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Abstract

Fractal dimension is a statistical index of complexity to characterize geometries. It is commonly used in signal processing in
different fields of research. There, observations of dynamic systems can be translated into numerical values allowing us to classify
signals into groups of similar characteristics. In full-waveform LiDAR this methodology can be applied to the reflected echo
pulse, thus enabling an analysis based on the overall waveform characteristics. Consequently, the fractal dimension of the full-
waveform can be leveraged to differentiate between echo pulses with a high number of returns and single- or low-return echo
pulses. This introduces an independent measure, which is calculated prior to the signal processing step. The advantage of this initial
classification is that the echo pulse extraction could be further improved without need for human supervision, as the correlation
between the number of echo pulses and the fractal dimension hints towards a measure of estimating the number of echo pulses
within a recorded full-waveform. To conclude, we expand the concept of the fractal dimension to LiDAR waveforms and use the
extracted correlation between the number of echo pulses and the fractal dimension to gain new insights for estimating the total
number of echo pulses. This improvement is demonstrated through comparisons with manually annotated data, advancing the
state-of-the-art in full-waveform analysis and introducing additional parameters.

1. Introduction

Full-waveform LiDAR has become an increasingly available
commodity in the field of geospatial analysis (Mallet and
Bretar, 2009; Mandlburger, 2022; Pfeifer and Briese, 2007).
Through the detailed recording of the temporal record of the re-
flected echo pulse, the pulse-target interaction can be extracted
as a sampled curve over time (RIEGL, Laser Measurement Sys-
tems GmbH, 2012). From this step onward, the standard work-
flow looks to extract the number of targets within the wave-
form. By determining the temporal position of the targets, their
positions in the sensor frame of the laser scanner can be cal-
culated. Furthermore, standard attributes such as amplitude and
reflectance are extracted to provide further insight into the target
properties (RIEGL, Laser Measurement Systems GmbH, 2012;
Wagner et al., 2006). This well-studied field focuses on the
deconvolution of the different echo pulses within the recorded
waveform, rather than the waveform as a whole (Mandlburger
et al., 2023b; Pfennigbauer et al., 2020). Therefore, initial echo
pulse detection can potentially be further improved through re-
search of the relation of the global waveform shape and the
number of returns within (Schwarz et al., 2017; Ullrich and
Pfennigbauer, 2011).
This is where the concept of the fractal dimension comes into

play, as the fractal dimension captures the entire structure of
the waveform and converts it into numerical values (Raghav-
endra and Narayana Dutt, 2009). This concept is well estab-
lished in other fields of research where, e.g., the fractal dimen-
sion can be used to correlate periodic patterns with real-valued
numbers (Esteller et al., 2001; Hoyer et al., 2020; Raghavendra
and Narayana Dutt, 2009). For mathematical objects, the fractal
dimension is a continuous extension of the Euclidean space. In
the classical notation of dimensions, the perceived space has a
natural dimension (three or four, including time). In contrast,
the fractal dimension is expressed as a real number (Morigu-
chi, 2023). For example, the dimension of the Sierpinski tri-
angle (Figure 1 A) is log2 3 and in the field of differential equa-

Figure 1. (A) The Sierpinski triangle (Sierpinski, 1915; Wahab,
2024) and (B) the Lorenz attractor (Hunter, 2007; Lorenz, 1963)

tions, the fractal dimension of the Lorenz attractor (Figure 1 B)
can be approximated as 2.06 (Falconer, 2014; Lorenz, 1963;
McGuinness, 1983). In mathematics, this definition is used to
differentiate between degrees of complication for a geometric
curve. In general, the tools of self-similarity can be used to in-
vestigate random phenomena in geostatistics, economics, and
physics (Mandelbrot, 1967). There are many variants of the
fractal dimension, and various algorithms have been proposed
to compute them (Esteller et al., 2001; Raghavendra and Naray-
ana Dutt, 2009; Yang et al., 2015). The two most common
fractal dimensions mentioned in the literature are the Hausdorff
dimension and the box counting dimension (also referred to
as the Minkowski-Bouligand dimension) (Farmer et al., 1983;
Mainieri, 1993; Moriguchi, 2023). Although both are similar,
in the application-related fields the box-counting dimension has
become the main tool for the analysis of dynamic signals, as
there the effective estimation within the Euclidean space has
proven advantageous (Ai et al., 2014; Fernández-Martı́nez and
Sánchez-Granero, 2014). This expands the fractal dimension
from mathematical objects to various applications such as im-
ages or signals, in which the box-counting method approxim-
ates the fractal dimension through linear regression in a log-log
plot of the mesh size and the number of boxes that include part
of the objects (Moriguchi, 2023; Yang et al., 2015). The extrac-
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Figure 2. (A) Overview of the study area in Loosdorf (48.2010 N, 15.4004 E; WGS 84) Lower Austria (BEV, 2024). (B) Pond
surveyed in February 2022 (48.2166 N, 15.3744 E) and (C) a cross-section of the pond with manually annotated classification labels.

