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Abstract 

 

As urbanization accelerates globally, efficient land use is essential for sustainable development. Sustainable Development Goal (SDG) 

11 includes Target 11.3, which promotes sustainable urbanization and is assessed through Indicator 11.3.1, measuring land use 

efficiency (LUE) via the ratio of Land Consumption Rate (LCR) to Population Growth Rate (PGR), known as LCRPGR. While this 

metric is valuable for guiding urban planning, it could be affected by variability in Earth Observation (EO) data products, especially 

differences in built-up area definitions and classification errors that lead to data quality issues. This paper presents a comprehensive 

approach to improving SDG 11.3.1 monitoring by (1) quantifying the impact of EO data variability on LCR and LCRPGR estimates, 

highlighting the importance of standardized built-up area definitions; (2) adapting a bias-adjustment methodology to correct for over- 

and underestimations in EO-derived built-up area estimates, thus enhancing accuracy; and (3) incorporating Monte Carlo simulations 

to quantify uncertainties in LCR and LCRPGR due to classification errors. The findings indicate that definitions and adjustments 

significantly influence the SDG 11.3.1 metrics. Monte Carlo simulations provide essential insights into the confidence intervals of 

LCR and LCRPGR values, revealing the degree of uncertainty tied to EO data accuracy. This study supports more reliable urban 

planning and policy formulation by ensuring LCR and LCRPGR values reflect actual urban dynamics in a better way, enabling robust, 

equitable comparisons across cities, countries, and SDG regions. 

 

 

1. Introduction 

Urbanization is one of the defining trends of the 21st century, 

with more than half of the global population currently residing in 

urban areas—a proportion expected to increase in the coming 

decades (United Nations, 2019). As cities expand, ensuring 

efficient land use becomes critical to sustainable development. In 

this context, Sustainable Development Goal 11 includes Target 

11.3, which promotes sustainable urbanization through 

optimized land use. The key indicator for monitoring progress, 

SDG 11.3.1, measures the ratio of the land consumption rate to 

the population growth rate, commonly referred to as LCRPGR 

(UN Statistics Division, 2021). This metric provides valuable 

insights into the alignment between urban expansion and 

population dynamics, serving as a foundational tool for 

policymakers in designing sustainable urban growth strategies 

(Li et al., 2021). 

 

To ensure accurate SDG 11.3.1 monitoring, the United Nations 

recommends an integrated methodology that leverages Earth 

observation data, geospatial analysis, and demographic 

information from censuses and surveys (UN Statistics Division, 

2021). These data sources collectively provide essential spatial 

and temporal insights into built-up areas and population 

distributions, which are crucial for calculating LCR and PGR 

and, ultimately, for assessing land-use efficiency through the 

LCRPGR metric. Over the years, research on SDG 11.3.1 

monitoring has primarily relied on publicly available global EO 

data products to estimate built-up area coverage and LCR 

calculations, with the Global Human Settlement Layers as a 

popular choice (Santillan and Heipke, 2024). Additionally, 

various classification techniques, including traditional machine 

learning and more advanced deep learning approaches, have been 

applied to extract built-up areas from satellite imagery (e.g., Li et 

al., 2020; Ghazaryan et al., 2021). To improve accuracy, some 

studies have employed workflows that integrated multiple data 

sources (e.g., Cardenas-Ritzert et al., 2024; Jiang et al., 2021), 

highlighting the ongoing efforts to refine urban expansion 

analysis to aid SDG 11.3.1 monitoring. 

 

Despite advancements in SDG 11.3.1 monitoring, a key 

challenge remains the lack of standardized built-up area 

definitions. While the official SDG 11.3.1 metadata defines built-

up areas as "all areas occupied by buildings" (UN Statistics 

Division, 2021), many studies use broader definitions for their 

classifications, such as impervious surfaces, artificial surfaces, or 

urban land (e.g., Cai et al., 2020; Jiang et al., 2021; Li et al., 2021; 

Huang et al., 2024). These inconsistencies lead to variations in 

LCR and LCRPGR estimates, affecting comparability across 

cities, countries, and SDG regions, and potentially undermining 

the reliability of SDG 11.3.1 assessments. Evidence from recent 

studies highlights substantial discrepancies in built-up area 

estimates across EO datasets, attributed to differences in 

definitions, spatial resolutions, and data processing 

methodologies (Chakraborty et al., 2024). Given the significant 

impact of these discrepancies on LCR and LCRPGR calculations, 

systematic evaluations are needed to assess their influence on 

SDG 11.3.1 indicators.  

 

Another critical limitation is the absence of uncertainty 

quantification in LCR, PGR, and LCRPGR estimations. While 

the SDG 11.3.1 metadata emphasizes data quality assurance, it 

lacks standardized methodologies for incorporating uncertainty 

into these computations. This oversight represents a significant 

gap, particularly given that LCRPGR values are used to 

benchmark and compare urban sustainability trends at local, 

national, and global scales (Estoque et al., 2021; Schiavina et al., 

2022). Neglecting uncertainties from classification errors, data 

inconsistencies, built-up area definitions, and population 

estimates can result to misleading interpretations of urban 

sustainability progress. Addressing this issue requires 

standardized classification approaches and rigorous uncertainty 

quantification frameworks that integrate both built-up area and 

population data uncertainties. These improvements would 
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enhance the reliability and comparability of SDG 11.3.1 

assessments, providing more actionable insights for 

policymakers and urban planners. 

 

In this paper, we present a comprehensive approach to enhance 

SDG 11.3.1 monitoring by analyzing EO data variability, 

implementing bias-adjusted built-up area estimation, and 

integrating uncertainty quantification. Key contributions include: 

• Impact of EO data variability on LCR and LCRPGR 

estimates: We demonstrate how differences in built-up area 

definitions and classification errors across EO datasets affect 

LCR and LCRPGR estimates, underscoring the need for 

consistency in LUE assessments. 
• Bias-adjusted built-up area estimates: Using a bias-

adjustment methodology (Olofsson et al., 2013, 2014), we 

correct classification errors, ensuring EO-derived built-up area 

estimates align with the SDG 11.3.1 definition. 

• Uncertainty quantification in SDG 11.3.1 metrics: We 

integrate Monte Carlo simulations to propagate uncertainties 

in built-up area estimates into LCR and LCRPGR calculations, 

providing LUE metrics that explicitly account for 

classification uncertainties. 

