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Abstract:

Urban flooding is a recurring and distressing issue with severe consequences, including the destruction of densely populated infra-
structure and loss of life. Mapping inundated urban areas using synthetic aperture radar (SAR) data is crucial for local authorities to 
quickly assess risks and coordinate rescue efforts. However, due to the complexity of backscattering mechanisms, SAR-based urban 
floodwater mapping remains a challenge. In this work, we address this problem by introducing a novel algorithm, coherence-guided 
change transformer (CC-Former), for urban flood mapping that leverages the coherence of interferometric SAR (InSAR) with vis-
ion transformers. Specifically, CC-Former utilizes two Siamese weight-sharing encoders to extract multi-scale features from input 
InSAR coherence images and employs a decoder to generate final predictions. Additionally, we propose a coherence-based scaling 
(CoBS) module designed to focus on the acquired coherence features of urban flood classes and mitigate the imbalanced distribu-
tion of training classes. For qualitative and quantitative evaluation, the proposed CC-Former model was trained and validated using 
multi-temporal, dual-polarized Sentinel-1 SAR data to map the flood extent in Derna, Libya, following Tropical Storm Daniel in 
September 2023. Experimental results demonstrate that the proposed model outperforms state-of-the-art methods, achieving an 
F1 score of 89.4% and an IoU of 84.4% in both co- and cross-polarization, and an F1 score of 87.9% when integrating intensity 
and coherence. We conclude that the CC-Former model offers a promising solution for accurate and efficient urban flood mapping 
from InSAR coherence, with the potential for rapid generalization to other affected areas. As such, it can significantly aid disaster 
management efforts in vulnerable communities in near real-time.

1. INTRODUCTION

The world is increasingly experiencing natural disasters that af-
fect various regions, including agricultural lands and densely
populated coastal areas. Urban flooding, in particular, is a
recurring and complex issue, often caused by environmental
factors such as heavy rainfall, tropical storms, rising sea levels,
and the increased frequency of extreme weather events (WHO,
2024; Bolan et al., 2023). In September 2023, Tropical Storm
Daniel struck the eastern coast of Libya, resulting in unpre-
cedented flooding, extensive infrastructure damage, and a tra-
gic death toll, which has since garnered international scientific
interest (ReliefWeb, 2023). The disaster was further exacer-
bated by the collapse of two dams near the Libyan city of
Derna, causing deadly floods that devastated roads, bridges,
agricultural lands, and large portions of urban areas (HRW,
2023). Urban flood extent maps are crucial for local au-
thorities and crisis management teams to quickly assess dam-
ages and coordinate rescue efforts. Satellite Earth observa-
tion systems have proven to be time- and cost-effective re-
sources for producing more accurate and efficient urban flood
maps (Zhu et al., 2024). Among these systems, Synthetic Aper-
ture Radar (SAR) stands out for its ability to capture images
in almost all-weather conditions, day or night, a significant
advantage over optical systems. SAR’s side-view geometry
∗ Corresponding author

also provides unique backscatter mechanisms, such as surface
roughness and water permeability, allowing the classification
of different flood conditions, including urban, vegetative, and
open areas (Amitrano et al., 2024). Figure 1 presents a compar-
ison of pre- and post-flood images of Derna using Sentinel-1
SAR and Sentinel-2 multi-spectral images. Optical images are
hindered by cloud cover, while SAR penetrates clouds effect-
ively. Several studies (Igarashi and Wakabayashi, 2024; Lang
et al., 2024; Berezowski et al., 2024; Dhanabalan et al., 2021;
Saleh et al., 2024a,b) have developed algorithms for flood map-
ping using SAR intensity data (σ0), specifically through the
analysis of double-backscatter signals (when radar waves re-
flect between buildings and the ground). Saleh et al. (2024c)
employed the multi-temporal S1GFloods dataset, captured by
the Sentinel-1 sensor, using a change detection approach to dis-
tinguish between standing water and floodwater, while success-
fully minimizing false detections caused by shadowed areas.
Despite these advances, many algorithms face limitations, as
building facades often do not align perpendicularly to the satel-
lite’s line of sight, reducing the accuracy of urban floodwater
detection. To address this challenge, studies (Lan et al., 2024;
Li et al., 2019; Sonobe and Hashiba, 2024; Pulvirenti et al.,
2015; Selmi et al., 2014) proposed improving flood mapping
by reducing event-concurrent InSAR coherence (ρ) relative to
pre-event coherence. For example, Figure 1 shows the intensity
and coherence variations for the urban area of Derna under pre-
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Figure 1. Differences in intensity and coherence from Sentinel-1 data. (a-f) represent, respectively, pre-flood intensity, post-flood
intensity, pre-flood coherence, post-flood coherence, pre-flood Sentinel-2 optical data, and post-flood Sentinel-2 cloud cover during

the event. This data is copyrighted by Copernicus Sentinel-1© ESA, CC BY-SA 3.0.

