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Abstract 

Crop monitoring is crucial for precision agriculture, providing insights for optimizing yield and managing resources effectively. This 

study explores the fusion of Unmanned Aerial Vehicle (UAV) and Sentinel-2 (S2) satellite imagery for monitoring the crop by 

analyzing vegetation indices and canopy height information from the temporal dataset. Brovey Transform (BT) and Principal 

Component Analysis (PCA) fusion techniques are used to fuse the UAV and satellite images, aiming to leverage the high spatial 

resolution of UAV imagery with the broader spectral range of S2 data. Five key vegetation indices, including NDVI, GNDVI, SAVI, 

EVI, and LAI, were calculated from UAV, S2, and fused imagery in various temporal dates. Canopy height was derived from UAV 

data, and statistical analyses, including coefficient of determination (R2), Pearson correlation coefficient, and Root Mean Square Error 

(RMSE), were performed to assess relationships between canopy height and vegetation indices across the fused images and UAV and 

S2 images. Results indicate that fused imagery significantly enhances crop health metrics' accuracy and spatial relevance, with high 

R2 values and strong correlations between vegetation indices of fused images and UAV images, suggesting enhanced predictive power 

in monitoring crop health. Our findings highlight the advantages of fusing UAV and S2 imagery for comprehensive crop condition 

assessment, demonstrating that fused images provide a robust tool for monitoring crop vigor and stress levels. This approach offers 

valuable support for timely, data-driven decisions in crop management practices.  

 

 

1. Introduction 

Crop Monitoring is essential for maintaining and enhancing 

agricultural productivity, ensuring food security, and managing 

resources efficiently. By continuously assessing crop health, 

farmers and agronomists can detect early signs of stress due to 

factors like nutrient deficiencies, water scarcity, pests, and 

diseases (Ahmad et al., 2022). Early detection allows for timely 

intervention, reducing potential losses and minimizing the need 

for costly inputs. Crop health here resources such as water, 

fertilizers, and pesticides are applied selectively, and optimizing 

crop yield while reducing environmental impact (G & 

Rajamohan, 2022). 

 

Satellite data has become a valuable tool for monitoring crop 

parameters, leveraging a range of multispectral, hyperspectral, 

and thermal sensors on satellites to capture large-scale 

information about vegetation (Rembold et al., 2015). Satellite 

data provide indices for monitoring of crop parameters such as 

growth, chlorophyll content, moisture levels, stress detection, 

and even some aspects of nutrient deficiencies across wide areas, 

offering insights that are particularly useful for large-scale 

agriculture. Despite these advantages, satellite-based crop 

monitoring faces notable limitations. Spatial resolution can be 

inadequate for small or mixed-crop fields, where fine-grained 

detail is necessary. Atmospheric interference, such as clouds or 

haze, further limits data quality and availability, making it 

challenging to obtain consistent information over time. These 

limitations highlight the need for complementary technologies, 

such as UAVs and ground sensors, to provide more detailed, 

frequent, and reliable crop data (Sishodia et al., 2020). 

 

UAV equipped with high-resolution sensors provide valuable 

insights into plant health by measuring indicator allowing 

farmers to monitor variations in crop growth and detect early 

signs of stress (Zhao et al., 2019). Data processing techniques, 

including machine learning algorithms and vegetation indices are 

commonly used to analyse the imagery, providing actionable 

information on crop at a field scale. However, despite their 

benefits, the high cost of UAV equipment and sensors can be 

prohibitive for many small-scale farmers (Ayyappa Reddy & 

Shashi, 2023). 

 

Image fusion technology helps to combining the data from 

various sources such as satellites, UAVs and ground sensors. The 

integration of UAV and satellite data has significantly advanced 

agricultural monitoring and stress detection (Allu & Mesapam, 

2024a). Various studies highlight the potential of multispectral 

data fusion in characterizing crop health and optimizing field 

management practices. UAV integrated sensors combined with 

satellite data could pre-emptively identify stress development in 

soybean crops, allowing for proactive irrigation scheduling and 

enhanced yield outcomes. They employed temporal fusion 

techniques using indices such as NDVI, NDRE, and GNDVI, 

achieving improved accuracy in detecting moderate to severe 

water stress, underscoring the importance of timely intervention 

in crop management (Sagan et al., 2019). 