 

2. Related Work 

2.1 Accuracy Assessment, Class Area Estimation, and 

Uncertainty Quantification Approaches 

Land-use/land cover (LULC) maps and other EO-derived 

products inherently contain multiple sources of uncertainty, with 

one of the most critical factors being the accuracy of the 

classifier's predictions (Valle et al., 2023). A map is accurate 

when it provides an unbiased representation of land cover in the 

area it depicts (Foody, 2002). However, classification errors are 

inevitable, making direct area calculations based solely on 

classified pixels—the so-called "pixel counting" approach—

prone to inaccuracies (Stehman, 2013). A standard practice to 

quantify classification errors and assess a LULC map's reliability 

involves performing accuracy assessments by comparing 

classified outputs against those from high-quality reference data, 

such as ground-truth observations, high-resolution aerial 

imagery, or finer-resolution satellite data (Olofsson et al., 2014). 

These comparisons are systematically organized in an error (or 

"confusion") matrix, from which key accuracy metrics—

including User's Accuracy, Producer's Accuracy, and Overall 

Accuracy—are derived. These metrics provide essential insights 

into classification performance, allowing the refinement of 

classification models and adjustments to derived estimates 

(Foody, 2002). 

 

Since classification errors affect the reliability of built-up area 

estimates, selecting an appropriate method for area estimation 

and uncertainty quantification is essential to ensure accurate and 

unbiased calculations of metrics that depend on these estimates, 

such as LCR and LCRPGR. In the context of land cover maps, 

area estimation is a special case of mean estimation, where the 

mean is calculated for a binary variable that assigns a value of 1 

to pixels classified as belonging to the class of interest and 0 to 

all other pixels (Lu et al., 2024). This mean value represents the 

proportion of the target class within the study area. Three primary 

approaches (Table 1) can be used for area estimation: the 

classical estimator, the post-stratified estimator, and prediction-

powered inference (PPI) (Lu et al., 2024). 

 

The classical estimator relies exclusively on ground truth samples 

to estimate class proportions within the study area. This method 

assumes that sample proportions are an unbiased representation 

of the total area, scaling up observed proportions to generate class 

area estimates (Lu et al., 2024). Its main advantages are 

simplicity, ease of implementation, and independence from 

classified land cover maps. When reference data are abundant 

and well-distributed, the classical estimator can yield reliable 

estimates with well-defined confidence intervals. However, its 

effectiveness is limited in reference-scarce settings because it 

does not leverage valuable spatial information in classified maps.  

 

In contrast, the post-stratified estimator (Olofsson et al., 2013) 

improves upon the classical approach by integrating ground truth 

data with the classified land cover map while explicitly 

correcting for classification errors. This method stratifies 

samples based on map classes and applies an adjustment using 

the confusion matrix to account for omission and commission 

errors. The result is a bias-adjusted class area estimate with 

confidence intervals reflecting sampling variability and 

classification uncertainty. Recommended for land cover change 

analysis (Olofsson et al., 2014), the post-stratified estimator has 

been widely applied for estimating built-up area and other land 

cover classes from EO-derived maps (e.g., Liu et al., 2018; Gong 

et al., 2020). 

 

A more recent approach, PPI (Angelopoulos et al., 2023), 

integrates large-scale, potentially unreliable predictions with 

limited but highly trusted ground truth data to compute 

statistically valid confidence intervals. In the context of land 

cover class area estimation, PPI improves upon the classical 

estimator by leveraging a small reference dataset to calibrate and 

Method Class area estimate, �̂�𝑗 Standard Deviation, 𝑆(�̂�𝑗) Reference 

Classical 𝐴𝑡𝑜𝑡  ∙
1

𝑛
∑ 𝑌𝑖

𝑛

𝑖=1

 𝐴𝑡𝑜𝑡  ∙ √
1

𝑛
𝑉𝑎𝑟(𝑌𝑖) 

Lu et al. (2024) 

Post-stratified 
 

𝐴𝑡𝑜𝑡 ∙ ∑ 𝑊𝑐

𝑛𝑐𝑗

𝑛𝑐.

𝐾

𝑐=1

 𝐴𝑡𝑜𝑡 ∙ √∑ 𝑊𝑐
2

𝐾

𝑐=1

𝑛𝑐𝑗

𝑛𝑐∙
(1 −

𝑛𝑐𝑗

𝑛𝑐∙
)

𝑛𝑐∙ − 1
 

 

Olofsson et al. (2013) 

Prediction-powered 

inference (PPI) 
 

𝐴𝑡𝑜𝑡 ∙ (
1

𝑁
∑ �̂�𝑝

′

𝑁

𝑝=1

−
1

𝑛
∑(�̂�𝑖

′ − 𝑌𝑖)

𝑛

𝑖=1

) 𝐴𝑡𝑜𝑡 ∙ √
1

𝑁
𝑉𝑎𝑟(�̂�𝑝

′) +
1

𝑛
𝑉𝑎𝑟(�̂�𝑖

′ − 𝑌𝑖) 

Angelopoulos et al. 

(2023), Lu et al. 

(2024) 

Table 1. Land cover class area estimation and uncertainty quantification methods, along with their corresponding formulations. 

For each method, the 95% confidence interval is computed as (�̂�𝑗 − 1.96 ∙ 𝑆(�̂�𝑗), �̂�𝑗 + 1.96 ∙ 𝑆(�̂�𝑗)). The variables are defined 

as follows: 𝐴𝑡𝑜𝑡 is the total mapped area, 𝑌𝑖 and �̂�𝑖
′ (𝑖 = 1, … , 𝑛) are the reference (ground truth) and predicted (classified) labels 

for sample 𝑖, 𝑛 is the total number of reference samples, �̂�𝑝
′ (𝑝 = 1, … , 𝑁) is the predicted label for pixel 𝑝 in the classified map, 

𝑁 is the total number of pixels in the classified map, 𝑊𝑐 (𝑐 = 1, … , 𝐾) is the proportion of pixels mapped as class 𝑐, 𝑛𝑐. is the 

number of reference samples in mapped class 𝑐, 𝑛𝑐𝑗  (𝑐, 𝑗 = 1, … , 𝐾) is the number of reference samples labelled as class 𝑗 within 

mapped class 𝑐, 𝐾 is the number of classes, and 𝑉𝑎𝑟(∙) is the variance operator. 
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correct bias in a larger predicted dataset (Lu et al., 2024). Unlike 

the post-stratified estimator, which explicitly corrects for class-

specific misclassification, PPI applies a global bias correction to 

align overall predicted class proportions with ground truth data. 