and post-flood conditions in Sentinel-1 data. The intensity of
the double-bounce backscatter either remains the same or de-
creases slightly, while the coherence decreases significantly in
the case of urban flooding. Considering this, mapping the ex-
tent of floods in complex urban areas based on SAR intensity
alone is a challenging task. Recent deep-learning studies have
shown remarkable progress in general flood detection (Huang
et al., 2024; Shahi et al., 2024). For example, Chamatidis et al.
(2024) presented a flood detection method that integrates trans-
fer learning with vision transformers pre-trained on Sentinel-1
SAR images. Saleh et al. (2023, 2024c) introduced DAM-Net
and PDCA-Former for flood detection from single-polarization
SAR intensity images using vision transformers. Jamali et al.
(2024) developed WVResU-Net, a model for flood mapping
using dual-polarization Sentinel-1 SAR data, based on a vision
multi-layer perceptron and ResU-Net. Although these studies
have tackled extreme flood issues, to the best of our knowledge,
a systematic and quantitative study combining SAR intensity
and coherence from dual-polarization data within a founda-
tional model framework for flood mapping in complex urban
settings remains absent in the literature. In this study, we eval-
uate and map the extent of urban flooding in the Libyan city
of Derna by integrating SAR intensity and InSAR coherence,
applying change detection (CD) within a vision transformer
framework. This approach enhances temporal differences in
intensity images and identifies spatial pattern changes in co-
herence images. We used a series of multi-temporal, dual-
polarized Sentinel-1 SAR Single Look Complex (SLC) datasets
to generate coherence pairs pre- and post-Storm Daniel, which
struck the eastern coast of Libya in September 2023. Addi-
tionally, high-resolution optical satellite imagery from Maxar’s
open data program, captured during the event, was used as
a reference to assess damage to urban infrastructure, such as
buildings and roads. Our proposed framework significantly
improves flood extent estimation compared to state-of-the-art
methods, providing valuable data essential for reconstruction
and regional economic recovery efforts.

The main contributions of this paper are twofold. First, we pro-
pose a novel framework, called CC-Former, that integrates SAR
intensity and InSAR coherence data to enhance the accuracy
of urban flood inundation mapping. A key advantage of this
framework is its applicability to vision transformers training.
Second, we introduce a new coherence-based scaling (CoBS)
module, which focuses on the coherence features of urban flood
classes by deriving a coherence mask from InSAR data and
mitigating the unbalanced distribution of training classes. To
achieve the objectives of this paper, the rest of the paper is struc-
tured as follows: Section 2 introduces the proposed CC-Former
method and a novel coherence-based scale module. Section 3
describes the study area, dataset, pre-processing, and experi-
mental results. Finally, Section 4 provides conclusions, dis-

cusses limitations, and suggests future research directions.

2. PROPOSED METHODOLOGY

2.1 Intensity and coherence

Due to SAR’s side-looking geometry, double-bounce scatter-
ing, and varying backscatter properties, flooded urban areas can
exhibit different appearances across polarization modes (Xi-
ang et al., 2016). For instance, urban floodwaters present dif-
ferent scattering characteristics, with significantly lower (σ0)
in cross-polarization (VH) and higher (σ0) in co-polarization
(VV) when comparing flooded to non-flooded surfaces. Addi-
tionally, stagnant floodwaters in built-up areas often manifest
as bright linear features due to double-bounce scattering. Inter-
ferometric coherence provides valuable information for urban
flood mapping, as urban areas typically act as stable targets
with high coherence. Conversely, a reduction in InSAR co-
herence suggests the presence of floodwaters in these regions.
We hypothesize that using SAR intensity data alone may un-
derestimate the extent of urban flooding. To address this, we
propose a novel method that enhances flood detection by util-
izing multi-temporal InSAR coherence derived from both co-
polarization and cross-polarization channels. First, we generate
a building extraction map from multi-temporal SAR images,
following the method outlined in (Verma et al., 2023). Next, we
identify buildings near floodwaters and compute the InSAR co-
herence change between two complex images (phase and amp-
litude) using a square moving window, as described in (1). A 5
× 5 window size was found to be optimal for urban areas.

