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Abstract 
 
Remote Sensing data are used across various fields, and their selection must consider the study's objectives, sensor capabilities, and 
different resolutions. In urban climate investigations, such as the Urban Heat Island (UHI), thermal sensors estimate Land Surface 
Temperature (LST), but freely available products have low spatial resolution. This study proposes a methodology to resample MODIS 
LST from 1 km to 10 m (MODIS_LST_1km and MODIS_LST_10m, respectively), between 2018 and 2023, in different seasons, 
along the border between Portugal and Spain. We used Google Earth Engine to calculate MODIS_LST_1km and the Normalized 
Difference Vegetation Index (NDVI) from Sentinel-2. We resampled the NDVI to 1 km and calculated a regression equation for each 
data when images from both products were available. We applied the resulting equation using NDVI with a 10 m (original resolution) 
to obtain MODIS_LST_10m. We validated the results with Landsat-8 LST (Landsat_LST) data through Spearman correlation in R 
software. Additionally, we analyzed the correlation between NDVI and the Enhanced Vegetation Index (EVI) from Landsat-8 with  
MODIS_LST_10m to assess whether higher temperatures corresponded to areas with low vegetation. The model showed good 
explainability, especially in summer, and validation with Landsat-8 was also more significant in summer (ρ between 0.736 and 0.895). 
The correlations between MODIS_LST_10m with EVI and NDVI were negative on most dates, indicating higher temperatures in less 
vegetated areas. For future studies, we plan to test other sensors/satellites, such as Sentinel-3, to reinforce the robustness of this 
methodology. 
 
 
 

1. Introduction  

The application of Remote Sensing (RS) data in scientific 
analyses is extensive, encompassing areas such as environmental 
monitoring, Land Use and Land Cover (LULC) analysis, climate 
studies (Dousset and Gourmelon, 2003; Luvall et al., 2015). The 
Urban Heat Island (UHI) effect is one of the topics in which RS 
has been widely employed (Almeida et al., 2022, 2021). It is 
characterized by higher temperatures in urbanized areas when 
compared with the surrounding vegetated regions (Imhoff et al., 
2010; Oke, 1982), and it can affect the local microclimate and 
biome, the population's well-being, contribute to the dispersion 
of atmospheric pollutants, enhance biological risks, among other 
effects (Agam et al., 2008; Dousset and Gourmelon, 2003; EPA 
- United States Environmental Protection Agency, n.d.; Hall et 
al., 2012; Mirzaei et al., 2020; Oke, 1982; Weng et al., 2004). 
This effect can also be approached from the Surface Urban Heat 
Island (SUHI) perspective, evaluating the temporal variability of 
differences in Land Surface Temperature (LST) between rural 
and urban contexts (Voogt and Oke, 2003; Weng and Fu, 2014). 
 
One of the methodologies for analyzing the SUHI encompasses 
using RS data. This approach uses the average radiometric 
temperature of surface components within the field of view of 
thermal sensors (Guillevic et al., 2018; Hulley et al., 2019). 
These sensors record information in the spectral range of the 
atmospheric window (between 8 and 14 µm) and, to perform the 
measurement, are cooled to temperatures close to 0º K (so that 
their internal temperature does not interfere with the recording). 
They then average the temperatures of objects within their field 
of view, compare them with internal reference temperatures 
(representing absolute radiation), and provide the data that will 
later be used by researchers (Imhoff et al., 2010). 

 
The most commonly used LST products come from the Landsat 
satellites (since Landsat 4), Terra, Aqua, Meteosat Second 
Generation (MGS), and the Geostationary Operational 
Environmental System (GOES) (Almeida et al., 2021; Zhou et 
al., 2019). The selection depends on the study's objective. There 
are two fundamental scales for studies using LST: i) the spatial 
scale, which defines the smallest size of objects that the sensor 
can distinguish (e.g., 10m, 30m, 1 km); and ii) the temporal scale, 
which indicates the frequency with which the sensor acquires 
images of the same area (e.g., daily, weekly) (Lillesand et al., 
2015). These scales present significant challenges for study areas 
not covered by geostationary satellites, which continuously 
acquire data from an exact location. 
 