Its key advantage lies in its flexibility—it does not require a 

predefined map product or stratification scheme and often 

produces narrower confidence intervals, making it particularly 

suitable when precision is a priority (Lu et al., 2024). 

 

While each method has distinct advantages, the post-stratified 

estimator (Olofsson et al., 2013) is particularly well-suited for 

SDG 11.3.1 monitoring due to its balance of accuracy, efficiency, 

and explicit error correction. The classical estimator, despite its 

simplicity, is heavily dependent on extensive ground truth data 

and disregards valuable classified map information, limiting its 

usefulness in regions with limited reference samples (Lu et al., 

2024). Conversely, PPI depends on the accuracy of the classified 

map, making it most effective when classification closely aligns 

with the ground truth and when the number of predicted pixels 

significantly exceeds the number of reference samples 

(Angelopoulos et al., 2023). Given the inherent variability in 

built-up area classification accuracy, the post-stratified estimator 

provides a robust alternative, correcting for known biases to 

ensure unbiased estimates. This makes it particularly valuable for 

LCR and LCRPGR calculations, where accurate error-adjusted 

estimates are essential for reliable SDG 11.3.1 monitoring. 

 

2.2 Uncertainty Propagation in SDG 11.3.1 Monitoring: The 

Role of Monte Carlo Simulations 

Several methodologies are commonly employed for uncertainty 

propagation, including Monte Carlo simulations (MCS), 

sensitivity analysis, and analytical approaches. Among these, 

MCS is widely recognized for its ability to generate probabilistic 

estimates by repeatedly sampling from the error distributions of 

input data (Alkhatib et al., 2009). This method is particularly 

valued for its adaptability and robustness in modeling complex 

systems, particularly in cases where analytical methods struggle 

with non-Gaussian error distributions or correlated inputs 

(Albert, 2020). Although MCS has been extensively applied in 

environmental modeling and geospatial analysis (e.g., Mustafa et 

al., 2018), its potential remains largely unexplored within policy-

driven monitoring frameworks, such as the one of SDG 11.3.1. 

 

Given its demonstrated effectiveness in environmental and 

geospatial research, MCS presents a compelling approach for 

uncertainty propagation in SDG 11.3.1 monitoring. However, its 

application in this context remains limited. A key advantage of 

MCS is its ability to account for dependencies among variables, 

which is particularly critical for propagating built-up area 

uncertainties across multiple periods. In contrast, analytical 

methods, such as the Special Law of Propagation of Variances, 

assume variable independence (Ghilani, 2017)—an unrealistic 

assumption in multitemporal analysis of built-up area estimates. 

While the General Law of Propagation of Variances does 

accommodate correlations, it necessitates explicit covariance 

estimates (Ghilani, 2017), which are often difficult to obtain. 

Moreover, the inherently nonlinear nature of SDG 11.3.1 

indicators, which involve ratios and rates of change, poses 

additional challenges for analytical uncertainty propagation 

techniques. 

 

Given these limitations, a Monte Carlo-based approach offers a 

more flexible and robust framework for quantifying the impact 

of built-up area uncertainties on LCR and LCRPGR estimates. 

By systematically incorporating uncertainty into SDG 11.3.1 

assessments, MCS can enhance the reliability of monitoring 

outcomes, thereby improving the validity of land-use efficiency 

evaluations and supporting more informed policy decisions. 

Expanding the application of MCS in this domain represents a 

crucial step toward addressing the methodological gaps in SDG 

11.3.1 uncertainty quantification and ensuring the robustness of 

sustainability assessments. 

 

3. Methodology for Evaluating the Impact of EO Data 

Variability and Uncertainty on LCR and LCRPGR 

Estimation 

3.1 Quantifying the Impact of Built-Up Area Definitions on 

LCR and LCRPGR 

To quantify how different built-up area definitions impact SDG 

11.3.1 metrics, we analyzed five global EO data products: GHS-

BUILT-S, Global Annual Urban Dynamics (GAUD), Global 

Impervious Surface Area 2.0 (GISA 2.0), Global 30m 

Impervious Surface Dynamic Dataset (GISD30), and WSF 

Evolution (WSF-Evo). Table 2 provides an overview of these 

datasets, highlighting their key characteristics, including built-up 

area definitions. Except for GHS-BUILT-S, which represents 

built-up areas as a continuous variable, all other datasets are 

binary built-up area maps, where built-up pixels are coded as one 

and non-built-up pixels as 0. Using GHS-BUILT-S as the 

baseline, we assessed temporal differences in built-up area, LCR, 

and LCRPGR across datasets.  

 

The Philippines was chosen as the study site (Figure 1) due to its 

variable urbanization patterns and diverse land cover, shaped by 

its archipelagic nature (Santillan and Heipke, 2024). This 

variability provides an ideal setting to evaluate how the different 

class definitions in EO data products influence LCR and 

LCRPGR estimates. For GHS-BUILT-S, total built-up area was 

calculated by summing all pixel values within the country 

boundary using zonal statistics. For binary EO datasets, built-up 

area was determined by counting pixels classified as built-up and 

multiplying this count by the ground area represented by each 

pixel. The analysis utilized an administrative boundary shapefile 

from the United Nations Office for the Coordination of 

Humanitarian Affairs (OCHA), accessed via the Humanitarian 

Data Exchange (https://data.humdata.org/dataset/cod-ab-phl, 

accessed 8 April 2024). 

 

To ensure temporal consistency, the study focused on the 1985–

2015 period, covered by most datasets. The SDG 11.3.1 metrics 

were calculated using the following formulae provided by the UN 

Statistics Division (2021), with notations slightly modified for 

consistency: 

𝐿𝐶𝑅 =
𝐵𝑈𝑡2

− 𝐵𝑈𝑡1

𝐵𝑈𝑡1

∙
1

∆𝑡
 (1) 

𝑃𝐺𝑅 =

𝑙𝑛 (
𝑃𝑜𝑝𝑡2

𝑃𝑜𝑝𝑡1

)

∆𝑡
 

(2) 

𝐿𝐶𝑅𝑃𝐺𝑅 =  
𝐿𝐶𝑅

𝑃𝐺𝑅
 (3) 

where BU and Pop are the total built-up area and population for 

the previous (t1) and current (t2) years, respectively, and Δt 

represents the number of years between them (set to 5 years in 

our case). Population data were sourced from the Philippine 

Statistics Authority (PSA) website (https://www.psa.gov.ph/, 

accessed 13 September 2024). Since no census survey was 

conducted in 2005, the population data for that year was linearly 

interpolated using the annual growth rate provided by PSA for 

2000–2007. To assess the impact of built-up area differences on 

LCR and LCRPGR, we compared each dataset's LCR and 

LCRPGR values against the GHS-BUILT-S baseline using 
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relative differences (%), which quantify the percentage deviation 

from the baseline. 