 

The fusion of UAV and satellite imagery not only improved the 

accuracy of vegetation classification but also provided 

methodological support for agricultural resource surveys (Zou et 

al., (2018). This advancement facilitates a more refined approach 

to precision agriculture, as higher classification performance 

allows for better discrimination between crop types and health 

statuses. Li et al., (2022) introduced a spatiotemporal fusion 

framework, STARFM that enhanced the monitoring of winter 

wheat growth by effectively harmonizing UAV and satellite 

imagery. Their results indicated that this approach significantly 

improved the spectral and spatial fusion effects, demonstrating 

the capability of integrated remote sensing data to provide more 

detailed insights into crop growth dynamics. 

 

Moreover, the combination of UAV imagery with satellite data 

has proven beneficial for various agricultural applications, 

including soil salinity mapping and crop classification. Ma et al., 

(2020) utilized spectral index fusion techniques to enhance the 

accuracy of salinity assessments in coastal areas by merging 
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UAV and Sentinel-2 imagery. This integration facilitated a more 

detailed understanding of soil conditions affecting crop health. 

Similarly, Zhao et al., (2019) reported significant improvements 

in classification accuracy when fusing UAV images with 

Sentinel-2A data, showcasing how multispectral data fusion can 

optimize agricultural monitoring and resource management. 

Overall, the advancements in UAV and satellite data integration 

present a promising avenue for enhancing agricultural 

productivity and sustainability through improved monitoring 

techniques. 

 

From the previous literature Allu & Mesapam, (2024a, 2024b), 

suggested to fuse the Red band of UAV imagery with the satellite 

image using the BT and PCA fusion techniques to generate the 

high spatial and spectral imagery with minimal spatial and 

spectral distortions and these images produce high classification 

accuracy imageries compared to the other band combinations and 

fusion techniques.  

 

The main aim of the study is to monitor the crop parameters using 

the fused images of satellite and UAV imagery using BT and 

PCA fusion techniques. In this work, Red band of UAV image is 

fused with the multispectral imagery of satellite to generate the 

high spatial and spectral images in various temporal dates. Five 

vegetation indices are generated from the UAV, S2 and fused 

images and canopy height from UAV imagery are compared with 

each other to identify the efficacy of the fusion images in 

monitoring the crop. 

 

2. Study Area 

The study area is situated in Dharmasagar, a region within the 

Warangal district of Telangana, India (Fig. 1). This area is 

geographically located at the coordinates 17°59’54” latitude and 

79°26’53”E longitude, providing a warm and semi-arid climate 

suitable for various agricultural practices. 

 

 
Figure 1. Study Area 

 

Paddy and maize are the primary crops cultivated in 

Dharmasagar, reflecting the region's reliance on staple food crops 

that are well-suited to the local climatic and soil conditions. The 

cultivation cycle here is heavily dependent on groundwater for 

irrigation. In this study area, paddy crop is cultivated at the time 

of data collection. 

3. Methodology 

The methodology for monitoring the crop parameters using the 

fused images are presented in the fig. 2. 

3.1 Data Collection 

3.1.1 Satellite Imagery 

Satellite images from Sentinel–2 were obtained from the 

Copernicus Browser (https://browser.dataspace.copernicus.eu/) 

website. S2 multispectral imaging mission has 13 multispectral 

bands with a spatial resolution of 10m, 20m, and 60m and the 

revisit frequency of the satellite is 5 days at the equator. The 

cloud cover percentage of the collected temporal S2 products are 

presented in Table 1. 

 

 
Figure 2.  Methodology flowchart of crop monitoring using the 

fusional images 

 

3.1.2 UAV Imagery 

In order to capture crop information on the same day as the S2 

images, UAV survey was conducted. Aerial images of crops in 

the study area were acquired with 5 day interval from March 03, 

2024 to April 27, 2024 with ideaForge Q4i 

(https://ideaforgetech.com/security-and-surveillance/q4i-uav) 

equipped with Parrot SEQUOIA+ Multispectral (MS) Sensor. 

The MS sensor captured the images in four narrow bands (Green 

(550nm±40nm), Red (660nm±40nm), Red Edge (735nm±10nm), 

and Near Infrared (NIR) (790nm±40nm)) along with one RGB 

(Red, Green, and Blue) sensor. Narrow bands are captured with 

1.2MP camera and RGB images are captured with 16MP camera. 

