
A Comparative study on the impact of urbanisation on microclimate in  

Cairo (Egypt) and London (UK) using remote sensing  

and Machine Learning  
 

 

Lara Sabobeh1, Tarig Ali2, Maruf Md. Mortula3 

 
1Department of Civil Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates -

lara.sabobeh@outlook.com 
2Department of Civil Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates - atarig@aus.edu 

3Department of Civil Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates -

mmortula@aus.edu 

 

Keywords: Remote Sensing, Machine Learning, LULC Classification, Climate Change, GEE, Urban Heat Island. 

 

 

Abstract 

 

Urbanization significantly affects local microclimates, contributing to the urban heat island (UHI) effect, particularly in rapidly 

expanding cities. Effective monitoring of these changes is crucial for sustainable urban planning and climate adaptation. This study 

presents a comparative analysis of the impact of urbanization on the microclimates of two large, socio-economically distinct cities—

Cairo, Egypt, and London, UK—between 2000 and 2023. Cairo's rapid, unplanned urban expansion contrasts with London's more 

regulated, gradual growth, providing an opportunity to assess how different urbanization patterns and climates influence UHI effects. 

Using Landsat Collection 2 satellite imagery and Google Earth Engine (GEE) for classification, Land Use and Land Cover (LULC) 

was divided into four categories: water bodies, vegetation, developed areas, and barren land. Several machine learning (ML) algorithms 

were compared, with Support Vector Machine (SVM) ultimately selected for its superior performance. The classified data were further 

analysed in ArcGIS Pro. The results show a 45% increase in developed land and a 38% reduction in vegetation in Cairo, leading to an 

average LST increase of 5°C. London experienced a 25% increase in developed areas and a 20% reduction in green spaces, with LST 

rising by 2.5°C. The study achieved an overall classification accuracy of 0.89 and a kappa coefficient of 0.85, demonstrating the 

effectiveness of SVM across both cities with differing climates. This research contributes to urban sustainability efforts by identifying 

the best ML approach for monitoring LULC changes in distinct global cities, offering insights for data-driven urban planning and UHI 

mitigation. 

 

1. Introduction 

Urbanisation is one of the defining trends of the 21st century. 

Currently, over half of the global population lives in urban cities, 

which is more than double the urban population in 1950 and is 

expected to reach 68% by 2050. The United Nations World Cities 

Report projects that this population growth will cause a 141% 

increase in city land area in low-income countries, which is 

significantly higher than the land increase in upper-income 

countries of 13% (Anonymous 2018).  Rapid urban development 

has caused a loss in vegetation and wetlands, resulting in the 

degradation of ecosystems, which contributes to climate change, 

and eventual extreme weather phenomena (Bai, et al. 2018). The 

change in land use and land cover (LULC), particularly the 

replacement of vegetation cover and wetlands by impervious 

surfaces, is a major contributor to climate change, and unless 

serious actions are taken, the outcomes will have severe negative 

effects on the environment and wellbeing of people living in 

urban areas (Solomon 2023). 

 

Continuous spatiotemporal monitoring of LULC changes caused 

by urbanization activities is crucial for the decision-making 

process related to the sustainable urban planning of cities. 

However, most of the data about urbanization's effects on the 

environment are collected by local governments and are not 

always available to the public. Remote sensing can provide key 

information to monitor rapid urbanization and help achieve 

sustainable development, using high- to mid-resolution remotely 

sensed images to provide a vital unbiased source of information 

for independent global environmental studies for LULC changes 

over the years (Gómez, et al. 2016; Solomon 2023). Traditional 

remote sensing classification methods have been foundational in 

creating LULC maps. Among the most prominent traditional 

methods are Maximum Likelihood Classification (MLC) and 

various kernel-based approaches. These methods typically rely 

on statistical and mathematical algorithms to classify image 

pixels based on their spectral signatures (Gómez, et al. 2016; 

Solomon 2023; Xu 2006). However, these methods have many 

limitations, as they often assume a normal distribution of the data, 

and sometimes they are unable to capture the complex 

interactions of the environmental features, making them 

inaccurate and ineffective in many cases.  