 

3.2 Unbiased Built-up Area Estimation and Uncertainty 

Quantification 

In this section, we outline the workflow for unbiased built-up 

area estimation and uncertainty quantification to improve the 

reliability of SDG 11.3.1 metrics. The process adheres to good 

practice recommendations (Olofsson et al., 2014) and consists of 

five key steps: (1) stratified random sample selection, (2) sample 

labeling using reference (ground truth) data, (3) accuracy 

assessment using a confusion matrix approach, (4) post-stratified 

class area estimation and uncertainty quantification, following 

the methods described in Olofsson et al. (2013), and (5) Monte 

Carlo simulations to propagate uncertainties in built-up area 

estimates into LCR and LCRPGR calculations. 

 

3.2.1 Study Area and Datasets:   The study area is the City of 

Manila (Figure 1), a highly urbanized region within Metropolitan 

Manila, Philippines, with a total area of approximately 42 km². 

The analysis period spans 2000 to 2015 in 5-year intervals, 

aligned with the availability of most EO data products for the 

study area. This timeframe is long enough to capture trends in 

LCR and LCRPGR, enabling an assessment of how data 

uncertainties impact these metrics over time. The analysis 

focuses on binary built-up area maps derived from the 30m 

spatial resolution EO data products GAUD, GISA 2.0, GISD30, 

and WSF-Evo. Including multiple EO datasets enables an 

evaluation of the consistency of unbiased area estimation and 

uncertainty quantification. However, GHS-BUILT-S was 

excluded, as the methods applied in this study are not suitable for 

continuous datasets. For each analysis year, subsets of the EO 

data products covering the study area were extracted (Figure 2), 

all standardized to the UTM 51 WGS 84 coordinate reference 

system. Pixel counting was used to determine built-up and non-

built-up areas, and the proportion of each class (𝑊𝑐) was 

calculated for use in subsequent steps. Table 3 presents the 

proportion of the built-up areas in each map. Each map consists 

of a total of 46,645 pixels (𝑁). 

 

3.2.2 Stratified Random Sampling: We employed a stratified 

random sampling design with the map classes as strata and pixels 

as spatial units. To ensure statistically valid and robust analysis, 

we used the following recommended formula to determine the 

required number of ground truth samples (𝑛) for each data 

product (Olofsson et al., 2014): 

𝑛 =
(∑ 𝑊𝑐𝑆𝑐)2

[𝑆(�̂�)]
2

+
∑ 𝑊𝑐𝑆𝑐

2

𝑁

 (4) 

where N = number of pixels in the land cover map within the 

study area, 𝑆(�̂�) represents the targeted standard deviation of the 

estimated overall accuracy �̂�, 𝑊𝑐 is the mapped ("classified") 

proportion of class c, 𝑆𝑐 is the class c standard deviation; 𝑆𝑐 =

 √𝑈𝑐(1 − 𝑈𝑐), where 𝑈𝑐 is the conjectured User's accuracy of 

class 𝑐 (Olofsson et al., 2014). We set 𝑆(�̂�) to 0.01 to ensure high 

level of precision and statistical confidence in the accuracy 

estimations. For 𝑈𝑐, we used class-specific User's accuracies 

reported in previous studies that assessed the accuracy of the data 

products (Marconcini et al., 2020; Huang et al., 2022; Zhang et 

al., 2022). For all the considered years, the assigned 𝑈𝑐 values for 

the 'built-up' class range from 0.59 (WSF Evo) to 0.85 (GAUD), 

while for the 'non-built-up' class, they range from 0.91 (WSF 

Evo) to 0.96 (GISD30). The low 𝑈𝑐 assigned to WSF-Evo 

resulted in higher 𝑛 than the other data products (Table 4). From 

the calculated value of  𝑛, the sample allocation for each class 

was determined, using proportional allocation with the mapped 

class proportions (Table 3) serving as multipliers. 

 
Figure 1. The study site. Image and maps data © 2024 Google, 

Airbus, Landsat / Copernicus, SIO, NOAA, US Navy, NGA, 

GEBCO. 

 

3.2.3 Reference Data and Sample Labelling Process:  High-

resolution historical satellite images from Google Earth Pro, with 

a ground sampling distance of approximately m, served as the 

primary reference for labeling samples (Table 4). Before 

labeling, we assessed the co-registration accuracy using 14 

spatially distributed reference points at road intersections visible 

in each image. Reference coordinates were obtained from a high-

quality road network dataset from the Earthquake Impact 

Reduction Study for Metro Manila (MMEIRS, 2004). The 

analysis yielded a total RMSE of 3.00 to 7.68 meters, indicating 

that while the images were not perfectly co-registered, they 

remained suitable for validating coarser-resolution EO datasets. 

Nevertheless, we improved geolocation accuracy in sample 

labeling by adjusting the sample coordinates rather than images, 

because Google Earth Pro does not support geometric 

transformations. Using the same 14 reference points per image, 

we derived affine transformation coefficients to align sample 

EO Data Product 
Pixel 

size (m) 

Temporal 

Coverage 

Built-up Class Name / 

Definition 
Reference 

Global Human Settlement – BUILT-S (GHS-

BUILT-S) 
100 

1975-2020 at 5-

year intervals 

‘Built-up Area’ 

(areas occupied by buildings 

and “any roofed structure 
erected above ground for any 

use”) 

European Commission 

(2023) 

Global 30 m Impervious Surface Dynamic 

Dataset (GISD30) 
30 

1985-2020 at 5-

year intervals 
Impervious Surface Zhang et al. (2022) 

Global Impervious Surface Area (GISA) 2.0 30 
1972-2019 at 1-

year intervals 
Impervious Surface Area Huang et al. (2022) 

Global Annual Urban Dynamics (GAUD) 30 
1985-2015 at 1-
year intervals 

Urban Areas Liu et al. (2020) 

World Settlement Footprints Evolution (WSF 

Evo) 
30 

1985-2015 at 5-

year intervals 
Settlements Marconcini et al. (2021) 

Table 2. List of global EO data products included in the analysis. 
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coordinates with Google Earth imagery. This transformation, 

validated with another (independent) set of 14 reference points, 

reduced the total RMSE to under 2m. Finally, 30m × 30m 

polygons were generated around each transformed sample point, 

overlaid on Google Earth imagery, and labeled into three 

categories: Buildings, Roads and Other Impervious Surfaces, and 

Non-Impervious Surfaces (e.g., trees, grass, barren, and water) 

based on the dominant cover type. 