The UAV was flown at an altitude of 60m with the camera facing 

the centre at a 90° to the horizontal and maintaining 80% overlap 

between the images. The UAV’s speed was set to 7 m/s during 

image capture. The UAV flight path was planned using the 

BlueFire Touch Ground Control Station.  

 

3.1.3 Ground Truth 

Canopy height information is collected from the field using the 

Differential Global Positioning System (DGPS) equipment and 

measuring scale. DGPS equipment used to collect the latitude, 

longitude and elevation of ground position and measuring scale 

is used to collect the actual canopy height in the field. 

3.2 Data Processing 

3.2.1 Satellite Imagery 

Sentinel-2A L1C Top of Atmosphere (TOA) products are indeed 

orthorectified and spatially registered products are corrected for 

radiometric and geometric errors but not corrected for 

atmospheric errors, such as absorption, and scattering. The 

SEN2COR atmospheric correction algorithm was used for 

correct TOA reflectance data to surface reflectance. This 

correction accounts for the scattering of air molecules, the effects 

of atmospheric gases, and the absorption and scattering of aerosol 

particles. The pre-processed bands of the S2 products were layer 

stacked and developed with a spatial resolution of 10m. 
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3.2.2 UAV Imagery 

MS sensor captured separate images for each spectral band in 

Tagged Image File Format (.tiff) and RGB image in Joint 

Photographic Experts Group (.JPEG) format. Collected UAV 

imageries are encrypted with the information of camera positions 

(i.e. latitude, longitude, and elevation) which are acquired by 

GPS and attitude parameters such as omega, phi and kappa are 

acquired by Inertial Measurement Unit (IMU) of the UAV. These 

camera positions were used to determine the coordinates of the 

imagery location including the UAV’s roll, yaw, and pitch 

movements. The images were then aligned based on inertial 

measurements using the ground control points established using 

GPS. Once the images were aligned, tie points were generated 

from the common points between the images, which were used 

to orient the images. A mesh is generated by reconstructing the 

model using the tie points extracted from the images. Point cloud 

was generated using the tie points of the imagery and which is 

used to generate the Digital Surface Model (DSM), Digital 

Terrain Model (DTM), orthomosaic images of RGB and MS. The 

spatial resolutions of the generated UAV images are presented in 

Table 1.   

 

Day of the 

Year 

(DOY) 

UAV Image Resolution (cm/pixel) S2 

RGB 
MS, DEM and 

DTM 

Cloud 

Cover 

(%) 

03/03/2024 2.24 7.74 0.00 

08/03/2024 1.65 5.77 2.50 

13/02/2024 1.86 6.41 9.75 

18/03/2024 1.74 6.08 74.57 

23/03/2024 1.76 6.10 0.00 

28/03/2024 1.71 6.00 0.00 

02/04/2024 1.75 6.12 7.37 

07/04/2024 1.79 6.14 16.77 

12/04/2024 1.75 6.22 42.96 

27/04/2024 1.72 5.96 0.00 

Table 1. Specifications of the UAV and S2 imagery 

 

 

Figure 3. Co-registered layer stacked S2 images 

 

The generated UAV images are resampled to 6 cm/pixel for 

maintaining the consistency between the images. The pre-

processed S2 and UAV images are co-registered with each other 

before performing the image fusion operation. The co-registered 

images of the layer stacked S2 products and corresponding UAV 

RGB and MS orthomosaic images of the various Day of the Year 

(DOY) are presented in fig. 3, 4, and 5 respectively. 

 
Figure 4. Temporal UAV RGB orthomosaic images 

 

 

Figure 5. Temporal UAV MS orthomosaic images 

 

3.2.3 Image Fusion: BT and PCA fusion techniques were 

used in this study to fuse the Red band of UAV imagery with the 

multispectral imagery of S2. 

Brovey Transformation Fusion 

 

The BT enhances spatial resolution by incorporating high-

resolution UAV data with multispectral S2 data (Dadrass Javan 

et al., 2021; Ha et al., 2013). Step by step procedure of fusion of 

satellite and UAV imagery using BT fusion technique is 

explained below (Eq. (1) – (3)): 

i. Resample the UAV band’s spatial resolution to match the 

coarser S2 image resolution, ensuring compatibility for 

pixel-by-pixel fusion. 

ii. For each pixel, calculate the Brovey Ratio (BR), which 

represents the relative contribution of UAV data compared 

to the combined UAV and S2 values. 