 

To address these challenges, supervised machine learning offers 

a promising alternative for an effective LULC classification. 

Machine learning is a very effective approach for regression and 

classification of nonlinear systems. It’s especially useful when 

the theoretical knowledge of the system is incomplete, but 

sufficient observations of the system are available (Lary, et al. 

2016). It’s ideal for complex multivariant systems. Image 

classification can be either supervised or unsupervised. 

Supervised classification relies on the pre-labeled training data 

set quantity and quality, while unsupervised classification uses 

clustering algorithms like K-means to group pixels with similar 

characteristics without the need for prior labelling (Wu, et al. 

2019)(Lary, et al. 2016; Wu, et al. 2019).  

 

Supervised machine learning classifiers can be very useful in 

LULC classification, especially if a good-quality and validated 

training data set is available. For example, Gradient Tree 

Boosting (GTB), Random Forest (RF), Support Vector Machine 

(SVM), and Classification And Regression Trees (CART), are 

among the most widely used supervised ML algorithms in LULC 

classification applications. However, most of the literature agrees 

that RF and SVM outperform other classifiers in most LULC 

classification scenarios due to their robustness and ability to 
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handle high-dimensional data effectively (Shih, et al. 2019). On 

the other hand, GTB, a relatively new algorithm (Ghayour, et al. 

2021), showed a slightly better performance than the 

aforementioned classifiers in some studies (You, et al. 2022). 

However, no sufficient literature was found to compare it with 

other classifiers globally. CART, while simpler and faster to 

implement, often shows less robust performance compared to 

ensemble methods like RF and GTB, but still serves as a valuable 

tool for initial analysis and quick classification tasks. Further 

research is needed to fully understand the potential and 

limitations of GTB, compared to the other methods, in various 

LULC applications (Ahmed 2023). 

 

However, generating high to mid-resolution (30 m) LULC maps 

on a large city, involves a huge amount of data and requires 

massive capabilities for storing, analyzing, and processing this 

data, which can take days to run a model and generate a single 

image, even if the highest-performance personal computers 

available were utilized. Google Earth Engine (GEE) is a freely 

available cloud-based platform that provides tools for remote 

sensing data processing and addresses the requirements for 

dealing with big datasets and allows for acquiring, processing, 

and comparing the resulting data with the massive datasets 

available on the platform, due to its high-performance and fast 

computing capabilities (Yang, et al. 2022).  

To understand the environmental effects of urbanization and its 

impact on local climate change, key parameters like vegetation 

cover and the surface temperature (LST) should be considered. 

LST is widely affected by LULC changes (Gogoi, et al. 2019) as 

urban areas develop, and impervious surfaces increase, the LST 

increases as well. Many studies showed a clear positive 

correlation between LST and impervious surface density (urban 

area) and a negative correlation between LST and vegetation 

cover (Tran, et al. 2017).  LST rise due to urbanization not only 

increases energy consumption during summer, contributing to 

global warming, it also accelerates the process of smog formation 

and air pollution (Arnfield 2003). LST can be estimated using 

satellite sensors with thermal bands that can detect thermal 

radiation from the earth’s surface. 

  

Another important environmental factor that is affected by the 

change in LULC is the vegetation cover. Vegetation is a 

particularly important part of the earth’s ecosystem as it plays a 

vital role in the carbon and water cycle, and it is very sensitive to 

changes in temperatures. Normalized difference vegetation index 

(NDVI) is one of many indices used as a measure of the 

vegetation cover in remote sensing (Purevdorj, et al. 1998). The 

NDVI is one of the most widely used indexes in LULC 

classification, however, if used alongside other spectral indices 

such as the Normalized Difference Built-up Index (NDBI) and 

the Modified Normalized Difference Water Index (MNDWI), the 

LULC classification quality will increase especially that each of 

these indices is sensitive to different types of land cover (Pareeth, 

et al. 2019). The traditional approaches for LULC classification 

such as the Maximum Likelihood use suitable thresholds of the 

indices for each class type and assume normally distributed 

classes with linearly separable relationships, which is not true for 

most of the cases (Chen, et al. 2006).  However, the use of 

supervised machine learning algorithms allows for accurate and 

effective LULC classification and captures the non-linear and 

complex relationships within the data, without the need for 

accurate pre-defined thresholds, depending on the quality of 

training data (Qu, et al. 2021). 