ted numerical value can then be used for the classification of the
signal and thus to improve the understanding of the structure of
the underlying mechanics.
This methodology can also be applied to LiDAR, where the
recorded waveform (a set of 2D points; amplitude × time) or
the point cloud (a set of 3D points; x-y-z coordinates) can be
used as input data to calculate the fractal dimension of the sur-
vey target. For terrestrial LiDAR, characterizations based on
waveform structure have been proposed in the past (Heinzel and
Koch, 2011; Mallet et al., 2008), where the shape and charac-
teristics of the recorded signal are used to classify points into
different categories. Examples are the different elements of
urban environments or the differentiation of tree species. Addi-
tionally, for the classical structural analysis of point clouds, the
fractal dimension has been applied to classify the point distribu-
tions of voxels, to estimate tree parameters (Moriguchi, 2023).
In the case of bathymetric LiDAR, the focus is primarily on
submerged targets. There, recent advances have improved the
detection and classification of aquatic vegetation (Mandlburger
et al., 2023b; Wagner et al., 2024). For such submerged targets,
the return extraction from the waveform presents unique chal-
lenges, as the air-water medium change directly influences the
overall waveform shape. Furthermore, signal absorption within
the water column leads to weaker returns (Schwarz et al., 2017).
This has led to a variety of methods that have been specific-
ally developed to extract signals from full-waveform bathymet-
ric LiDAR (Li et al., 2024; Schwarz et al., 2017, 2019). Here,
the possibility to analyze the waveform as a whole and extract
information about the number of echo pulses a priori remains.
This information could potentially be applied to fine-tune ex-
traction algorithms by setting limits or optimizing parameters
in the classical peak detection through a threshold set by the
fractal dimension.
Therefore, we introduce the concept of fractal dimensions for
full-waveform LiDAR and show a correlation between the num-
ber of echo pulses and the fractal dimension. This generates a
measure independent of other LiDAR attributes, which could

improve waveform classification. Furthermore, the insights
gained on the fractal dimension can be compared to human peak
detection, and thus introduce a measure related to manual an-
notation. For this, the paper first introduces a suitable bathymet-
ric LiDAR dataset, containing different waveforms of varying
shapes (Section 2.1). Secondly, the fractal dimension is form-
ally introduced and the specific application to LiDAR data is
thoroughly explained (Section 2.3). Building on the method-
ology and data set introduced, the results display a correlation
between the number of echo pulses and the fractal dimension
and further explore the relation to the annotation of human peak
(Section 3). Lastly, these results are discussed in light of cur-
rent best practices in the full-waveform analysis (Section 4) and
a summary of the findings is given (Section 5).

2. Materials and method

To investigate the concept of fractal dimensions for full-
waveform LiDAR, this section first introduces a bathymetric
LiDAR dataset acquired in 2022 containing a vegetated pond
with a variety of different waveforms. After this initial in-
troduction of the data, the formal definitions of the fractal di-
mensions are explained and the methodology for processing the
waveform data is outlined, building the basis for the results re-
ported in Section 3.

2.1 Dataset

The data set used in this study is located in Loosdorf
(48.2010 N, 15.4004 E; WGS 84) in the region of Lower Aus-
tria (Mandlburger et al., 2023a). The region of interest is
defined by the Pielach River and multiple freshwater ponds. In
the surveyed area, a subset of these ponds contain visible veget-
ation. We choose Pond 2 for the analysis, which allows in-depth
comparison of full-waveform data reflected by aquatic vegeta-
tion (Fig. 2). The data was acquired with the RIEGL VQ-840-
G, a topo-bathymetric LiDAR system (Table 1). The measuring
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platform was mounted on a helicopter and flown at an aver-
age altitude of 187m on February, 9th, 2022. The system uses
a wavelength of 532 nm and medium-sized footprints with an
average footprint diameter of 0.93m (RIEGL, Laser Measure-
ment Systems GmbH, 2012; RIEGL, 2023).