 

 𝐵𝑅(𝑥, 𝑦) =
𝑈𝐴𝑉(𝑥,𝑦)

𝑆2(𝑥,𝑦)+𝑈𝐴𝑉(𝑥,𝑦)
 ,  (1) 

 

iii. Scale the Brovey Ratio so that values fall between 0 and 1, 

normalizing them based on the maximum pixel value. 

 

  𝐵𝑅𝑛𝑜𝑟𝑚(𝑥, 𝑦) =
𝐵𝑅(𝑥,𝑦)

𝑚𝑎𝑥(𝐵𝑅)
 ,  (2) 
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iv. Combine the normalized Brovey Ratio with the high-

resolution image to enhance spatial detail using a linear 

combination. A weighting factor α determines the 

proportion of UAV data contribution. 

 

𝐹(𝑥, 𝑦) = (1−∝) × 𝐻𝑖𝑔ℎ(𝑥, 𝑦)  + ∝× 𝑈𝐴𝑉(𝑥, 𝑦) × 

𝐵𝑅𝑛𝑜𝑟𝑚(𝑥, 𝑦)    (3) 

 

This BT-based fusion method effectively enhances spatial 

resolution by emphasizing UAV data where it provides the most 

detail, while retaining the multispectral information of the S2 

image. 

 

Principal Component Analysis (PCA) Fusion 

 

The PCA fusion method reduces data dimensionality by 

transforming the original spectral data into a new set of 

components, called principal components, which capture most of 

the information while eliminating redundancy (Metwalli et al., 

2009). Step by step procedure of fusion of satellite and UAV 

imagery using PCA fusion technique is explained below Eq. (4) 

– (11): 

 

i. Combine the UAV band and S2 image data into a single 

matrix 𝑋 with each column representing one dataset. 

 

 𝑋 = [𝑈𝐴𝑉(: ), 𝑆2(: )]   (4) 

 

ii. Compute the covariance matrix (𝐶) of 𝑋 to understand the 

variance and relationships between the datasets. 

 

 𝐶 = 𝑐𝑜𝑣(𝑋)    (5) 

 

iii. Calculate the eigenvectors and eigenvalues of 𝐶, where the 

eigenvectors represent the directions of maximum variance 

in the data. 

 

 [𝑉, 𝐷] = 𝑒𝑖𝑔(𝐶)   (6) 

 

iv. Select the first 𝐾 eigenvectors (𝑃) that capture most 

important information from eigenvectors and eigenvalues. 

v.  

 𝑃 = 𝑉(: ,1: 𝐾)   (7) 

 

vi. Transform the high resolution (UAV) and low-resolution 

images (S2) into the PCA space using the matrix P. 

 

𝑈𝐴𝑉𝑃𝐶𝐴 = 𝑃′ × 𝑈𝐴𝑉(: )   (8) 

 

𝑆2𝑃𝐶𝐴 = 𝑃′ × 𝑆2(: )     (9) 

 

vii. Average the transformed components from UAV and S2 

data to create a fused component. 

 

 𝐹𝑃𝐶𝐴 =
𝑈𝐴𝑉𝑃𝐶𝐴+𝑆2𝑃𝐶𝐴

2
   (10) 

 

viii. Finally, apply the inverse transformation to convert the 

fused PCA components back into the original image space, 

creating the fused image with enhanced spectral detail. 

 

 𝐹 = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑃 × 𝐹𝑃𝐶𝐴, 𝑠𝑖𝑧𝑒(𝑈𝐴𝑉))   (11) 

 

This PCA-based fusion efficiently combines spectral information 

from UAV and S2 images, balancing resolution and spectral 

detail.  

3.3 Data Analysis 

3.3.1 Vegetation Index 

Five vegetation indices are calculated from the S2 (SVI), UAV 

(UVI) and fused images (FVI). These vegetation indices are very 

helpful for monitor the crop parameters. 

 

Indices Formula Application Ref. 