 

We created two versions of labeled sample datasets for each EO 

data product. The first version retained each dataset's original 

class definitions. For instance, in GISA 2.0 ground truth samples, 

buildings, roads, and other impervious surfaces were grouped 

under 'ISA' (Impervious Surface Area), while all other samples 

were labeled as 'Non-ISA.' The second version reclassified the 

samples to align with the definition of SDG 11.3.1, where only 

'Buildings' were labeled as 'Built-up area’, and the rest were 

categorized as 'Non-built-up area.' This reclassification allowed 

us to assess how well each dataset estimates built-up areas based 

on the SDG 11.3.1 definition, assuming the absence of datasets 

designed to follow this classification. 
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Figure 2. Example subsets of EO data products for Manila, 

Philippines, highlighting built-up areas ( ) based on different 

definitions for 2000 and 2015. 

 
Year GAUD GISA 2.0 GISD30 WSF 

Evo 

2000 0.881 0.937 0.914 0.955 

2005 0.890 0.943 0.924 0.964 

2010 0.894 0.948 0.933 0.967 

2015 0.902 0.951 0.938 0.974 

Table 3. Mapped proportions of 'built-up area’ by data product 

and year for Manila, Philippines. 

 
Year GAUD GISA 

2.0 

GISD30 WSF 

Evo 

Reference Google 

Earth Image Date 

2000 1174 1242 1520 2208 2001/06/13 

2005 1179 1247 1536 2226 2005/08/23, 

2007/02/13* 

2010 1181 1250 1551 2231 2010/02/05 

2015 1185 1253 1559 2245 2015/09/09, 

2015/08/07* 

Table 4. Ground truth samples (𝑛) for each data product and year 

covering Manila, Philippines, with high-resolution imagery dates 

from Google Earth Pro. Supplementary images (*) were used for 

cloud-covered samples. 

3.2.4 Estimating accuracy, area, and confidence intervals:  

For each analysis year, error matrices of sample counts (𝑛𝑖𝑗) were 

generated using each version of the labeled sample dataset for 

each data product. These matrices were then used to apply the 

post-stratified method following Olofsson et al. (2013) as 

formulated in Table 1. The sample count error matrices were first 

converted into error matrices of estimated area proportions, 

enabling the direct computation of accuracy metrics—including 

bias-adjusted Producer's, User's, and Overall Accuracy—and 

adjusted built-up area estimates that account for classification 

errors. Standard deviations were calculated for the area estimates, 

and 95% confidence intervals (CIs) were constructed to quantify 

the uncertainty. 

 

3.2.5 Monte Carlo simulations:  The error-adjusted built-up 

area estimates and their corresponding standard deviations from 

previous calculations were used as inputs for Monte Carlo 

simulations to assess the uncertainty in LCR and LCRPGR 

estimates. The simulations were conducted for each analysis 

period (i.e., 2000–2005, 2005–2010, and 2010–2015) with two 

cases. For Case 1, estimates and standard errors were derived 

using each dataset's original class definition, while for Case 2, 

they were based on the SDG 11.3.1 built-up area definition. 

 

The simulations were implemented using Python, generating 

100,000 random samples for built-up area estimates within the 

range of their standard deviations, assuming a normal 

distribution. The Central Limit Theorem justifies the assumption 

that built-up area errors follow a normal distribution (Fischer, 

2011), because the estimates are derived using a sufficiently large 

number of validation samples collected through stratified 

sampling. This assumption simplifies statistical analysis and 

ensures consistent uncertainty quantification across different 

datasets and periods.  

 

For each analysis period, paired random samples of built-up area 

estimates—one for each year—were generated to compute LCR 

values, which were then used to derive LCRPGR. The PGR was 

calculated from census-based population data and was assumed 

to be error-free. The mean, standard deviation, and 95% 

confidence intervals of LCR and LCRPGR were computed from 

these simulations and compared across datasets and periods. 

 

4. Results and Discussion 

4.1 Impact of Built-Up Area Definitions on LCR and 

LCRPGR 

Figure 3a illustrates trends in built-up areas across the 

Philippines, derived from multiple global EO data products, each 

employing distinct definitions of 'built-up area.' All products 

consistently show an upward trend in the built-up area over time. 

However, considerable disagreements are evident. The WSF-Evo 

dataset reports the highest total built-up area (categorized as 

'settlements'), followed by GISD30, which captures impervious 

surfaces. Other data products estimate considerably lower built-

up extents.  

 

Compared to GHS-BUILT-S, GAUD and GISA 2.0 exhibit 

smaller differences in built-up areas, particularly in later years. 

On average, GAUD and GISA 2.0 differ by 16% and 7%, 

respectively, making them the closest datasets to GHS-BUILT-S 

in terms of mapped built-up area. In contrast, GISD30 and WSF-

Evo show larger differences, consistently yielding more built-up 

area than GHS-BUILT-S. WSF-Evo exhibits the largest 

differences, exceeding 200% in all years, peaking at 221% in 

1985 and averaging 205% more built-up area. 
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When these data products are used for LCR calculations, 

significant differences are observed in the earlier years, with 

variations decreasing in more recent periods (2005-2010 and 

2010-2015) (Figure 3b). GISA 2.0 estimates indicate substantial 

land consumption in 1985-1990, while other datasets suggest 

moderate levels. GAUD and GISA 2.0 report higher LCR values 

than the other datasets in 1990-1995. LCR estimates from 1995 

to 2005 vary widely across datasets, with GHS-BUILT-S and 

WSF-Evo reporting the lowest values. Beginning in 2005, LCR 

values across all datasets fall below 3%, indicating a general 

decline in land consumption rates. 