System Wavelength Flight altitude Beam divergence
LiDAR 532 nm 187m ± 20m 5 mrad

Table 1. Characteristics and parameters of the LiDAR system
used in the survey.

The recorded waveforms were processed to generate a 3D point
cloud for further structural analysis and to link the geomet-
ric features to the corresponding waveforms recorded by the
LiDAR system. Through the combination of both the point
cloud and the waveform recordings, a comprehensive dataset is
obtained, providing the basis for the introduction of the fractal
dimension analysis.

2.2 Manual peak annotation

The vegetation visible in the orthophoto of Figure 2 B causes
multiple returns at varying depths within the pond. Therefore,
the recorded waveforms include (i) single echo pulses on the
surveyed terrain around the pond, (ii) two peak returns, where
only the water surface and bottom are scanned, and (iii) multire-
turn echo pulses, where vegetation or other submerged targets
are interacting with the signal in addition to the water surface
and bottom. First, a subsample of the waveform data is selec-
ted by picking four different rounded fractal dimensions and
extracting 25 waveforms for each category. In those selected
waveforms, the number of returns ranges from single echos up
to seven peaks detected by the SVB (Surface-Volume-Bottom)
algorithm (Schwarz et al., 2019). To obtain a second independ-
ent count of the number of echo pulses for each waveform, two
experts manually annotated a subset of the data. There, a rep-
resentative subset of 100 waveforms was chosen from the data.
In this subset, the number of echo pulses ranges from single
returns up to eight peaks detected during point cloud extrac-
tion. Each annotation was done independently, thus allowing
for a qualitative evaluation of the fractal dimension in the light
of both state-of-the-art waveform fitting and supervised evalu-
ation.

2.3 Fractal dimension

To calculate the box-counting dimension dimbox(S) of a non-
empty bounded subset S ⊂ Rn, we can draw a square cover
on top of the set S and count the number of boxes N(l) that
overlap the set of length l for each square (Ai et al., 2014; Fal-
coner, 2014). By decreasing the length l of the squares, the
value N(l) changes and, if the set S exhibits a fractal pattern,
the Equation 1 for l and N(l) holds true (Ai et al., 2014; Fal-
coner, 2014).

N(l) ∼ l− dimbox(S) (1)

This relation can be leveraged, as visually the log transformed
plot of both quantities forms a regression line with the slope of
−dimbox(S) (Ai et al., 2014; Falconer, 2014). Therefore, the
box-counting dimension can be estimated by the gradient of the
graph of log(N(l)) against log(l) given by

dimbox(S) = − lim
l→0

log(N(l))

log(l)
(2)

Figure 3. Workflow illustration for the fractal dimension
calculation using the box-counting dimension. The first panel
displays a scatter-plot of all recorded samples. Based on this
input, the empty space within the signal (striped area) gets
removed to improve computation time. The three following

panels display the transformed waveform (from the waveform to
a pixel image) and an illustration of the box-counting process.

In general terms, the relationship between intersecting sets of
boxes and the length of the boxes can be seen as how irregular
(spread out) the set is in relation to how fast the irregularities
of the set S develop as l approaches 0 (Ai et al., 2014). The
initial waveform, as recorded by the LiDAR system, consists
of an intensity measurement and the time at which the sample
was recorded (Figure 3). The waveform is recorded in a sparse
format of 2D coordinates (time/intensity). Therefore, to use
the tools provided by the box-counting dimension, the recor-
ded points must be transformed into an image containing the
recorded signal. This is done by transforming the signal into a
matrix of dimension’s maximum intensity × length of the re-
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Figure 4. (A-B) Scatter plot of the cross-section from Figure 2 C, colored by the fractal dimension of the waveforms for each point
and the number of echo pulses recorded. (C) Multi-plot of different waveforms with a rounded fractal dimension of 0.8, adjusted to

have the same initial starting time. (D) Corresponding panel to C, with a rounded fractal dimension of 0.3.

cording. Each entry for which a signal is recorded is set to one,
the rest is kept at zero. Furthermore, to reduce the size of the
matrix and save computation time, all rows and columns with
all zero entries are dropped, leaving only a minimal version of
the signal as an image (Figure 3).
The resulting image can be used as input to the box-counting
algorithm, and the fractal dimension of the visible signal can
be estimated. Simplified, the method encompasses the wave-
form, displayed in the created image, in boxes of length l (Fig-
ure 3). This is done for continuously decreasing box sizes, and
the number of boxes needed in relation to the overall image is
tracked for each step l. The fractal dimension can then be ap-
proximated by fitting a regression line to all steps (Equation 2),
where the negative slope of the regression line is equivalent to
the fractal dimension.