γ =
E(I1 · I∗2 )√

E(|I1|2)E(|I∗2 |2)
(1)

where I1 and I2 are the SAR images forming the InSAR pair,
the asterisk denotes complex conjugation, and E(·) represents
the expectation value.

In detail, we utilize two pre-flood InSAR coherence images (t1
and t2) to calculate (ρpre), which has values close to zero, as
temporal coherence in built-up areas is typically stable, indic-
ating non-flooded conditions. We then compare a pre-flood im-
age (t1) with a flood image (t0) to derive (ρco), where a drop in
(ρco) (relative to ρpre) signifies flooding. When (ρpre > ρco),
the area is considered affected by urban flooding due to changes
in scatterer distribution within the resolution cell. In this study,
we map the decrease in InSAR coherence from both VV and
VH channels and combine them to enhance urban flood detec-
tion. Figure 2 outlines the main pre-processing steps applied to
the SLC datasets using the python-snappy1. While histogram
1 https://github.com/puzhao8/snappy_InSAR
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Figure 2. Proposed Coherence Change-Aware Vision Transformer Architecture (CC-Former), featuring the CoBS block, which serves
as the Coherence-Based Scaling module.

thresholding is typically employed to distinguish water from
non-water areas, its accuracy depends on class overlap within
the image. To improve separation accuracy, we adopt a vision
transformer-based approach, as described in Section 2.2.

2.2 Overview of the CC-Former

The proposed CC-Former algorithm for urban flood detection
is illustrated in Figure 2. This methodology is based on vision
transformers, drawing inspiration from (Saleh et al., 2024c).
CC-Former is a Siamese network that integrates changes in
multi-temporal coherence information from radar images with
a coherence-based scale (CoBS) module. It comprises three
main components: the encoder, the CoBS module, and the
decoder. The encoder utilizes a Siamese weight-sharing con-
figuration, based on the ViTAEv2 (Zhang et al., 2022) archi-
tecture as its core structure, to extract robust multi-scale fea-
tures from bi-temporal SAR coherence images, corresponding
to pre-flood and co-flood scenarios. The pre-flood and co-flood
features are concatenated, allowing the model to explore the
change relationships between them. These features are further
refined using the CoBS module, as described in Section 2.3. In
the decoder, high-level semantic features extracted by the en-
coder branches are compared with high-level change features
and fused with the enhanced features from the CoBS module
through concatenation. Linear interpolation is applied to up-
sample the high-level features from the encoder and retrieve
detailed change features. The decoder consists of two iterations
of 3 × 3 convolutional layers, a batch normalization layer, and a
ReLU activation function. Urban flooding is detected by apply-
ing an additional convolutional layer. The focal loss function is
employed to handle class imbalance, as shown in (2), where the
focal factor γ is set to 2, and the weighting factor α is set to 0.3.

FL(p) = −α(1− p)γ log(p) (2)

where p is the probability of the class.

2.3 CoBS module

In this study, we distinguish between two classes of the urban
mask urban flood and non-flood derived from SAR data, as de-
scribed in Section 2.4. However, the training dataset may ex-
hibit an imbalanced distribution between these two classes, po-
tentially due to limited diversity or size. This imbalance can
result in sub-optimal utilization of the urban mask, leading to
less accurate predictions. To address this issue, we propose a
coherence-based scaling (CoBS) module designed to focus on

the learned coherence features of urban flood classes, thereby
enhancing the model’s generalization capability. The module
consists of two components applied sequentially: a channel at-
tention sub-module and a coherence-aware scale sub-module,
as illustrated in Figure 3. This module is embedded within a
vision transformer network architecture to aid the learning pro-
cess, ultimately improving the accuracy of urban flood map-
ping.

X GAP Conv ReLU Conv Sigmoid

M ReLU Conv X′BN

Xref

Input

Mask

Output

1 × 1 1 × 1

1 × 1

Channel Attention

Coherence-aware Scaling

Figure 3. Design of the Coherence-Based Scaling Module.