Normalized Difference 

Vegetation Index 

(NDVI) 

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

Monitor the growth and health of vegetation 

and to identify areas of stress or damage 

(Jiang et 

al., 2021) 

Green Normalized 

Difference Vegetation 

Index (GNDVI) 

𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 

Estimate chlorophyll content in leaves, making 

it useful for assessing nitrogen levels and 

photosynthetic activity in crops. 

(Mangewa 

et al., 

2022) 

Soil Adjusted 

Vegetation Index 

(SAVI) 

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿
× (1 + 𝐿) 

Evaluate vegetation health in areas with sparse 

vegetation, as it adjusts for soil brightness to 

provide a clearer indication of plant condition 

in soil-influenced environments 

(Huete, 

1988) 

Enhanced Vegetation 

Index (EVI) 

2.5

×
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 6 × 𝑅𝑒𝑑 − 7.5 × 𝐵𝑙𝑢𝑒 + 1
 

Monitoring crop canopy structure and biomass 

(Sishodia 

et al., 

2020) 

Leaf Area index (LAI) 3.618 × 𝐸𝑉𝐼 − 0.118 
Estimations of crop growth, canopy density, 

and potential photosynthetic activity 

(Boegh et 

al., 2002) 

Table 2. Vegetation indices used for monitoring the crop parameters 

 

 

3.3.2 Canopy Height Model (CHM) 

CHM derived from UAV data is a valuable tool for assessing 

crop growth and overall plant health. CHMs are generated by 

from Digital Terrain Model (DTM), which represents the bare 

earth surface, from a Digital Surface Model (DSM) that includes 

all surface features such as vegetation, buildings, and other 

objects. The difference between the DSM and DTM represents 

the height of the vegetation canopy above ground level and the 

equation is expressed in Eq. (12). This model enables researchers 

to monitor plant growth dynamics, detect areas with stunted 

growth, and assess crop parameters by correlating canopy height 

with plant vigor and yield potential (de Castro et al., 2021). The 

CHM is particularly useful in precision agriculture, as it provides 

spatially detailed height measurements that can support targeted 

interventions, helping optimize crop management practices based 

on real-time plant height variability within fields. 

 

 𝐶𝐻𝑀 = 𝐷𝑆𝑀 − 𝐷𝑇𝑀    (12) 
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3.3.3 Statistical Analysis 

Statistical analysis plays a crucial role in evaluating the accuracy 

and effectiveness of the fused imagery compared to the UAV and 

S2 imagery for monitoring the crop parameters. For performing 

the statistical analysis, data was extracted from the 20 known 

location points from each dataset using R Studio software. Three 

common statistical metrics used in this context are Root Mean 

Square Error, Pearson correlation coefficient, and the coefficient 

of determination. 

 

RMSE is a widely used metric that quantifies the differences 

between the indices of UAV, S2 and fused images (Ma et al., 

2020). RMSE is calculated using the formula (Eq. (13)): 

 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖−𝑥�̅�)2𝑛

𝑖=1

𝑛
   (13) 

 

where 𝑥𝑖 represents the observed values, 𝑥�̅� are the predicted 

values, and n is the total number of observations. A lower RMSE 

value indicates a better fit between the predicted and observed 

values, thus demonstrating the model's accuracy in estimating 

crop parameters such as chlorophyll content, moisture levels. 

 

Pearson correlation coefficient measures the linear correlation 

between two variables, indicating how closely the relationship 

aligns with a straight line (Somvanshi & Kumari, 2020). The 

formula for the Pearson coefficient (r) is expressed in Eq. (14): 

 

 𝑟 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1 √∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1

   (14) 

 

In this equation, 𝑥𝑖 and 𝑦𝑖 are the individual sample points, and 

�̅� and �̅� are the means of the respective datasets. The Pearson 

coefficient ranges from -1 to 1, where values closer to 1 indicate 

a strong positive correlation, values near -1 indicate a strong 

negative correlation, and values around 0 suggest no correlation.  

 

The coefficient of determination is another essential statistical 

measure that provides insight into how well the independent 

variable(s) explain the variability of the dependent variable 

(Mangewa et al., 2022). R² is calculated as follows (Eq. (15): 

 

 𝑅2 = 1 −
∑ (𝑦𝑖−𝑦�̅�)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

    (15) 

 

R2 values range from 0 to 1, with values closer to 1 indicating 

that a significant proportion of the variability in the dependent 

variable is explained by the model. In the context of crop 

monitoring, a high R2 value would imply that the fusion of 

satellite and UAV data effectively captures the variation in crop 

parameters, reinforcing the model’s predictive power. 