3. Results

Pond 2 in the Pielach region of Lower Austria exhibits a vari-
ety of vegetation patches with different vertical extents. There-
fore, the number of echo pulses recorded in the data set varies

between single echo pulses on the land side terrain and multiple
echo pulses within the submerged vegetation. This builds an
ideal basis for the analysis of the LiDAR waveform structure, as
differences in the overall waveform shape can now be analyzed
using the tools of the fractal dimension analysis. The results
produced by this analysis show a linear dependency between
the fractal dimension and the number of detected echo pulses.
Furthermore, we compare our human annotation of the wave-
form data with the results of the calculated fractal dimension.

3.1 Full-waveform shape and fractal dimension values

The application of the box-counting dimension to the recorded
waveforms enables us to evaluate the overall waveform char-
acteristic through a single numerical value. The evaluation of
the data (Figure 4 and 5) shows that an increase in the fractal
dimension indicates a change in the amount of fluctuation
within the waveform. In Figure 5, we can observe that a
low-return number of echo pulses in the waveform has a fractal
dimension close to 0.4, while a high-return number of echo
pulses exhibits a fractal dimension of 0.9 for the examples
displayed. This, in combination with the larger number of echo

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-721-2025 | © Author(s) 2025. CC BY 4.0 License.

 
724



pulses displayed in Figure 4, suggests the hypothesis that an
increase in the number of echo pulses recorded is reflected in
an increase in the fractal dimension.

Figure 5. (A) Waveform with two recorded peaks. (B)
Waveform with four recorded peaks. (C) Robust regression plot
of the fractal dimension in relation to the recorded number of

echo pulses by the LiDAR system.

This applies to the cross section shown in Figure 2, as can be
seen in Figure 5 C. There, the regression line for the detected
numbers of echos displays an increase with increasing fractal
dimension. This becomes more apparent by calculating the
mean fractal dimension for each number of echos recorded in
the analyzed waveform. The corresponding results are shown
in Table 2. Except for two waveforms, Table 2 confirms the
increase in the fractal dimension with an increasing number
of echo pulses. Furthermore, the Pearson correlation and
the Spearman correlation for the displayed values are 0.37
and 0.40, respectively, exhibiting a correlation between the
fractal dimension and the number of recorded echos. A visual
comparison of the measured effect can additionally be seen
in Figure 4. There, the fractal dimension and the number of
echo pulses (Figure 4 A and B) are high within the same region
(the vegetated area of the submerged cross section), while the
terrain above the water surface has a low fractal dimension

and only single echo pulse waveforms. This can also be seen
by separating a subset of waveforms according to the fractal
dimension (Figure 4 C and D). To do so, we rounded the
fractal dimension to the closest first decimal and plotted the
recordings, adjusted to have the same start time. Figure 4 C
and D display the described waveforms for fractal dimensions
close to 0.8 and 0.3. There, the insight of the fractal dimension
into the waveform characteristics becomes apparent, as the
waveforms with 0.8 fractal dimension show a large fluctuation
in intensity and a large variation in the number of echo pulses,
while the waveforms with 0.3 fractal dimension usually contain
two distinct returns.

Number
echo pulses

1 2 3 4 5 6 7

Frac. dim. 0.22 0.51 0.47 0.5 0.64 0.75 0.87

Table 2. Mean fractal dimension for each number of detected
peaks in the waveform, displayed in Figure 5 C.

In summary, the fractal dimensions calculated for the recorded
waveforms of the submerged landscape display different nu-
merical values compared to the waveforms of targets on dry
land. Therefore, a difference between high and low fractal di-
mension values is also reflected in the number of returns and
the fluctuation within the signal. This introduces a new metric
for the analysis of full-waveform LiDAR.

3.2 Comparison to manually annotated data

Figure 6. (A) Regression plot of the fractal dimension over the
mean number of echo pulses annotated by the two experts.

(B-C) Distribution plot of the number of echo pulses extracted
during the processing versus the manually annotated peaks.

In order to expand the results, we can compare the fractal di-
mension to manually annotated labels (Section 2.2) and per-
form a cross-comparison to the number of echo pulses detected
during standard point cloud extraction. The results of this com-
parison can be seen in Figure 6. There, the first plot displays
the mean number of annotated echo pulses, showing a regres-
sion trend similar to the results seen in Section 3.1. The main
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difference compared to the manual annotation of the subsets can
be seen in panels B and C, where for both manually annotated
sets of labels, the number of echo pulses produced during the
point cloud generation is higher.

