geometry selection
within SAM parameters may further address under- or over-
segmentation.

The dataset limitations noted in this study suggest that test-
ing with higher-resolution datasets and alternative ground truth
data, such as tree outlines instead of bounding boxes, would
provide valuable insights into the DR and segmentation meth-
ods’ performance.
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