 

Utilizing these LCR estimates for LCRPGR calculations resulted 

in significant discrepancies in LCRPGR values (Figure 3c). The 

patterns observed for LCR are the same for LCRPGR because the 

PGR values used in the calculation remain the same for all 

products each year. In 1985-1990, LCRPGR values calculated 

using GAUD, GISD30, and WSF-Evo were below 1, indicating 

efficient land use. However, the other EO products suggest 

inefficiency during the same period. These differences persist in 

subsequent years. For example, starting from 1990, all data 

products—except GHS-BUILT-S—indicate inefficient land 

utilization in the Philippines (LCRPGR >1).  

 

 

 
Figure 3. (a) Trends in built-up area expansion from 1985 to 2015 

based on various global EO data products. (b) LCR and (c) 

LCPRGR at five-year intervals, derived from built-up area 

estimates of selected EO datasets. All graphs represent data for 

the Philippines. 

 

Compared to GHS-BUILT-S as the baseline, GAUD 

underestimates both LCR and LCRPGR by up to 73% in 1985-

1990 but later overestimates by up to 338% in 1990-1995, 

averaging 84% higher than the overall values. GISA 2.0 

consistently overestimates, with values 294% higher in 1985-

1990 and on average 183% higher than GHS-BUILT-S across all 

periods. GISD30 initially underestimates LCR and LCRPGR by 

61% (1985-1990) but later overestimates by 149% (2000-2005), 

averaging 36% higher than GHS-BUILT-S. In contrast, WSF-

Evo remains the closest, with differences primarily within ±50% 

and on average of just about 3% higher overall. These findings 

suggest that datasets with broader built-up definitions (e.g., GISA 

2.0, GISD30) can more than double LCR and LCRPGR 

estimates, while those with stricter definitions (GAUD) can 

underestimate in some years and overestimate in others. 

However, beyond definitions and total built-up area differences, 

datasets depicting similar rates or patterns of built-up change can 

still produce comparable LCR and LCRPGR estimates. Despite 

WSF-Evo reporting a much larger built-up area than GHS-

BUILT-S, their LCR and LCRPGR remain close, suggesting that 

the rate of change in built-up areas is more robust than the 

absolute extent. 

 

Although this analysis focused solely on built-up area definitions 

and used mapped built-up areas without accounting for data 

accuracy and uncertainties, the findings demonstrate how dataset 

choice can significantly influence SDG 11.3.1 metric 

interpretations. The variations in LCR and LCRPGR estimates 

highlight the potential for divergent conclusions about urban 

growth and LUE depending on the EO product used. These 

discrepancies underscore the need for higher consistency in built-

up area definition to ensure comparability across geographic 

contexts, periods, and datasets. 

 

4.2 Accuracy of EO Data Products, Built-up Area 

Estimates, and Their Impact on LCR and LCRPGR 

This section presents the accuracy assessment results of EO data 

products, their built-up area estimates, and the resulting 

uncertainties in LCR and LCRPGR calculations using Manila, 

Philippines, as the study area. 

 

4.2.1 Case 1 - Using the data product's original built-up 

class definition: Table 5 summarizes the accuracy assessment 

based on the original class definitions of each dataset. In general, 

the datasets differ in accuracy, with no single dataset consistently 

outperforming the others across all metrics and years. While all 

datasets achieve relatively high Overall Accuracy (OA), 

exceeding 0.85 in most cases, there are variations in their User's 

Accuracy (UA) and Producer's Accuracy (PA). WSF-Evo 

exhibits the highest PA in multiple years, capturing most built-

up areas with minimal omission errors. In contrast, GAUD 

generally has higher UA, indicating better precision in avoiding 

false positives. GISA 2.0 and GISD30 show consistently strong 

accuracy metrics across all years, with GISA 2.0 (2015) 

achieving the highest OA (0.91).  

 

The results in Table 6 reveal that mapped built-up areas 

consistently overestimate the bias-adjusted built-up areas across 

all EO data products and periods. WSF-Evo reports the largest 

mapped built-up areas in all years, peaking at 40.91 km² in 2015, 

while GISD30 and GAUD estimate smaller extents. However, 

after bias adjustment, the built-up areas decrease across all 

datasets, indicating that mapped built-up areas include 

classification errors that inflate the estimates. Across all years, 

WSF-Evo exhibits the largest overestimation of built-up area, 

averaging 4.43 km² (12.29%) above the adjusted estimates. GISA 

2.0 and GISD30 also overestimate built-up areas, with average 

differences of 3.48 km² (9.70%) and 2.86 km² (7.96%), 

respectively. GAUD has the smallest overestimation, averaging 

1.25 km² (3.48%) across all years.  

 

Across all datasets and years, the average overestimation in built-

up area estimates is 1.25 km², while the average uncertainty 

amounts to ±0.67 km². WSF-Evo has the narrowest 95% 

confidence interval (±0.56 km² on average across years), likely 
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due to its larger number of ground truth samples, resulting in 

more precise estimates than the other datasets. Despite variations 

in overestimation, the 95% confidence intervals of the bias-

adjusted built-up areas overlap across all datasets for each year 

(Figure 4a), indicating no strong statistical evidence that the 

adjusted built-up areas differ significantly. A similar pattern 

emerges when examining each dataset's adjusted built-up areas 

and confidence intervals over time. For most of the datasets, their 

confidence intervals overlap across years, indicating no 

statistically significant change in adjusted built-up areas. 

However, GISA 2.0 stands out, as its confidence intervals do not 

overlap between 2000 and 2010, 2000 and 2015, 2005 and 2010, 

and 2005 and 2015. This lack of overlap suggests a statistically 

significant increase in built-up area (or, according to the dataset's 

definition, impervious surface area) as detected by GISA 2.0 over 

these periods. The observed changes likely reflect actual 

impervious surface expansion rather than those due to errors in 

classification. 

 
Accuracy 

Metric 
Year GAUD 

GISA 

2.0 
GISD30 

WSF- 

Evo 

User's 
Accuracy 

2000 0.91 0.89 0.91 0.87 

2005 0.89 0.87 0.91 0.87 

2010 0.91 0.92 0.89 0.89 

2015 0.92 0.92 0.89 0.89 

Producer's 

Accuracy 

2000 0.94 0.99 0.96 0.99 

2005 0.93 0.99 0.97 0.99 

2010 0.94 0.99 0.98 1.00 

2015 0.95 0.99 0.98 0.99 

Overall 

Accuracy 

2000 0.87 0.88 0.89 0.87 

2005 0.85 0.87 0.88 0.87 

2010 0.87 0.91 0.88 0.90 

2015 0.88 0.91 0.89 0.89 

Table 5. Accuracy assessment of EO data products for Manila, 

Philippines, based on their original built-up area definitions. Bold 

values indicate the highest accuracy for each year. 