In the literature, various methodologies have been proposed to 
improve the spatial resolution of LST from different satellites 
using different resampling techniques (Bisquert et al., 2016; 
Sánchez et al., 2020). Among the proposed models, linear 
regressions between LST and Visible and Near-Infrared (VNIR) 
bands, Neural Networks (NN), and Data Mining (DM) 
algorithms stand out. However, the results obtained with linear 
regression have proven more robust  (Sánchez et al., 2020). The 
use of Vegetation Indices (VI), such as the Normalized 
Difference Vegetation Index (NDVI) and Enhanced Vegetation 
Index (EVI), derived from sensors with higher spatial resolution, 
combined with LST data from sensors with higher temporal 
resolution, like Moderate Resolution Imaging Spectroradiometer 
(MODIS), offers an opportunity to enhance the spatial resolution, 
making them more suitable for detailed analyses, especially in 
areas with LULC transitions over short distances (Tomlinson et 
al., 2011).  
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VIs can also be used to identify the density and health of 
vegetation in a given location, providing the ability to understand 
LULC composition. Studies show that there is an inverse 
correlation between VIs and LST, indicating that areas with more 
vegetation tend to have lower LST, while areas with less 
vegetation tend to have higher LST (Bokaie et al., 2019; Grover 
and Singh, 2016; Miura et al., 2001). NDVI and EVI are VIs used 
in studies to understand the local microclimate, such as UHI. 
Both indices range from -1 to +1, where values below zero 
represent clouds or water bodies, and values near +1 represent 
fully vegetated. EVI is an enhanced version of NDVI as it 
corrects for atmospheric and soil interferences, making it 
recommended for areas with high biomass (Gaitán et al., 2013; 
Rouse et al., 1973). 
 
It is worth noting that seasonality is a factor that influences the 
behaviour and metabolism of vegetation, the colour of its leaves, 
and consequently its reflectance, and it should be considered 
during data processing to achieve a more detailed analysis 
(Mariën et al., 2019). In seasons with higher solar radiation 
availability and elevated temperatures (such as spring and 
summer), vegetation tends to be more active, and consequently, 
vegetation indices (VIs) show higher values. The contrast 
between LST values and surfaces with anthropogenic materials 
and low albedo is also higher. In autumn and winter, VIs scores 
tend to decrease gradually due to reduced photosynthetic activity, 
which leads to the senescence period in some species, such as 
deciduous trees. During this time, the average daily temperature 
is also lower, minimizing the contrasts in LST and VI values 
(Johnson et al., 2018; Mariën et al., 2019; Pettorelli et al., 2005). 
 
Considering this context, our objective is to propose a 
methodology that utilizes data from the MODIS sensor aboard 
the Terra satellite, which has a spatial resolution of 1 km and 
resampled it to 10 m (MODIS_LST_1km and 
MODIS_LST_10m, respectively). We chose this sensor for its 
high temporal resolution, acquiring data once every day or two 
days (NASA, n.d.). In addition to MODIS data, we also used 
Sentinel-2 data to build the model proposed in this methodology 
and the LST from Landsat-8 (Landsat_LST) for validation. The 
proposed method focused on images collected in the border 
region between Portugal and Spain from 2018 to 2023.  
 
Additionally, we performed correlations between the NDVI and 
EVI from Landsat-8 to assess whether the higher temperatures 
from MODIS_LST_10m were associated with LULC types with 
lower vegetation indices or anthropogenic characteristics. Our 
hypotheses are that: (a) by improving the spatial resolution of 
MODIS data, we will be able to produce more detailed results for 
analyzing surface thermal behaviour in the study area concerning 
its land use and land cover (LULC) composition; and (b) we will 
be able to assess thermal behaviour using vegetation indices 
(VIs), which will likely show a negative correlation, as locations 
with a more extensive vegetation cover tend to have more 
regulated land surface temperatures (LST). 
 