 

This research compares the impact of LULC changes on local 

climate in two major global cities in the 21st century, Cairo and 

London, specifically in 2000, 2010, 2020, and 2023. Moreover, 

LULC layers over the period of study were created through 

supervised classification using four machine learning algorithms. 

The impact of LULC changes on local climate was then studied 

by examining the relationships between LULC and the 

corresponding LST layers over the period of study. The novelty 

of this research is that it explores the new GTB method and 

compares it to other well-established methods, using advanced 

accuracy metrics, and grid-based hyperparameter tuning. 

 

2. Study Area 

This study focuses on two large cities: Cairo, Egypt, and London, 

UK. These cities were selected for their distinct socio-economic 

contexts, climatic zones, and contrasting patterns of urbanization, 

providing a valuable comparative framework to assess the effects 

of urbanization on microclimates and the urban heat island (UHI) 

effect. 

 

2.1 Cairo, Egypt 

Cairo, the capital of Egypt, is located at approximately 30.0444° 

N latitude and 31.2357° E longitude south of the Mediterranean. 

It lies within a hot desert climate zone, characterised by 

extremely hot summers and mild winters, with minimal rainfall 

throughout the year. The Nile River runs through the Cairo 

metropolitan area, known as Greater Cairo, the largest 

metropolitan area in Africa. Greater Cairo covers an area of about 

2217.71 km² across three governorates: Cairo, Giza, and 

Qalyubia. Its population has experienced rapid growth, reaching 

approximately 20.57 million in 2020, with an average growth rate 

of 50.9% between 2000 and 2020. This rapid population increase 

has fuelled significant, often unregulated, urban expansion, 

leading to a notable loss of vegetation, particularly along the 

Nile’s shores. The city's Gross Domestic Product (GDP) is 

estimated at $105 billion, contributing approximately 22% of 

Egypt’s overall GDP, underscoring its importance as the 

developing nation's economic and political hub. 

 

Since the 1960s, Cairo’s population has expanded largely in an 

unplanned manner, with high-density developments replacing 

natural land cover, exacerbating the urban heat island (UHI) 

effect. These informal developments, or slums, accommodate 

about 63% of Greater Cairo’s population, who suffer from 

insufficient infrastructure, and generally poor socioeconomics 

(Kipper, et al. 2009) . This study investigates the impact of these 

rapid urban changes on local climate, focusing on the increase in 

Land Surface Temperature (LST) due to urbanization. The study 

area covers Greater Cairo, based on the latest administrative 

boundaries reported by the Egyptian government. Figure 1 

illustrates the extent of Greater Cairo examined in this study. 
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Figure 1. Map of the study area (Greater Cairo). 

 

2.2 London, UK 

London, the capital of the United Kingdom, is located at 

51.5074° N latitude and 0.1278° W longitude, within the 

temperate maritime climate zone. Covering an area of 1594 km², 

the city lies along the Thames River, which has shaped its urban 

layout and green spaces. By 2020, London’s population reached 

9.3 million, with a growth rate of around 18% from 2000 to 2020. 

London’s GDP, estimated at $565 billion, further cements its 

status as a global financial hub. Unlike cities experiencing rapid, 

unregulated growth such as Cairo, London’s urban expansion has 

been more carefully managed. Strict planning regulations aim to 

protect green spaces and limit unchecked development, 

particularly in suburban and former industrial areas.  