 

Together, RMSE, Pearson correlation coefficient, and R² provide 

a comprehensive framework for assessing the accuracy and 

reliability of crop monitoring using fused remote sensing data. 

By applying these statistical analyses, researchers can validate 

efficiency of the fused images for monitoring the crop parameters 

compared to the UAV and S2 images. 

4. Results and Discussions 

Fusion of UAV and S2 imagery using the BT and PCA fusion 

techniques are generated multispectral imagery with a spatial 

resolution of 6cm/pixel. Fused images of BT and PCA fusion 

techniques are presented in fig. 6 and 7 respectively. 

 

 
Figure 6. Temporal BT fused images 

 

 
Figure 7. Temporal PCA fused images  

 

Vegetation indices: VI’s were calculated from the UAV, S2 and 

fused imagery for the various temporal dates. The mean values 

of the indices were presented in the fig. 8.  

 

 
Figure 8. Mean values of vegetation indices of the various 

temporal dates: a) NDVI, b) GNDVI; c) SAVI; d) 

EVI; e) LAI 
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From the fig. 8, the mean values of the vegetation indices from 

fused images of BT and PCA are nearly coinciding with the mean 

values of VI from the UAV images but the mean values of VI 

from the S2 images are fluctuating may be the reason due to 

coverage of large area information in a single pixel.  

 

For the NDVI, UAV and PCA fused images provided the slightly 

lower values on some dates, and BT often records higher values. 

UAV, specifically, has the highest NDVI on March 18, 2024, 

suggesting UAV images might capture a more intense vegetation 

signal during peak growth periods. The GNDVI values of the 

PCA fused images are tend to align closely with UAV 

measurements, especially in early March, reflecting consistency 

in vegetation reflectance. 

 

For SAVI, UAV shows consistently higher values, particularly 

on March 18, 2024, indicating its potential to capture finer soil-

adjusted vegetation signals. BT values tend to align with UAV 

but are slightly lower, while S2 shows significant variations, 

suggesting that S2 might record lower soil-adjusted vegetation 

activity in some instances compared to UAV. PCA generally 

reflects moderate SAVI values, bridging the gap between UAV 

and S2. 

 

UAV and BT fused images shows that, they closely aligned LAI 

values across dates, capturing consistent canopy growth over 

time. PCA values generally fall between UAV and BT values but 

remain consistently lower than S2, providing an alternative 

moderate interpretation of leaf area density. UAV and fused 

images of BT and PCA datasets exhibit closer consistency, while 

S2 shows greater variability and potentially captures extreme 

vegetation signals across indices. 

 

Canopy Height: CH of the paddy crop on various temporal dates 

was extracted from the UAV canopy height model. The median 

and distribution of canopy height values in different temporal 

dates are represented in the violin plot (fig. 9).  

 

 
Figure 9.  Violin plot of canopy height values of paddy crop in 

various temporal dates 

 

The scatter plot between the measured canopy height (from 

UAV-derived data) and the field-measured canopy height reveals 

a strong linear relationship, as indicated by the linear regression 

equation which is indicated in fig. 10. This equation suggests a 

close approximation between UAV-derived and field-measured 

values, with a slope of 0.94 and a small positive intercept (0.03), 

indicating that the UAV-measured canopy height estimates are 

slightly lower on average than the field measurements but very 

close to parity. The RMSE of 0.04m further supports the accuracy 

of the UAV measurements, as it reflects minimal deviation from 

field values. The high (R2) suggests that 95% of the variation in 

measured canopy height can be explained by the field 

measurements, highlighting the effectiveness of UAV-based 

methods in estimating canopy height with high fidelity. 

 

 
Figure 10. Scatter plot between measured and field canopy height 

 

The statistical analysis is performed between the extracted 

information from the vegetation indices of UAV, S2 and fused 

images of UAV and S2. The results indicate significant variations 

in RMSE values (fig. 11), revealing insights into the 

effectiveness and limitations of each imagery source and fusion 

technique. UAV Imagery consistently presented low RMSE 

values across different indices, such as UAV_NDVI vs. 