2.3.1 Channel attention sub-module: Given a multi-layer
feature tensor X ∈ RW×H×C representing the feature map,
different attention weights are applied to emphasize various
channels. Here, W , H , and C correspond to the width, height,
and number of channels, respectively. The channel attention
mechanism captures the relationships between feature channels
by using a learnable network that assigns weights to each chan-
nel based on their significance, generating more informative
outputs. Specifically, global average pooling (GAP) is used to
compress and pool the spatial dimensions of the input feature
map. Following this, two 1 × 1 convolutional layers, with a
rectified linear unit (ReLU) between them, are applied. The
Sigmoid function is then employed to calculate the channel at-
tention score (SAc), with values ranging from 0 to 1. Finally,
the refined feature map X ′ is obtained by multiplying SAc with
the input feature tensor X . This process can be expressed math-
ematically as:

X ′ = Sigmoid(Conv(ReLU(Conv(GAP(X))))) ·X (3)

2.3.2 Coherence-aware scale sub-module: This sub-
module incorporates a scale factor (Ws) derived from the
optimized intermediate feature X ′ and the urban flood co-
herence mask M , as described in Section 2.4. Given the
intermediate feature tensor X ′ ∈ RW×H×C , a 1 × 1 convolu-
tional layer is applied, followed by batch normalization (BN)
and ReLU activation. The resulting output is then multiplied
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by the M to generate Ws. Finally, the refined feature (Xrefined)
is obtained by multiplying Ws with the optimized intermediate
feature X ′, as shown in (4):

Xrefined = (ReLU(BN(Conv(X ′))) ·M) ·X ′ (4)

2.4 Urban flood coherence mask

Due to the limited distinct features of urban floodwater classes,
we leveraged the double-bounce scattering effect and generated
an urban mask from multi-temporal SAR images in both VV
and VH polarizations. This was achieved by applying a his-
togram threshold based on the average intensity backscatter to
classify pixels as either flooded or non-flooded. Additionally,
the low multi-temporal InSAR coherence in both VV and VH
polarizations plays a critical role in the generation of the urban
floodwater mask. By combining the urban mask derived from
SAR intensity with the InSAR coherence, we aim to minimize
false alarms in flood detection, particularly in vegetated areas.
The urban mask also provides valuable information about po-
tential construction sites and the geometry of built-up areas. In
this study, the urban flood mask, denoted as (M), is used as
an input feature for the CoBS module, which is described in
Section 2.3.

2.5 Evaluation metrics

To compare the ground truth and predicted change map, five
metrics were utilized to validate the accuracy and effectiveness
of the proposed method. These metrics include Overall Ac-
curacy (OA), Precision (P), Recall (R), F1-score, and IoU. The
formulas for these metrics are provided below:

OA =
TP + TN

TP + FN + TN + FP
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1-score =
2× Recall × Precision

Recall + Precision
(8)

IoU =
TP

TP + FP + FN
(9)

where TP = total number of true positives for all classes
FN = false negatives
FP = false positives
TN = true negatives

3. EXPERIMENTAL RESULTS

3.1 Study area

The eastern coast of Libya is a key hub for energy exports to
Europe. The study area, located in Derna, Libya, lies between
latitudes 32.7 to 32.8 degrees N and longitudes 22.6 to 22.7
degrees E, along the northeastern coast of Libya on the Medi-
terranean Sea was selected. In September 2023, Storm Daniel
hit the region, bringing 120 km/h winds and 240 mm of rain-
fall over 25 hours, causing severe flooding in Derna and other
coastal cities. The storm impacted roads, bridges, residential

and educational buildings, as well as some industrial and com-
mercial areas (OCHA, 2023a,b). Repairing the coastal dam-
age will cost an estimated US$1.8 billion (ReliefWeb, 2023).
Figure 4 shows the Area of Interest (AOI) and the locations of
collapsed bridges and dams. Assessing the floodwater’s extent
is critical for effective management and preventing further hu-
manitarian disasters in this unstable region.
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Figure 4. Location map of the study area in Derna, Libya,
depicted through multiple views: (a) SAR imagery of the area;
(b) buildings overlaid on a Google Earth satellite image as the
background; (c) Maxar VHR imagery illustrating the Derna

Bridge before and after the flooding. The study area includes a
densely populated coastal region and the collapsed Derna Dam,

highlighted by the yellow circle.