 

2. Methodology 

2.1 Study Area 

We delimited the study area near the border limits between 
Portugal and Spain, covering the municipalities of Bragança, 
Mirandela, Macedo de Cavaleiros, Chaves, and Verín (Figure 1). 
We have already analyzed the UHI effect in Bragança using 
thermal data from different sensors, including MODIS, whose 
results were limited due to its spatial resolution (1 km) (Almeida 

et al., 2023a, 2023b, 2022). To apply the proposed methodology 
in this research, we expanded the study area to include neighbour 
municipalities to gather more data, improve the model's level of 
detail, and incorporate different LULC types, such as forest areas, 
agricultural lands, rural and urban zones, etc. We focused on 
describing the most relevant areas within this extension, as the 
primary objective was to identify the method instead of 
performing a detailed classification of the evaluated areas. 

Figure 1. Delimitation of the study area along the border 
between Portugal and Spain (black rectangle) 

 
The municipality of Bragança is located in the extreme northeast 
of Portugal's mainland (41º48'20" N, 6º45'42" W). It has 35,341 
inhabitants (in 2021) and an area of approximately 1,174 km²  
(Bragança, n.d.; INE, n.d.). It is located in a mountainous region 
with complex terrain due to elevation variation (Gonçalves et al., 
2018). The LULC is heterogeneous, with urban fabric, 
agriculture, forest, shrublands, natural, and bare land. According 
to the Köppen-Geiger classification, Bragança has a 
Mediterranean climate with dry summers and mild temperatures 
(Csb) (Barceló and Nunes, 2009; Bragança, n.d.; Gonçalves et 
al., 2018).  
 
In the Trás-os-Montes and Alto Douro region and part of the 
Bragança District (Portugal) (41°29′ 00″ N, 7°11′ 00″ W), the 
municipality of Mirandela has an area of approximately 674 km² 
and 23,850 inhabitants (in 2021), with varied relief, including 
valleys and mountains, and LULC composed mainly of urban 
fabric, agricultural, and vegetation areas (INE, n.d.; “Mirandela,” 
2021). It features a Mediterranean climate type Csa, with hot and 
dry summers and cool, humid winters (Barceló and Nunes, 2009; 
“Mirandela,” 2021). 
 
Macedo de Cavaleiros is also part of the Bragança district (41°30′ 
00″ N, 6°59′ 00″ W). It has an area of approximately 700 km² and 
about 16,000 inhabitants (in 2021). It includes industrial, 
agricultural, forest, natural areas, and urban fabric (INE, n.d.; 
“Macedo de Cavalheiros,” 2024). Like Bragança, its climate is 
Csb  (Barceló and Nunes, 2009; “Macedo de Cavalheiros,” 
2024). 
 
The municipality of Chaves belongs to the Vila Real District and 
is located in northern Portugal (41°45′ 00″ N, 7°32′ 00″ W). It 
has an area of approximately 591.32 km² and 41,444 inhabitants 
(in 2021) (INE, n.d.; “Município Chaves,” n.d.) The LULC 
comprises urban fabric, industries, commerce, and vegetation 
areas (Usos et al., 2015). The climate is also classified as 
Csb  (“Climate Data,” n.d.).  
 
Finally, Verín is a municipality in Galicia (Spain) (41°57′ 00″ N, 
7°27′ 00″ W). It has 13,817 inhabitants in an area of 
approximately 94 km² (“Instituto Nacional de Estadística,” n.d.).  
The climate is also Csb (Barceló and Nunes, 2009; “Clima 
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Verin,” n.d.) and the main LULC occupations are agriculture 
areas, forested areas, and small-scale urban fabric. 
 
 

2.2 Data Processing 

We processed the satellite images using Google Earth Engine 
(GEE), a cloud-based platform that speeds up processing time 
and enhances computational performance. GEE also offers a 
wide range of satellite products, many of which are pre-
processed, including orthorectification and cloud corrections, 
among other adjustments (“Google Earth Engine,” n.d.; Gorelick 
et al., 2017; Hurni et al., 2017).  
 