UAV_SAVI and UAV_NDVI vs. UAV_GNDVI underscoring 

its high precision and suitability for detailed crop analysis. 

However, UAV based measurements of LAI exhibited slightly 

higher RMSE values when compared with other indices, which 

may reflect the challenges in capturing leaf area accurately at 

smaller scales with UAVs alone. S2 imagery alone showed 

relatively higher RMSE values for maximum combinations, 

Larger RMSE values were observed in combinations involving 

S2_LAI, indicating limitations in its capacity to accurately 

capture certain crop biophysical characteristics when compared 

to high-resolution UAV imagery. 

 

Brovey Transform (BT) Fusion yielded the lowest RMSE 

between indices for certain pairs, such as BT_EVI (EVI index 

from the BT fused image) Vs. BT_LAI, indicating high 

consistency between these indices in fused imagery. This 

suggests that BT fusion effectively harmonizes vegetation 

indices, making it highly reliable for crop monitoring. 

Conversely, PCA fusion exhibits a slightly higher RMSE for 

similar index comparisons, such as PCA_EVI and PCA_LAI, 

indicating minor discrepancies between indices within PCA-

fused images. 

 

The analysis indicates that BT fusion provides more stable and 

reliable vegetation index measurements for crop monitoring than 

standalone UAV or Sentinel-2 imagery. Fused BT imagery 

achieves lower RMSEs across most index comparisons, 

suggesting it can offer more consistent and precise insights into 

crop health. PCA fusion, while beneficial, exhibits slightly higher 

RMSEs, indicating less reliability in harmonizing certain indices 

compared to BT fusion. 
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Figure 11.  Heat map of RMSE values between the UVI, SVI, 

FVI and canopy height 

 

The comparison of vegetation indices derived from UAV, S2, 

and fused images of BT and PCA fusion techniques demonstrates 

significant correlations between the images and it is represented 

in the fig. 12. Pearson correlation values of the images provide 

insights into the effectiveness of each imaging technique for field 

crop monitoring. High Pearson correlation coefficients (r > 0.9) 

were observed among certain indices within the same imaging 

source, such as UAV NDVI, UAV SAVI, S2 NDVI, S2 SAVI, 

BT EVI and BT LAI. These strong correlations suggest that 

within individual data sources, certain indices respond similarly 

to crop characteristics, implying reliable consistency within 

UAV, S2, and fused datasets for these specific index pairs. 

 

The fused images of BT and PCA are also correlated well with 

some UAV indices, with notable correlations between BT EVI 

and UAV indices such as UAV LAI, UAV EVI, and UAV NDVI 

(r ≈ 0.9). These findings indicate that fused images, especially 

those based on BT, can enhance UAV-derived metrics and 

potentially improve spatial and temporal crop monitoring, 

leveraging both UAV and satellite data's spatial and spectral 

advantages. 

 

Moderate correlations (0.7 < r < 0.8) appeared between certain 

UAV indices and PCA-derived indices, with UAV NDVI and 

PCA EVI (r = 0.78) and UAV SAVI and PCA EVI (r = 0.78) 

demonstrating reasonable compatibility. However, these values 

indicate some level of divergence, suggesting that PCA fusion 

might capture unique spectral variations not fully aligned with 

UAV indices. 

 

Lower correlations, particularly among SVI when compared to 

FVI, point to some limitations in using satellite data alone for 

high-resolution crop monitoring. For example, correlations 

between SVI and FVI indices, such as S2 NDVI and PCA SAVI 

(r = 0.089) and S2 LAI and BT LAI (r = -0.295), were minimal, 

highlighting inconsistencies when S2 data is fused with high-

resolution sources. 

 

The fusion of UAV and satellite images, especially through BT, 

offers enhanced correlation and compatibility with UAV indices, 

suggesting it as a viable method for detailed crop monitoring. 

However, some indices from PCA fusion showed moderate 

correlation, and inconsistencies remain when using S2 images 

alone or compared with fused datasets, emphasizing the need for 

tailored fusion strategies for optimal index accuracy in crop 

monitoring. 