 

Over the past 50 years, London has experienced significant 

LULC changes. The city has transitioned from primarily 

industrial land use to a blend of high-density residential, 

commercial, and mixed-use developments. Suburban areas have 

expanded into what was once agricultural land, transforming into 

residential neighbourhoods (Rowland, et al. 2020). Despite the 

urban growth, London has managed to preserve and even expand 

its green areas. However, the reduction in natural land cover in 

newly developed areas has contributed to rising local 

temperatures, intensifying the UHI effect. This study examines 

the relationship between regulated urbanisation and local climate 

impacts, specifically rising LST, and contrasts these trends with 

Cairo’s more rapid, unregulated urban growth and more extreme 

UHI effects. Figure 2 shows the Greater London area, consisting 

of different wards, chosen as the focus of this study. 

 

 
Figure 2. Map of the study area (Greater London) 

 

3. Data and Methods 

3.1 Dataset 

Landsat Collection 2 images were acquired and used in this study 

to create annual composites for 2000, 2010, 2020, and 2023. 

Landsat Collection 2 images were selected for different reasons. 

Firstly, their medium resolution (30m) is optimal for an 

environmental study on a large city scale, as it is high enough to 

capture the important parameters and not too high that processing 

time is not practical. Secondly, they are the longest-running 

satellites that have captured remotely sensed imagery of the Earth 

since 1972, so the results of this study can be used for future work 

that uses the same dataset. Thirdly, they are freely available in 

GEE and provide consistent global coverage. Landsat satellites 

overlap in their operation years, for example, Landsat 5 TM and 

Landsat 7 ETM+ both cover the years 2000 and 2010. In other 

words, each location on Earth is captured by more than one 

satellite sensor at any time after 1982. Additionally, each Landsat 

satellite captures images of the same area almost every 16 days 

(return period). To capture as much data as possible from each 

scene, all images from Landsat satellites operating during the 

period from 2000 to 2023 will be combined into one image 

collection. Collection 2 surface reflectance Tier 1 data were used 

because they provide atmospherically corrected surface 

reflectance and land surface temperature with higher radiometric 

and positional accuracy than Tier 2 data. Figure 3 below 

illustrates the workflow followed to generate the LULC and the 

LST maps. A detailed explanation of the steps can be found in 

the subsequent sections.  

 

 
Figure 3. Methodology flowchart. 
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3.1.1 Data Preprocessing: After importing the Landsat 5-9 

image collections into Google Earth Engine (GEE), the 

"QA_PIXEL" band was used to identify and mask out pixels 

affected by clouds, shadows, or snow, as detected by the CFMask 

algorithm. The "QA_RADSAT" band was then applied to 

remove saturated pixels that were unusable. This process 

produced a cloud- and shadow-free image collection with no 

saturated pixels. The integer digital number (DN) values of the 

bands were then rescaled to their original floating-point values 

using the appropriate scaling factors and offsets. All image 

collections were merged into one large collection to get as much 

data as possible for each location. The collection was clipped to 

the study area to speed up processing and filtered to ensure 

coverage of the entire study period, which was the whole 12 

months of each study year. Each location had a maximum of 24 

images per year, representing two monthly captures, from at least 

one satellite at a time. To create a single image for each location, 

the median function was used, which assigned the median pixel 

value across all images. Initially, the study focused on images 

from May to September, but gaps in the 2000 and 2010 images 

required expanding the study period to 12 months. This filled 

gaps and improved image quality. In 2010, data gaps from the 

Landsat ETM+ sensor failure were interpolated using 

surrounding pixels, enhancing image continuity. 

 

3.1.2 Training And Validation Sample Collection: After 

importing, preprocessing, and filtering the data, collecting the 

training samples LULC classification is the next step, into four 

general LULC classes: Water bodies, vegetation areas, developed 

areas, and barren land. There is no strict limit on sample size, but 

larger samples generally improve accuracy. However, manually 

collecting samples is time-consuming, and larger datasets 

increase processing costs in GEE. Therefore, a balanced sample 

size is important. In this study, at least 40 samples per LULC 

class were manually and randomly collected for each city from 

cloud-free Landsat images for 2000, 2010, 2020, and 2023. These 

points were selected to cover variations within each class, 

ensuring a balanced and accurate dataset. The resulting feature 

collection was exported and re-imported as an asset to reduce 

processing time. The dataset was then overlaid on training images 

and split into 70% for training and 30% for validation. Table 1 

summarizes the collected sample and distribution. 