 

Type Year GAUD 
GISA 

2.0 
GISD30 

WSF- 
Evo 

Mapped 

Area (km2) 

2000 36.97 39.32 38.38 40.08 

2005 37.36 39.59 38.78 40.48 

2010 37.52 39.79 39.19 40.59 

2015 37.87 39.92 39.39 40.91 

Bias-

adjusted 
Area with 

Uncertainties 
(km2) 

2000 
35.54 ± 

0.77 

35.36 ± 
0.75 

36.41 ± 
0.64 

35.46 ± 
0.59 

2005 
35.65 ± 

0.81 

34.98 ± 

0.79 

35.45 ± 

0.68 

35.65 ± 

0.59 

2010 
36.54 ± 

0.75 

37.07 ± 
0.66 

35.7 ± 
0.68 

36.43 ± 
0.53 

2015 
36.99 ± 

0.71 

37.28 ± 

0.65 

36.73 ± 

0.63 

36.8 ± 

0.54 

Table 6. Summary of mapped and bias-adjusted built-up areas 

estimated from EO data products for Manila, Philippines, using 

their original built-up class definitions. Uncertainties are 

expressed as 95% confidence intervals. 

Figure 4b shows the LCR calculated using bias-adjusted built-up 

area estimates from different EO data products, based on their 

original built-up area class definitions with 95% confidence 

intervals derived from Monte Carlo simulations, while the same 

metric calculated using the mapped built-up area are listed in 

Table 7. While LCR values derived from mapped built-up areas 

indicate consistently low land consumption over time (all below 

0.22%), this trend changes when bias-adjusted areas are used in 

the calculations. LCR values can range from as low as about -1% 

(GISD30, 2000–2005) to as high as about 1.75% (GISA 2.0, 

2005–2010), reflecting the impact of built-up area uncertainties 

on LCR estimates. On average, across datasets and years, the 

uncertainties in LCR amounted to ±0.54%. 

 

 

 
Figure 4. (a) Bias-adjusted built-up area estimates from different 

EO data products across selected years (2000–2015), based on 

their original built-up area class definitions. (b) LCR and (c) 

LCRPGR, derived from bias-adjusted built-up area estimates 

across selected periods. All graphs represent data for Manila, 

Philippines. Error bars indicate the 95% confidence intervals. 

 

Metric Period GAUD 
GISA 

2.0 
GISD30 

WSF- 

Evo 

LCR 

(%) 

2000-2005 0.21 0.14 0.21 0.20 

2005-2010 0.09 0.10 0.21 0.06 

2010-2015 0.19 0.07 0.10 0.16 

PGR 
(%) 

2000-2005 0.44 

2005-2010 0.44 

2010-2015 1.49 

LCRPGR 
2000-2005 0.48 0.32 0.48 0.44 

2005-2010 0.20 0.22 0.48 0.13 

2010-2015 0.13 0.05 0.07 0.10 

Table 7. LCR and LCPGR derived from mapped built-up areas 

estimated using EO data products for Manila, Philippines. For 

reference, PGR is included, as calculated from census data. 

On the other hand, LCRPGR values (Table 7) computed using 

mapped built-up areas remain below 1 across different periods 

and datasets, indicating efficient LUE—where population growth 

outpaces land consumption. However, this pattern shifts when 

bias-adjusted built-up areas and their uncertainties are considered 

(Figure 4c). Except for the 2010–2015 period, where most of the 

LCRPGR values from mapped and bias-adjusted built-up areas 

are relatively consistent, the 2000–2005 and 2005–2010 results 

suggest more significant uncertainty in LUE dynamics. 

Depending on the EO dataset, LCRPGR estimates can vary 

widely when uncertainties are considered (average of 0.39 ± 0.94 

across datasets and periods). The least uncertain estimates are 

found for the 2010-2015 period. Moreover, LCR and LCRPGR 

values derived from bias-adjusted built-up areas are statistically 

similar across datasets at the 95% confidence level, following 

from the overlapping confidence intervals of their bias-adjusted 

built-up area estimates (as depicted in Figure 4a). This suggests 

that, despite variations in built-up area definitions, the land 
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consumption rate can remain comparable across datasets after 

accounting for classification uncertainties. However, while these 

LCR and LCRPGR values may be statistically similar across 

datasets or years, a clear differentiation is necessary when 

interpreting them, as they are inherently tied to each dataset's 

built-up area definition. For example, LCR and LCRPGR derived 

from GISA 2.0 should be explicitly called "impervious surface 

area LCR and PGR." At the same time, the LCR and LCRPGR 

from WSF-Evo should be identified as "settlement LCR and 

LCRPGR" to accurately reflect the differences in the products' 

built-up class definition. 

 

4.2.2 Case 2 - Using the SDG 11.3.1 built-up area 

definition: Table 8 summarizes the accuracy assessment of the 

EO data products based on the SDG 11.3.1 built-up area class 

definition. The results reveal variability in how well each EO 

dataset aligns with this definition. WSF-Evo exhibits the highest 

PA across all years (100% in 2005, 2010, and 2015), consistently 

capturing most reference built-up areas. However, the PA values 

for other datasets remain high (96% and above), suggesting that 

all datasets effectively identify areas occupied by buildings. 

GAUD generally achieves the highest UA, though the differences 

between datasets are minor. Regarding OA, GAUD performs best 

across all years, but other datasets remain comparable, with only 

a few percentage points lower accuracy. UA and OA are 

significantly lower when assessed using the SDG 11.3.1 

definition compared to each dataset's original built-up class 

definition. On average, UA decreased by approximately 25%, 

while OA dropped by about 22% across all datasets and years. 

 
Accuracy 

Metric 
Year GAUD GISA 2.0 GISD30 

WSF- 

Evo 

User's 

Accuracy 

2000 0.71 0.67 0.68 0.65 

2005 0.67 0.68 0.67 0.67 

2010 0.68 0.66 0.63 0.65 

2015 0.70 0.68 0.69 0.67 

Producer's 
Accuracy 

2000 0.96 0.99 0.97 0.99 

2005 0.98 0.99 0.98 1.00 

2010 0.97 0.99 0.99 1.00 

2015 0.98 0.99 0.99 1.00 

Overall 

Accuracy 

2000 0.72 0.68 0.69 0.66 

2005 0.70 0.69 0.69 0.68 

2010 0.69 0.68 0.65 0.66 

2015 0.71 0.69 0.70 0.67 

Table 8. Accuracy assessment of EO data products for Manila, 

Philippines, evaluated using the SDG 11.3.1 definition of the 

built-up area as "all areas occupied by buildings." Bold values 

indicate the highest accuracy for each year. 