 

 
Figure 12. Heat map of Pearson Correlation Coefficient values 

between the UVI, SVI, FVI and canopy height 

 

The analysis of R2 values between UVI, SVI and FVI are 

presented in fig. 13 and it provides insights into the effectiveness 

and comparability of these remote sensing sources and fusion 

methods in crop monitoring. Indices derived solely from a single 

platform, such as UAV or S2, generally show strong correlations, 

with values nearing or equalling 1. For instance, high correlations 

were observed between BT_EVI and BT_LAI, S2_NDVI and 

S2_SAVI, and UAV_NDVI and UAV_SAVI, each with an R² of 

1, indicating strong within-source consistency in monitoring crop 

parameters. 

 

Comparing vegetation indices between fused images and 

individual UAV or S2 images reveals some notable findings. The 

R2 values for fused BT and UAV data, such as between 

UAV_NDVI and BT_EVI (0.7899), and between UAV_GNDVI 

and BT_EVI (0.6662), are moderate, suggesting that fused 

images offer complementary yet not identical insights compared 

to single-platform data. Likewise, moderate R2 values were 

observed for relationships between UAV and PCA indices, such 

as UAV_NDVI and PCA_SAVI (0.6186), indicating that while 

fused indices maintain some alignment with individual UAV 

indices, they introduce unique information, likely from the added 

spectral and spatial data. 

 

PCA-based fusion showed slightly lower R2 values with UAV 

and S2 data compared to BT fusion, suggesting that BT fusion 

may better retain individual platform characteristics in the fused 

imagery. Such results imply that PCA fusion introduces 

additional variability or perhaps highlights different aspects of 

crop variability than UAV or S2 indices alone. 

The high R2 values within the UAV and Sentinel-2 data, confirm 

their effectiveness in capturing consistent crop characteristics. 

However, fused imagery from BT method, shows promise by 

moderately aligning with UAV indices while potentially 

enhancing crop monitoring capabilities through complementary 

spectral data. 
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Figure 13. Heat map of R2 values between the UVI, SVI, FVI 

and canopy height 

 

Overall, the BT fusion method has demonstrated superior 

performance, achieving more stable and predictable index 

relationships across datasets. This can be attributed to BT's 

ability to integrate multi-source spectral bands while minimizing 

data redundancy, thus improving reliability in vegetation 

monitoring. The close alignment between indices like EVI and 

LAI in BT fusion models implies that BT effectively captures and 

merges the high spatial resolution of UAV with the spectral depth 

of S2 data, delivering comprehensive, nuanced crop health 

insights. PCA fusion, while adding value in spectral variance 

enhancement, presents slightly less consistency in certain index 

relationships, potentially due to the introduction of mixed 

spectral components that influence index predictability. 

 

These findings underscore the practical value of fused UAV and 

S2 imagery for crop monitoring, particularly through BT fusion, 

which achieves high index reliability and consistency. These 

advanced fused datasets are promising tools for precision 

agriculture applications. 

5. Conclusion 

This study highlights the significant advantages of using fused 

imagery from UAV and S2 satellites for effective crop health 

monitoring. The integration of images using both BT and PCA 

fusion techniques has yielded multispectral data with high spatial 

resolution (6 cm/pixel), enabling precise canopy height 

estimations. The strong linear correlation between UAV-derived 

and field-measured canopy heights, reflected by an RMSE of 

only 0.04m and a coefficient of determination (R²) of 0.95, 

demonstrates the reliability of UAV data in capturing crucial 

plant height metrics. These findings affirm that UAV-derived 

canopy height can play a vital role in supporting crop health 

assessments, yield estimations, and precision agriculture 

strategies, providing actionable insights for farmers and 

agricultural managers. 

 

Moreover, the statistical analysis of vegetation indices reveals 

that BT fusion consistently outperforms PCA fusion in 

generating reliable and predictable relationships among various 

vegetation indices. The perfect correlations achieved between 

BT-derived EVI and LAI underscore the effectiveness of BT 

fusion in enhancing the predictive capacity of vegetation indices 

by mitigating noise and capturing multi-spectral information 

efficiently. Although PCA fusion also offers valuable 

enhancements, it exhibits slightly lower correlation strength in 

certain index pairs, indicating potential variability. Overall, these 

results advocate for the application of fused UAV and S2 imagery 

as a robust tool for crop health monitoring, contributing 

significantly to the realm of precision agriculture by ensuring 

accurate and scalable assessments essential for informed 

decision-making in agricultural practices. 
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