2.2.1  MODIS_LST_1km: We used the 
“MODIS/061/MODIS11A1” collection from the Terra satellite 
and selected images with daytime overpass times (around 11 am).  
Although this is not the best time to assess phenomena such as 
UHI (Anniballe et al., 2014), it coincided with the timing of the 
other products used from the Sentinel-2 and Landsat-8 satellites. 
We selected all images from 2018 to 2023 and applied a cloud 
mask for each to retain only high-quality pixels. We then applied 
Equation (1) using the LST_Day_1km band to calculate 
MODIS_LST_1km (Wan, 2013). Finally, we separated the 
results by season to check the influence of seasonality. 
 

MODIS_LST_1km =  LST_Band × fS  − K           (1) 
 
where  MODIS_LST_1km = Land Surface Temperature (°C). 
 LST_Band = LST_Day_1km band. 
 fS = scale factor of MODIS (0.02). 
 K = conversion constant from K to °C (273.15). 
 
2.2.2 NDVI from Sentinel-2 (10m): We selected the 
“COPERNICUS/S2_SR_HARMONIZED” collection and 
filtered for the same dates as the selected MODIS products. To 
ensure we used the highest quality pixels and removed the 
presence of clouds and their shadows, snow/ice, and water. 
Additionally, we filtered the LULC band available in this product 
for classes 4 and 5, representing vegetation and urban/bare areas. 
We calculated the NDVI using the NIR and RED bands (8 and 4, 
respectively), applying Equation (2) (Rouse et al., 1973). 
 

NDVI = (NIR − RED)
(NIR + RED)

,   (2) 
 
where  NDVI = Normalized Difference Vegetation Index. 
 NIR = reflectance in the near-infrared band. 
 RED = reflectance in the red band. 
 
2.2.3 Linear Regression: To obtain the appropriate linear 
regression, it was necessary to resample the NDVI data (Sentinel-
2) to a spatial resolution equivalent to MODIS_LST_1km. 
Initially, to ensure the spatial equivalence of the products, we 
created a grid based on the pixels of MODIS_LST_1km. We used 
this grid to identify the spatially coincident pixels in the Sentinel-
2 NDVI product and then calculated the average NDVI values 
within each grid, transforming its scale from 10 m to 1 km. 
 
Next, we calculated the linear regression using 
MODIS_LST_1km and the NDVI also at 1 km for each analyzed 
date. Subsequently, we performed the inverse: since we already 
had the equation for each date, we applied it using the NDVI data 
at 10 m (in its original size) to obtain the value of 
MODIS_LST_10m. Additionally, we obtained the Coefficient of 
Determination (R²) for each date and evaluated the model's 
explanatory power. Figure 2 illustrates this process. 

 

 
Figure 2. Methodology Applied to Resample Data from the 
Moderate Resolution Imaging Spectroradiometer (MODIS) 

from 1 km to 10 m (MODIS_LST_1km and 
MODIS_LST_10m, respectively). 

 
2.2.4 Validation: We used the product 
“LANDSAT/LC08/C02/T1_L2” from the Thermal Infrared 
Sensor (TIRS) of the Landsat-8 satellite. Although the thermal 
data are obtained at 100 m and resampled to 30 m (US Geological 
Survey, n.d.), Landsat-8 products offer a considerable 
availability of free data compared to other satellites with thermal 
sensors. Its revisit time is 16 days, widely used to generate LST 
products  (Almeida et al., 2021). 
 
Initially, we filtered the products corresponding to the selected 
MODIS dates and applied a cloud mask to retain only high-
quality pixels. To calculate Landsat_LST, we used Band 10, a 
thermal infrared (TIR) band, applying Equation (3) (US 
Geological Survey, n.d.). 
 

Landsat_LST = TIR × fS  + O − K   (3) 
 
where  Landsat_LST = Land Surface Temperature (°C). 
 TIR = reflectance in the thermal infrared band. 
 fS = scale factor of Landsat 8 (0.00341802). 
 O = offset of Landsat 8 (149.0). 
 K = conversion constant from K to °C (273.15). 
 
To evaluate the correlation between Landsat_LST and 
MODIS_LST_10m, we ensured that the values corresponded to 
the same geographic location. To achieve this, we created a grid 
with 4,981 points based on the centroids of the previously created 
grid. We included a function in GEE to extract a table containing 
the values of both parameters at each point for validation. As we 
applied a series of criteria to select the highest quality pixels, we 
selected only the dates with at least 50% of the points with 
available information when extracting data for the point grid. 
 