3.2 Datasets

In this study, we acquired Sentinel-1 SAR Interferometric Wide
(IW) data, including ground range detected (GRD) intensity
and single-look complex (SLC) image pairs, from the Alaska
Satellite Facility (ASF)2. The SLC data were employed to de-
tect low coherence in urban areas during the period from July
15 to September 13, 2023. Specifically, Sentinel-1 intens-
ity and coherence (VV-VH polarizations), captured both be-
fore and during the flooding event, were utilized. Additionally,
high-resolution (0.3 m) optical data from September 13, 2023,
sourced through the Maxar open data program3, was used to
manually annotate flood-impacted buildings and roads. These
annotations served as ground truth for evaluating our experi-
mental results. The detailed characteristics of the dataset used
are summarized in Table 1.

3.3 Pre-processing

The following pre-processing steps were applied to each ac-
quired Sentinel-1 image: TOPS splitting, back-geocoding,

2 https://search.asf.alaska.edu/
3 https://xpress.maxar.com/
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Acquisition
Polarization

Resolution (m)
Orbit Pass Characteristicsdate (range × azimuth)

Pre-event
15-Jul-23 VV+VH 10.0 × 10.0 49429

Descending 2 GRD image
8-Aug-23 VV+VH 10.0 × 10.0 49779

Co-event 13-Sep-23 VV+VH 10.0 × 10.0 50304 Descending 1 GRD image

Pre-event
15-Jul-23 VV+VH 2.33 × 13.9 49429

Descending 2 SLC images
8-Aug-23 VV+VH 2.33 × 13.9 49779

Co-event 13-Sep-23 VV+VH 2.33 × 13.9 50304 Descending 1 SLC image

Co-event 13-Sep-23 RGB 0.30 × 0.30 - - 1 Maxar image

Table 1. Characteristics of Sentinel-1 GRD and SLC images, as well as the Maxar optical image, used as input datasets in this study.

enhanced spectral diversity (ESD), interferogram formation,
Goldstein phase filtering, and range-Doppler terrain correction.
For SAR intensity, the Sentinel-1 data were normalized and
converted into backscatter coefficients (dB), with a 5 × 5 pixel
Lee Sigma filter applied to reduce speckle noise. In addition
to SAR intensity, interferometric coherence (ρ) was calculated
using SLC image pairs from before and during the flood event,
denoted as ρpre and ρco, respectively, using a 7 × 7-pixel mov-
ing window. All intensity and coherence data were stacked and
geocoded to the WGS 1984 UTM zone 34N at a pixel resolu-
tion of 10 m, producing images of 8,192 × 10,240 pixels. Using
interferometric coherence (ρ) from the pre-event and co-event,
coherence change (CC) was generated through a logarithmic ra-
tio to identify regions of change. Flooded pixels were assigned
a value of 255, while non-flooded pixels were assigned 0. The
pre-processed images were then divided into non-overlapping
patches of 512 × 512 pixels. Figure 5 presents the phase images
and labels for the changes in SAR data, where red areas indic-
ate flooded regions and cyan areas denote non-flooded regions
in the label image. The dataset, consisting of 172 samples ob-
tained after patchifying, was further divided into training, valid-
ation, and test sets in a 70:20:10 ratio for training and validating
deep learning models.
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Figure 5. Phase images before the event (ρ15/07–08/08/2023pre ),
during the event (ρ08/08–13/09/2023co ), and labels showing

changes in coherence, with flooded regions in red and
non-flooded regions in cyan.

3.4 Implementation details

During training, data augmentation was applied to the input im-
age patches due to the small size of the Derna dataset. This

augmentation included random flipping, rotations of 90, 180,
and 270 degrees, histogram matching, Gaussian blurring, and
random clipping of 128 × 128-pixel patches, with the number
of augmented samples generated automatically during model
training. The input image size was fixed at 512 × 512 for both
the U-Net and CC-Former methods and at 448 × 448 for the
PDCA-Former. The CC-Former and other competing methods
were trained with a batch size of eight using the Adam optim-
izer with an initial learning rate of 1 × 10−6 and momentum
parameters β1 = 0.9 and β2 = 0.999, determined by trial
and error. Models were trained for 100 epochs, with weights
saved every five epochs, and the best model (highest F1-score)
was selected for inference on different test sites. Experiments
were run on a virtual machine desktop with a 64-bit Windows
10 Pro OS. The software setup included Python with PyTorch4

implementation, and the hardware setup featured an NVIDIA
GRID RTX8000-8Q GPU (8GB memory), an Intel Xeon CPU
E5-2687W v4 @ 3.00GHz, and 28GB of GPU memory for op-
timal performance.