 

Year 
Class Training 

Sample 

Validation 

Sample Water Vegetation Developed Barren 

2000 90 92 90 90 253 109 

2010 91 89 92 91 254 109 

2020 90 90 92 91 254 109 

2023 92 91 89 91 254 109 

Sum 363 362 363 363 1015 436 

Table 1. Collected data description.  
 

3.1.3 Additional Layers Calculation: To improve the 

models' accuracy, additional indices and auxiliary data were 

calculated, and combined with the median image.  These 

incidences are the normalized difference vegetation index 

(NDVI), the normalized difference-built index (NDBI), and the 

modified normalized difference water index (MNDWI). 

Topographical features (Slope and Elevation) were captured 

using the Digital Elevation Model (DEM) from the Shuttle Radar 

Topography Mission (SRTM) [101] because of its global 

coverage, and accuracy, and the pixel size is 30 m, which is the 

same as the pixel size of other data. This resulted in creating 3 

index bands, and 2 topography bands, in addition to the 6 original 

spectral bands from the satellite sensors. These 11 bands were 

combined to create one image for each year of the study. Landsat 

4-9 collection 2- Level 2 products contain a ready-to-use Surface 

Temperature band, in Kelvin as a 30 m grid. Therefore, this 

research simply converted these from Kelvin to degrees Celsius 

°C. 

 

3.2 Supervised Classification 

GEE was used to perform supervised classification, utilizing 

training image bands and training samples collected in the 

previous steps. The 11 bands (features) retrieved in the earlier 

steps were normalized based on the minimum and maximum 

values of each band to enhance the performance of the classifiers. 

After that, the CART, GTB, RF, and SVM classification models, 

which are readily available in GEE, were applied to the 

normalized image in GEE using the training sample. However, 

the performance of these models is highly dependent on the 

values chosen for the hyperparameters for each model. Therefore, 

grid-based hyperparameter tuning trials were performed for each 

model at least 200 times, by training and testing the model for 

every hyperparameter value in a series of possible values, against 

other series of values for other parameters. After hyperparameter 

tuning, the optimal parameter that maximized validation 

accuracy while keeping overfitting below 3% was selected. Table 

2 below shows the hyperparameters’ values that were finally used 

for training the models. 

 
Model Hyperparameter Value 

CART 
maxNodes 10 

minLeafPopulation 32 

GTB 
maxNodes 70 

numOfTrees 30 

RF 
numOfTrees 70 

minLeafPopulation 12 

SVM 
Cost 1024 

Gamma 0.0078125 

Table 2. Optimal hyperparameters values used. 
  

Classified images initially showed a "salt and pepper" effect due 

to misclassification noise, which was resolved using Simple Non-

Iterative Clustering (SINC) for image segmentation. This 

unsupervised clustering technique replaced misclassified pixels 

with the majority cluster value using GEE. However, due to data 

volume, further analysis was conducted in ArcGIS Pro instead. 

 

For accuracy assessment, the data was split into 70% for training 

and 30% for validation, with confusion matrices and metrics 

calculated in GEE. Key metrics included overall accuracy, 

producer’s accuracy (recall), consumer’s accuracy (precision), 

kappa statistic, F1-score, and the Z-score which compares 

classifier performance, with a Z-score above 1.96 indicating a 

95% likelihood that one classifier performed better than another. 
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4. Results And Discussion 

4.1 Classification Metrics Results 

The study assessed four classifiers (CART, GTB, RF, and SVM) 

based on multiple accuracy metrics for LULC classification. 

SVM outperformed the others, achieving the highest validation 

overall accuracy (88.34%) and Kappa statistic (84.31%), 

indicating strong agreement between observed and predicted 

values. RF and GTB performed similarly, with RF having a 

slightly higher validation accuracy (86.2%) than GTB (86.04%). 