We applied the Shapiro test in R software and verified that 
MODIS_LST_10m and Landsat_LST were not normally 
distributed. Subsequently, we applied Spearman’s correlation 
between the two parameters and evaluated the p-value and the 
Spearman correlation coefficient (ρ) results. 
 
2.2.5 Analysis of LST and LULC: Using Landsat-8 data on 
the same validation dates, we calculated the NDVI and EVI. We 
chose to calculate these vegetation indices from Landsat-8 
because they are independent data, meaning they were not used 
in the construction of the proposed model. For NDVI, we applied 
Equation (2), using bands 5 (NIR) and 4 (RED), and calculated 
EVI using Equation (4), including band 2 (BLUE) and the 
constants defined by the United States Geological Survey 
(USGS) (Justice et al., 1998; “Landsat Enhanced Vegetation 
Index,” n.d.; Liu and Huete, 1995). 
 

EVI = 𝐺𝐺 × (NIR − RED)
(NIR + C1 × RED − C2 × BLUE + L)

,   (4) 
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where  EVI = Enhanced Vegetation Index. 
 G = gain factor, which amplifies the difference 
between the NIR and RED bands, increasing the index's 
sensitivity in dense vegetation areas. Value used: 2.5. 
 NIR = reflectance in the near-infrared band. 
 RED = reflectance in the red band. 
 C1 e C2 = atmospheric correction coefficients. Values 
used: 6 and 7.5, respectively. 
 BLUE = reflectance in the blue band 
 L = soil adjustment factor, important for areas with low 
vegetation cover. Value used: 1. 
 
Finally, we used R software to calculate the Spearman correlation 
(non-parametric data) between MODIS_LST_10m, EVI, and 
NDVI from Landsat-8 to assess whether higher LST values 
corresponded to anthropogenic areas and whether areas with 
vegetation helped regulate temperature. 
 
 

3. Results 

We used 17 images to process the resampling model with linear 
regression, as they were convergent with the three satellites 
utilized (MODIS, Sentinel-2, and Landsat-8). The data were 
separated by season since, for microclimate studies such as UHI, 
during the spring and summer months, there is a higher solar 
incidence angle, which can interfere with the results 
(Santamouris et al., 2015; Wang et al., 2020; Zhou et al., 2010). 
Of the 17 images, two were from spring, ten from summer, two 
from autumn, and three from winter. The greater availability of 
images in summer was associated with a higher presence of 
clouds in the other seasons. Table 1 presents the days of the 
images used, the seasons, and the coefficient of determination 
(R²) of the proposed resampling model. 
 
The results indicate that the model has greater explainability in 
summer, considering the R² values that ranged between 0.529 and 
0.858, with 6 out of the 10 dates showing values above 0.7. This 
behaviour may be associated with the use of NDVI in model 
construction, influenced by vegetation density and the higher 
photosynthetic activity observed during this season, which is 
driven by increased sunlight incidence and elevated temperatures 
(Johnson et al., 2018; Pettorelli et al., 2005). Furthermore, the 
sample size was greater than that of the other seasons, which may 
be associated with a period when climatic conditions are more 
stable, characterized by fewer clouds and precipitation, according 
to the climatic classification of the study area (Barceló and 
Nunes, 2009).  
 
In autumn, the R² was 0.240 and 0.708. The lower value may be 
associated with a reduction in the photosynthetic activity of 
vegetation during this season, in addition to changes in color and 
density due to leaf turnover (Mariën et al., 2019). The values in 
spring were 0.017 and 0.368, which may be associated with the 
period when vegetation has not yet fully developed. Additionally, 
the low amount of data may be explained by the absence of 
quality pixels on other days during this period (Johnson et al., 
2018; Pettorelli et al., 2005). Finally, winter showed the lowest 
values, possibly associated with climatic conditions such as 
precipitation, cloud cover, etc. (Hu, 2010; Pinho and Orgaz, 
2000). Moreover, it is discussed in the literature that, during this 
season, to protect themselves from the cold, plants enter a state 
of dormancy. As a result, using NDVI it is difficult to 
distinguishing between these vegetations and bare soil, which 
may have compromised the results (Du et al., 2016; French et al., 
2000; French and Inamdar, 2010; Withers and Cooper, 2008). 
There are also possible associations with the leaf fall of 

deciduous vegetation, namely during senescencein autumn and 
winter, which could be linked to this result (Mariën et al., 2019). 
 