3.5 Results and analysis

In this study, we trained three deep-learning models—U-
Net (Fang et al., 2021), PDCA-Former (Saleh et al., 2023),
and our proposed CC-Former—using the same training datasets
and strategy for urban flood detection. We then qualitatively
and quantitatively evaluated the resulting urban flood maps for
the Derna flood event in Libya. The models classified coher-
ence and intensity images for the VV polarization. A sample
of the results is presented in Figure 6, where SAR intensity is
shown as an RGB composite (pre-flood = R, post-flood = B =
G). Flood-induced changes are visible in built-up areas (red and
cyan), as floodwaters reduced the backscatter. However, SAR
intensity alone has limitations in detecting flooded buildings.
To address this, we leveraged InSAR coherence, which typic-
ally provides high values due to the temporal stability of build-
ings. Figure 6(a) displays InSAR coherence over the same area
(ρpre = R, ρco = B = G), where a noticeable decrease in coher-
ence during the flooding event is represented by red tones across
the scene. The results from the U-Net, PDCA-Former, and CC-
Former models, which utilize coherence data, are shown in Fig-
ure 6(c-e). Additionally, we classified the damage to flooded
buildings into three categories: high, moderate, and low. As
illustrated in the region of interest (white box), false alarms in
urban areas show considerable variation in damage classifica-
tion across different models. This variation is largely due to
the low resolution of InSAR coherence data, which limits the
model’s ability to differentiate between damage levels. This is-

4 https://pytorch.org/
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sue could be mitigated in the future by using higher-resolution
InSAR data, such as TerraSAR-X. Figure 6(f) shows the flood
classification from our proposed method using Maxar VHR im-
agery, where the high resolution allows for the identification
of damaged houses flooded buildings and road polygons from
UNOSAT5. To quantitatively assess the flood maps, we calcu-
lated that 713,511 pixels were detected as flooded, while 42,471
pixels were classified as such by our model. We observed a
16.8% increase in the damaged area, which is significant given
the vulnerability of urban regions to flooding.
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Figure 6. Classification results of various methods for the Derna
study area. (a) Coherence RGB composite (R = ρpre, B = G =

ρco); (b) Intensity RGB composite (R = August 8, 2023, B = G =
September 13, 2023); (c-e) Model outputs from the U-Net,

PDCA-Former, and CC-Former methods, respectively; (f) Flood
reference mask derived from VHR optical imagery provided by
Maxar1, along with flooded building polygons from UNOSAT.

Data OA R P IoU F1

Intensity 97.1 83.1 89.4 81.4 86.1

Coherence 97.8 85.5 87.9 82.7 86.7

Intensity+Coherence 98.4 84.4 91.7 84.1 87.9

Table 2. Quantitative evaluation using the proposed method. All
results are reported as percentages.

Table 3 summarizes the quantitative evaluation results of the
CC-Former, PDCA-Former, and U-Net methods for VV, VH,
and VV+VH polarizations. The proposed CC-Former achieves
an overall F1-score improvement of 6.6% (from 82.8% to
89.4%), demonstrating greater effectiveness than the other two
algorithms, which scored 86.7% and 81.1%, respectively, in
the VV+VH scenario. Notably, precision for VV improved
from 87.9% to 90.7%, though this was accompanied by a slight
5 https://unosat.org/products/3670

decrease in recall from 78.3% to 85.6%. In contrast, both
precision and recall increased for VV+VH, as shown in the
precision-recall curve (Figure 8). Significant increases in the
IoU score were observed for VV (from 79.5% to 83.2%), VH
(from 77.6% to 83.5%), and VV+VH (from 78.8% to 84.4%).
Moreover, the integration of both intensity and coherence data
during the event using the proposed method yields a high F1-
score of 87.9%, as presented in Table 2. In this study, we use
different combinations of red, green, and blue to enhance the
understanding of the theoretical analysis, similar to the role of
the normalized difference vegetation index (NDVI) in optical
data. Figure 7 shows the contribution of the VV and VH po-
larization channels to urban flood detection, as well as the be-
havior of multi-temporal SAR intensities for these channels.
It also highlights the significant coherence decreases corres-
ponding to heavily flooded buildings. The widespread red-
dish tones in the coherence maps, compared to the intensity
maps, reflect the effectiveness of the proposed model in detect-
ing urban floods through increased coherence. White indicates
high-density buildings resulting from the double-bounce effect,
which are not flooded, while cyan suggests that some buildings
may be flooded but are challenging to detect through intensity
differences in multi-temporal images, as shown in Figure 7(a,
d). This improvement highlights the importance of utilizing
both polarization channels and integrating intensity and coher-
ence information for SAR-based urban flood mapping across
different land cover types.
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Figure 7. (a, d) Intensity RGB composite (R = August 8, 2023;
B = G = September 13, 2023) for VV and VH polarizations,