CART had the lowest performance, with a validation accuracy of 

83.06%. Table 3 summarizes the results of the overall accuracy 

and Kappa statistics for both the training and validation samples. 

 
Metric  CART GTB RF SVM 

Training 

Sample 

overall 

accuracy 
85.68 88.9 88.27 88.51 

Kappa 

Statistics 
80.9 85.2 84.36 84.68 

Validatio

n Sample 

Overall 

accuracy 
83.06 86.04 86.2 88.34 

Kappa 

statistics 
77.4 81.37 81.59 84.31 

Table 3. Overall accuracy and Kappa statistics for the 

four models. 
In terms of class-level accuracy, general trends showed that all 

models performed best in identifying the water class, while the 

developed and barren classes had the most variability in accuracy 

across the models. The F1-score, which is the harmonic mean of 

producer's and consumer's accuracy, was used to assess overall 

performance. SVM consistently outperformed the others, 

achieving the highest F1-scores across all classes. The water class 

had the highest F1-scores for all classifiers, while the barren class 

had the lowest. Figure 6 in the appendix summarizes the F1-score 

results.  

 

Finally, the Z-score analysis indicated that SVM was superior to 

the other classifiers, with more than 84% confidence over CART, 

while RF and GTB performed almost equally. The Z-score results 

are summarized in Table 4. Z-score results.in the Appendix. 

Overall, SVM was the best model, followed by RF and GTB, 

with CART performing the worst.  

 

4.2 LULC Maps 

In comparing Cairo and London, the SVM model was used, as it 

performed better than the other models as discussed in the 

previous section, revealing key trends in land use and land cover 

(LULC) changes from 2000 to 2023. As shown in Figure 4, water 

bodies remained largely stable, with changes of less than 2% in 

both cities. However, vegetation cover steadily declined in both, 

reflecting the expansion of urban areas. The extent of this 

urbanisation differs between the two cities. Cairo saw a dramatic 

90% increase in developed land, compared to a more moderate 

58% increase in London. This suggests that Cairo is undergoing 

rapid urbanization, far outpacing London's growth. On the other 

hand, in Cairo, the barren area decreased from 54.04% in 2000 to 

46.81% in 2023, still making up nearly half of the city's total land 

by the end of the study period. In contrast, London saw an 

increase in barren land, rising from 1.88% in 2000 to 9.95% in 

2023. While Cairo continues to have the highest proportion of 

barren land, this decline suggests some conversion of barren land 

to other uses. This suggests that Cairo's expansion into 

undeveloped and barren land is more pronounced, while 

London's development likely focuses on previously developed or 

vegetated areas. 
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Figure 4. The percentage of area occupied by each of the 

classes in the two cities over the study period, based on 

the SVM model. 
  

When comparing the LST in Cairo and London, both cities 

demonstrate clear impacts of urbanization on LST, reflecting the 

UHI effect. In Cairo, the mean LST rose from 36.35°C in 2000 

to 39.92°C in 2023. London, with a lower overall LST, saw its 

mean temperature rise from 23.03°C in 2000 to 26.04°C in 2023. 

It’s also important to understand how different LULC patterns 

affect the LST. In both cities, water bodies consistently exhibit 

the lowest temperatures due to water’s high heat capacity, with 

temperatures around 30°C in Cairo and 18°C in London in 2023. 

Vegetation also helps regulate temperature, showing relatively 

cooler readings, especially in London, where vegetated areas had 

an LST of 20.33°C in 2023, compared to 35.55°C in Cairo. 

 

However, developed and barren areas had the highest 

temperatures. In London, the developed areas had the warmest 

LST, rising to 26.81°C in 2023, highlighting the UHI effect. In 

contrast, Cairo's barren land, largely consisting of sand, was even 

warmer than developed areas. In 2023, barren land in Cairo 

reached a mean LST of 42.11°C, higher than the 39.51°C 

recorded in urban areas. This difference highlights Cairo’s 

unique thermal profile due to its hot, arid environment, where 

barren land absorbs and retains heat more effectively than 

urbanized areas. Overall, Cairo's LULC changes are 

characterized by extreme heat in barren areas, while London's 

developed regions contribute significantly to its UHI effect. 