Date 
(MM/DD/YYYY) Season Coefficient of 

Determination (R²) 
05/10/2018 Spring 0.368 
07/29/2018 Summer 0.715 
09/22/2018 Autumn 0.708 
01/05/2019 Winter 0.005 
03/26/2019 Spring 0.017 
09/02/2019 Summer 0.676 
06/23/2020 Summer 0.750 
07/18/2020 Summer 0.729 
09/11/2020 Summer 0.629 
03/15/2021 Winter 0.001 
07/28/2021 Summer 0.692 
08/22/2021 Summer 0.529 
11/10/2021 Autumn 0.240 
01/29/2022 Winter 0.003 
07/08/2022 Summer 0.773 
07/18/2023 Summer 0.858 
08/12/2023 Summer 0.785 

Table 1. Coefficients of Determination (R²) obtained in the 
resampling model of the Moderate Resolution Imaging 

Spectroradiometer (MODIS) from 1 km to 10 m 
(MODIS_LST_1km and MODIS_LST_10m, respectively), with 

date and season. 
 
Considering the model with the highest explanatory power 
(07/18/2023, in summer), we composed three maps: (a) a cutout 
of the study area; (b) an LST map using the original spatial 
resolution of MODIS (MODIS_LST_1km); and (c) a resampled 
LST map (MODIS_LST_10m) (Figure 3).  
 
In Figure 3 (b), the MODIS_LST_1km product, it is impossible 
to identify the variations in LULC in the study area in detail. In 
contrast, the re-sampled model (Figure 3 (c), MODIS_LST_10m 
product) shows a higher spatial resolution and greater detail of 
LULC, evidenced by higher LST values in urbanized areas 
(highlighted in red at the bottom of Figure 3 (c)) and lower values 
in vegetated areas (in blue, in the central portion of the same 
map). Analyzing the study area in Figure 3 (a), it is clear that the 
re-sampled model offers significantly sharper and more precise 
details than the original resolution in Figure 3 (b). 
 
All analysed dates showed a significant correlation in validating 
the MODIS_LST_10m model with Landsat_LST data (p-value < 
0.05). Although the explainability of the model was not high on 
all dates, in the validation, the ρ ranged from 0.482 to 0.895, 
suggesting a moderate to strong correlation between the data. Of 
the 17 evaluated dates, 14 had ρ values greater than 0.700, 
indicating the robustness and similarity of the results obtained by 
the proposed model and the Landsat_LST (Table 2). In the 
literature, there was also convergence between a downscaling 
model using Landsat-7 as a validator for MODIS/Sentinel-2 data 
(Sánchez et al., 2020). 
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Figure 3. Example of resampling from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) from 1 km to 10 m, on 
07/18/2023 (highest R² - summer): (a) study area cutout; (b) 
Land Surface Temperature (LST) map of MODIS at 1 km 

(MODIS_LST_1km); and (c) resampled LST map of MODIS at 
10 m (MODIS_LST_10m). 

Regarding the complementary analyses to understand the 
correlation between MODIS_LST_10m and EVI and to assess 
whether vegetation influences surface temperature, all results 
were significant, except for the date of 05/01/2019 (Table 2). Out 
of the 16 significant dates, 11 showed ρ values between -0.620 
and -0.771, indicating a moderate to strong inverse correlation. 
Only two dates showed low positive correlations. This result 
corroborates the literature, which establishes that, in general, 
LULC areas with vegetation have lower LST values due to their 
cooling effect (Kramer and Boyer, 1995; Kruger et al., 1983). 
 