respectively. (b, e) Coherence RGB composite (R = ρpre; B = G
= ρco) for VV and VH polarizations. (c) Urban flood extent

detected by our model. (f) Pre-event Sentinel-2 optical satellite
imagery.

To establish the ground truth for each coherence slice, we cal-
culate the proportion of the area occupied by flooded buildings
within each slice. This involves computing precision (the ratio
of slices classified as flooded that are indeed flooded) and recall
(the ratio of actual flooded slices that are classified as flooded)
for each method. Given the unbalanced nature of our data-
set, where non-flooded areas significantly outnumber flooded
areas, we prefer the precision-recall curve over the receiver
operating characteristic (ROC) curve for classifier evaluation.
In this study, we quantitatively compare various classification
methods by calculating the area under the precision-recall curve
(PR-AUC), as depicted in Figure 8. The proposed CC-Former
method demonstrates a notable improvement, achieving a PR-
AUC of 82.0%, indicating that over 80% of the regions classi-
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Scenarios Method OA R P IoU F1-score±σ

VV

Unet (Fang et al., 2021) 95.9 78.3 87.9 79.5 82.8±3.6

PDCA-Former (Saleh et al., 2023) 96.2 79.6 92.3 81.7 85.5±3.1

Ours 98.4 85.6 90.7 83.2 88.1±2.2

VH

Unet (Fang et al., 2021) 95.7 76.7 84.2 77.6 80.3±3.3

PDCA-Former (Saleh et al., 2023) 96.6 80.1 88.8 81.4 84.2±2.7

Ours 98.8 85.1 90.3 83.5 87.6±2.1

VV+VH

Unet (Fang et al., 2021) 95.4 77.8 84.7 78.8 81.1±3.2

PDCA-Former (Saleh et al., 2023) 97.2 84.4 89.1 82.2 86.7±2.9

Ours 98.6 85.5 93.7 84.4 89.4±1.7

Table 3. The average quantitative results of flood extent maps obtained by different methods on the test set in the urban area. The best
results are highlighted in bold font, and the second-best results are underlined. σ represents the standard deviation associated with the

quantitative results. All values are reported as percentages (%).

fied as flooded are truly flooded. Furthermore, the CC-Former
exhibits a recall of 85.5%, compared to 77.8% for the U-Net
method, highlighting a significant quantitative advancement.

Figure 8. Recall-precision curves for flood mapping using the
CC-Former (red line), PDCA-Former (green line), and U-Net

(blue line) methods. A larger area under the curve (AUC) for the
CC-Former indicates improved performance.

4. CONCLUSIONS

This paper presents an automated vision transformer-based al-
gorithm, CC-Former, for urban flood mapping using dual-
temporal Sentinel-1 SAR intensity data, as well as InSAR
coherence from both VV and VH polarizations. A novel
coherence-based scaling (CoBS) module is introduced, which
focuses on the coherence features of urban flood classes by de-
riving a coherence mask from InSAR data to improve the de-
tection accuracy of urban inundation maps. The performance
of CC-Former was evaluated using data captured during Trop-
ical Storm Daniel in September 2023, which caused extensive
flooding in the Libyan city of Derna. The results indicate that
leveraging both VV and VH polarizations of InSAR coherence
increases the ability to detect floodwater around buildings by
more than 2.7% compared to using SAR intensity alone. Ad-
ditionally, the proposed method was compared with other re-
cent techniques, demonstrating superior performance in flood

detection tasks. However, some limitations persist, as the CoBS
module relies on a coherence mask derived from low-resolution
SAR coherence data, leading to over-detection of water around
buildings. Further investigation is required with the availability
of higher-resolution urban data, such as TerraSAR-X, to mitig-
ate this issue.
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