Built-up area estimates (Figure 5a) from 2000 to 2010 exhibit 

high variability across datasets, reflecting differences in 

classification and bias adjustments. However, by 2015, the 

estimates become more consistent, suggesting better alignment 

among datasets in capturing built-up areas in the most recent 

period. On average, across all datasets and years, the built-up area 

is estimated at 26.71 km², with an average uncertainty of ±0.99 

km². This estimate is approximately 12.42 km² lower than the 

mapped built-up area, indicating an overestimation of about 42% 

when EO datasets are used without bias adjustment. The average 

uncertainty is approximately 46% higher than when the datasets 

were assessed using their original built-up class definitions. The 

overlapping confidence intervals suggest that uncertainties in 

built-up area estimates remain substantial, limiting the ability to 

differentiate between datasets and detect significant trends over 

time. Despite the high uncertainties, the findings suggest that 

estimating built-up areas according to the SDG 11.3.1 definition 

remains feasible across EO datasets. 

 

 

 
Figure 5. (a) Bias-adjusted built-up area estimates from different 

EO data products across selected years (2000–2015), based on 

the SDG 11.3.1 built-up area definition. (b) LCR and (c) 

LCRPGR, derived from bias-adjusted built-up area estimates 

across selected periods. All graphs represent data for Manila, 

Philippines. Error bars indicate the 95% confidence intervals. 

 

The LCR and LCRPGR estimates derived from bias-adjusted 

built-up area data (Figure 5b & c) reveal notable trends and 

substantial uncertainties. In the earlier periods (2000–2005 and 

2005-2010), most datasets report negative LCR and LCRPGR 

values, whereas positive estimates appear for 2010–2015. 

However, in both cases, uncertainties are substantial. LCR 

uncertainties range from ±0.83% (WSF-Evo, 2005–2010) to 

±1.22% (GAUD, 2005–2010). Among the datasets, GAUD 

exhibits the highest LCR uncertainty (average of ±1.17%), while 

the other datasets show moderate uncertainty levels, averaging 

±0.52%. Across all datasets and years, the average uncertainty is 

±0.68%, notably higher than when using the original built-up 

class definitions. LCRPGR uncertainty is also substantial, with 

estimates varying by ±1.80 across datasets and years. However, 

uncertainties are significantly lower for the most recent period 

(2010–2015), averaging ±0.71 across datasets. This suggests that 

EO datasets provide more precise LUE estimates for this period 

than in earlier years—a trend also observed when using the 

dataset’s original built-up class definitions. 

 

Comparing Figure 4 with Figure 5, LCR and LCRPGR temporal 

trends vary significantly in magnitude and direction depending 

on the built-up area definition. For example, during 2005–2010, 

the original class definition produces positive LCR and LCRPGR 

values, indicating high land consumption rates and inefficient 

land use practices. However, when using the SDG 11.3.1 built-

up definition, the trend shifts in the opposite direction, suggesting 

a lower rate of land consumption or even contraction of built-up 

areas. This discrepancy highlights that built-up area development 

rates differ based on the classification approach, affecting 

interpretations of urban growth and LUE. 
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5. Summary, Conclusions and Outlook 

This study quantifies the impact of EO data variability on LCR 

and LCRPGR estimates, demonstrating how inconsistencies in 

built-up area definitions and dataset accuracy contribute to 

significant discrepancies in LUE assessment. To mitigate these 

discrepancies, we implement a bias-adjustment methodology that 

corrects classification errors, aligning EO-derived built-up area 

estimates more closely with the official SDG 11.3.1 definition. 

Additionally, we incorporate uncertainty quantification using 

Monte Carlo simulations, ensuring that LCR and LCRPGR 

estimates more accurately reflect the inherent uncertainties in 

LUE metrics. 

 

The substantial variability observed in LCR and LCRPGR 

estimates across different datasets and periods underscores the 

sensitivity of these metrics to built-up area definitions and 

classification uncertainties. These variations highlight the 

potential for divergent interpretations of urban expansion trends 

and LUE assessment, depending on the EO dataset utilized. Such 

discrepancies can lead to inconsistencies in SDG 11.3.1 

monitoring and, consequently, in policy recommendations. The 

fact that LCR and LCRPGR values can change not only in 

magnitude but also in direction depending on whether mapped or 

bias-adjusted built-up areas are used reinforces the critical need 

for methodological transparency and careful dataset selection in 

LUE assessments. 

 

To enhance the reliability of SDG 11.3.1 monitoring, a 

standardized approach to defining and measuring built-up areas 

is essential. Strengthening adherence to the SDG 11.3.1 

definition and promoting robust methodological frameworks will 

improve the comparability and credibility of LUE assessments. 

The application of the post-stratified estimator provides a more 

accurate basis for LCR and LCRPGR calculations by correcting 

classification errors in EO-derived built-up area estimates. 

Meanwhile, Monte Carlo-based uncertainty quantification 

reveals the high sensitivity of these metrics to input data 

accuracy, reinforcing the need for uncertainty-aware 

methodologies in urban sustainability evaluations. These 

methodological improvements can equip policymakers and urban 

planners with more reliable insights, facilitating more effective 

urban development strategies and informed decision-making. 

 

Despite these contributions, some limitations warrant further 

investigation. This study does not explicitly account for potential 

uncertainties introduced by temporal mismatches between 

reference imagery and the EO data products being assessed. Such 

mismatches may influence the accuracy of validation samples 

and bias adjustments, potentially affecting the robustness of LUE 

estimates. Additionally, the generalizability of these findings 

could be enhanced by testing the methodology across different 

urban contexts and EO data products with various spatial and 

temporal resolutions. While this study assumes population data 

to be error-free, this is not always the case. Uncertainties in 

population data can also significantly impact PGR and LCRPGR 

estimates, and future studies should incorporate their 

quantification. Future work could also refine uncertainty 

quantification by incorporating spatially explicit error models to 

account for localized (pixel-level) classification uncertainties. 

Expanding this approach to other regions and urban typologies 

would also support the creation of standardized, uncertainty-

aware SDG 11.3.1 monitoring frameworks, allowing for more 

equitable and actionable comparisons in urban sustainability 

assessments. 
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