Finally, regarding the NDVI data, except 03/15/2021, all other 
dates were significant (p-value <0.05). The behaviour of the 11 
days that showed the highest correlations for the EVI was similar 
for the NDVI, ranging from -0.649 to -0.811. Even the lowest 
correlation values were negative, reinforcing the inverse 
relationship between LST and NDVI, meaning that locations 
with higher vegetation density exhibit lower surface temperatures 
and vice versa (Bindajam et al., 2020; Guha et al., 2020) (Table 
2). 

 

Date Season 

Spearman Correlation (ρ) 

Landsat_LST 
(Validation) 
(Landsat-8) 

Enhanced 
Vegetation 
Index (EVI) 
(Landsat-8) 

Normalized 
Difference 
Vegetation 

Index 
(NDVI) 

(Landsat-8) 
05/10/2018 Spring 0.793 -0.133 -0.462 
07/29/2018 Summer 0.807 -0.713 -0.704 
09/22/2018 Autumn 0.750 -0.648 -0.705 
01/05/2019 Winter 0.823 -0.004 -0.082 
03/26/2019 Spring 0.828 0.305 -0.069 
09/02/2019 Summer 0.842 -0.655 -0.689 
06/23/2020 Summer 0.826 -0.673 -0.722 
07/18/2020 Summer 0.788 -0.668 -0.705 
09/11/2020 Summer 0.736 -0.636 -0.649 
03/15/2021 Winter 0.671 0.426 -0.011 
07/28/2021 Summer 0.817 -0.620 -0.687 
08/22/2021 Summer 0.827 -0.760 -0.753 
11/10/2021 Autumn 0.482 -0.162 -0.373 
01/29/2022 Winter 0.676 -0.086 -0.042 
07/08/2022 Summer 0.895 -0.743 -0.754 
07/18/2023 Summer 0.879 -0.738 -0.811 
08/12/2023 Summer 0.842 -0.771 -0.760 

Table 2. Spearman Correlation (ρ) results obtained between the 
resampled model of the Moderate Resolution Imaging 

Spectroradiometer (MODIS) from 1 km to 10 m 
(MODIS_LST_1km and MODIS_LST_10m, respectively) and 

the Landsat_LST (Validation), Enhanced Vegetation Index 
(EVI), and Normalized Difference Vegetation Index (NDVI) 
parameters. Results where the correlation was not significant 

(i.e., p-value > 0.05) are highlighted in red. 
 
In general, these results reaffirm the importance of vegetation in 
modulating urban temperatures, opening the door for discussions 
on mitigation and minimization measures for UHI effects through 
planning strategies (Herrera-Gomez et al., 2017; Zhibin et al., 
2015). 
 

4. Conclusions 

RS data are crucial for various studies, including monitoring 
LULC, microclimate, and biomes. One limitation of satellite 
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data, particularly thermal data, is spatial resolution. The model 
proposed in this study effectively resampled MODIS data from 1 
km to 10 m resolution, particularly during summer when 
vegetative conditions are more favorable, as reflected in the 
NDVI from Sentinel-2, which we utilized. 
 
GEE facilitated data acquisition and processing, saving both time 
and computational resources due to its cloud-based operation.  
 
Our findings revealed a negative correlation between LST data 
and the VIs in most cases, reinforcing the vegetation's ability to 
regulate temperature and mitigate UHI effects.  
 
It is important to note that the relationship between LST and VIs 
depends on local and seasonal climatic conditions. Therefore, 
conducting detailed analyses in different contexts and 
considering seasonality is recommended to identify these 
variations.  
However, the reliance on NDVI derived from Sentinel-2 
introduced limitations during other seasons, such as winter, when 
plants enter dormancy, which compromised the accuracy of our 
estimates.  
 
For future studies, we recommend incorporating indices that rely 
not solely on vegetation, enhancing effectiveness in seasons with 
reduced vegetation cover. Additionally, incorporating more 
specific climatic data, such as soil moisture indices and 
precipitation, for a more systemic and dynamic analysis between 
LST and Vis.  We suggest complementing this research with data 
from sources such as Sentinel-3 to refine the methodology and 
apply it to a broader range of scenarios. Finally, we suggest 
adding other statistical metrics beyond R² to evaluate the 
robustness of the methodology, such as the mean absolute error 
(MAE) or the root mean square error (RMSE). 
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