Figure 5 shows the 2023 LST map (a) in comparison to the LULC 

map (b) for London. Figure 7 in the appendix shows the 2023 

LST map (a) in comparison to the LULC map (b) for Cairo.  

 

 

 
(a) 
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(b) 

Figure 5. The 2023 LST map (a) in comparison to the 

LULC map (b) for London. 
 

The comparison between Cairo and London over the study period 

reveals notable contrasts in urban development, vegetation loss, 

and land use intensity. Cairo’s vegetated area per capita 

decreased sharply by 59.36%, from 42.5 m² to 17.28 m², 

reflecting extensive urban expansion. London also saw a 

significant decline in vegetated area per capita by 61.82%, from 

129.88 m² to 49.58 m², despite maintaining more green space 

than Cairo. Cairo’s Land Use Degree Index (LUDI), which 

measures the intensity of land use for human activities across 

different LULC classes, increased by 14.50%, from 1.65 to 1.88, 

driven by its urban growth. London’s LUDI rose more 

moderately, by 5.77%, from 2.35 to 2.49, indicating a slower 

increase in land use intensity. Both cities saw significant GDP 

growth, but London maintained much higher GDP per capita 

levels. These trends suggest Cairo is undergoing more rapid 

urbanization, with greater environmental strain, while London 

faces a more controlled but still impactful urban expansion. 

 

5. Conclusion 

This study conducted a comparative analysis of the impacts of 

urbanization on the microclimates of Cairo, Egypt, and London, 

UK, using remote sensing and machine learning techniques from 

2000 to 2023. By GEE, large volumes of Landsat satellite 

imagery were effectively processed, demonstrating its capability 

to manage extensive datasets for environmental monitoring. The 

research highlights the effectiveness of machine learning 

algorithms in addressing complex environmental factors, 

particularly through the exploration of the new Gradient Tree 

Boosting (GTB) method. This study not only compares GTB with 

well-established methods like RF and SVM, but also employs 

advanced accuracy metrics and grid-based hyperparameter 

tuning to optimize model performance. Notably, SVM emerged 

as the most effective classifier, achieving an overall accuracy of 

88.34% and a kappa coefficient of 0.84, indicating strong 

agreement between observed and predicted values. However, 

GTB also performed and was very similar to RF, which 

highlights its potential to be utilized in other studies. 

 

Significant changes in LULC were observed, with Cairo 

experiencing a dramatic 89.6% increase in developed areas and a 

37.66% decrease in vegetation, leading to a 3.5°C rise in LST. In 

contrast, London exhibited a 58.45% increase in developed land 

and a 51.04% reduction in green spaces, resulting in a more 

moderate LST increase of 3°C. These findings underscore the 

distinct urbanization patterns and their respective effects on 

microclimates in the two cities. 

 

Future work should focus on expanding the geographical scope 

to include more cities with diverse urbanization trends. 

Additionally, integrating deep learning models could enhance 

classification accuracy and provide more comprehensive insights 

into LULC changes. Engaging local stakeholders to implement 

data-driven strategies for mitigating urban heat effects will also 

be vital for promoting sustainable urban development. 
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Appendix

Figure 6. F1-score for the four classifiers. 

Classifiers Z-score 

The probability of the first 

classifier performing better than 

the second 

GTB vs CART 0.813987 58.43% 

RF vs CART 0.857289 60.87% 

SVM vs 

CART 
1.43261 84.80% 

RF vs GTB 0.043307 3.45% 

SVM vs GTB 0.618743 46.39% 

 SVM vs RF 0.575438 43.50% 

Table 4. Z-score results. 

(a) 

(b) 

Figure 7. The 2023 LST map (a) in comparison to the 

LULC map (b) for Cairo. 
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