Nr. echo pulses 1 2 3 4 5 6
Frac. dim. (AI) 0.61 0.58 0.61 0.79 0.86 0.91
Frac. dim. (AII) 0.61 0.6 0.55 0.87 0.82 -

Table 3. Mean fractal dimension for each echo pulse annotated
by the two experts (AI and AII) shown in Figure 6 B and C.

This difference in peak detection can also be seen in the aver-
aged fractal dimension for the annotated peaks (Table 3). There,
the first three echo pulses show a much more similar range of
values compared to the mean fractal dimension per number of
echos shown in Table 2, with an overall higher mean fractal di-
mension for the annotated echo pulses. These differences in the
relation between the fractal dimension and the number of echo
pulses also influence the correlation. For annotated echo pulses,
the Pearson correlation and Spearman correlation are 0.72 and
0.44, exhibiting an increase in correlation. This highlights a
more distinct relationship between both waveform characterist-
ics.

4. Discussion

The results of Section 3 show a positive correlation between the
fractal dimension and the detected peaks of the full-waveform.
Furthermore, the standard processing workflow exhibits an
overestimation relative to our manually annotated data. To dis-
cuss and explain these results, this section explores the under-
lying challenges in the full-waveform analysis of bathymetric
LiDAR.

4.1 Variance in supervised peak detection

The correlation between the fractal dimension and the number
of echo pulses displays a similar trend for both manually an-
notated peaks and extracted echo pulses during standard pro-
cessing. The main difference for both extraction methods is the
number of peaks detected within each waveform. The higher
number of echo pulses during standard processing indicates an
offset between human annotation and automated detection. In
contrast, the labels for both manual annotations match to a large
extent, which can be seen in Figure 7. The overestimation of
automatic peak detection can be explained by backscattering
within the water column and the change of the medium at the
water surface, which is a general topic of interest in bathymetric
LiDAR (Li et al., 2024; Schwarz et al., 2017). There, the dis-
tinction between real and artificial targets (echo pulses) poses a
challenge, where multiple methods have been proposed to im-
prove this (Chauve et al., 2009; Li et al., 2024; Schwarz et al.,
2019; Xu et al., 2015). Therefore, the insight gained by differ-
entiating the high versus low number of echo pulses based on
the fractal dimension offers an alternative parameter to evaluate
the waveform independently.

4.2 Fractal dimension as a quality parameter

The increased correlation between the manually annotated
peaks and the fractal dimension suggests that the fractal di-
mension is indicative of what a human would consider a re-
flected echo. Therefore, the fractal dimension introduced can
be used as a quality measure within the waveform processing

Figure 7. Distribution plot comparing the two manually
annotated full-waveform peaks

of full-waveform LiDAR. The results displayed in Section 3
would suggest that a simple filter on two or fewer peaks and
more than two peaks in the waveform could be established by
using the fractal dimension. Therefore, we fine-tune the echo
pulse extraction in the data processing and thus improve agree-
ment between the human impressions of the waveform and the
automatically detected echo pulses. However, more research is
required to properly evaluate this. In addition, different fields
that use LiDAR-based remote sensing, such as forestry, could
potentially benefit from the introduced method. In these areas
of research, larger challenges remain, as the stronger bottom
return causes less distinct self-similarity in the LiDAR wave-
forms compared to the bathymetric dataset introduced in this
study. Therefore, this study only builds a foundation for the
general use of the fractal dimension for full-waveform LiDAR.

5. Conclusion

The introduction of the fractal dimension as a measure of the
characteristics of the waveform has shown a variety of differ-
ent results for the analysis of full-waveform LiDAR recordings.
The detected positive correlation between the fractal dimension
and the number of echo pulses is of particular interest, as this
independent measure adds valuable insights for the analysis of
laser waveforms. In addition, it allows for an overall separa-
tion of different types of waveforms. Furthermore, it should
be noted that these correlations can be used to deduct a quality
measure of how well the extracted pulses overlap with super-
vised extractions, which is currently outside the scope of this
study. Lastly, the fractal dimension correlates more strongly
with the manually annotated labels than with the labels extrac-
ted by standard processing methods. This stipulates that an in-
crease in the fractal dimension reflects an increase in real echo
pulse count within the waveform. Therefore, the addition of the
fractal dimension before classical peak detection could prove
advantageous and thus improve the automated echo pulse de-
tection.
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