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Abstract 

 

Excessive consumption of groundwater can lead to a significant imbalance between groundwater recharge rates and water demand. 

This disparity underscores the importance of accurately estimating future groundwater storage to ensure global water and food 

security, in line with sustainable development goals (SDGs) related to clean water and sanitation and sustainable cities and 

communities. However, traditional methods face challenges in predicting groundwater storage due to their inherent complexity. To 

address this gap and align with SDGs, this study aims to develop a regression-based machine learning model for spatially varying 

groundwater level prediction. The primary goal is to improve local water resource management and encourage responsible water 

usage. The study evaluates the use of K-Nearest Neighbour (KNN), Random Forest (RF), Support Vector Machine (SVM), XG 

Boost and Polynomial regression models, using two groups of input parameters. The results show that the XG-Boost model 

establishes a strong relationship between input and output parameters. The developed KNN model can be reliably used for local 

groundwater level prediction and can also contribute to sustainable urban development, ultimately aligning with the SDGs. 

 

 

1. Introduction 

Groundwater is a source of fresh water that fulfils 

approximately one-third of the world's water demands, making 

it essential for various purposes. It is closely linked to socio-

economic development (Robins and Fergusson, 2014). 

Groundwater serves as a significant supplier of domestic 

freshwater (36%), water for agriculture (42%), and industrial 

water demand (27%) (Rulli and D'Odorico, 2013; Taniguchi 

and Hiyama, 2014; Döll et al., 2012). Despite the projected 

increase in global water demand, recent studies have raised 

concerns about declining groundwater levels in different parts 

of the world (Castellazzi et al., 2016; MacDonald et al., 2016; 

Richey et al., 2015). The primary causes of this decline are 

attributed to human activities and the adverse impacts of climate 

change (Haas and Birk, 2017; Graaf et al., 2017). Additionally, 

natural factors like evapotranspiration, hydraulic properties, and 

other events contribute to seasonal fluctuations in water tables 

(Rathay et al., 2018). Reduced precipitation and higher 

temperatures during dry periods also play a role in diminishing 

groundwater levels (Stoll et al., 2011). Furthermore, the 

increasing reliance on groundwater, along with spatial-temporal 

variations and disparities in groundwater resources, have 

worsened the situation (Yu et al., 2018). India, in particular, 

faces critical challenges due to hydro-climatic variability and 

droughts, posing significant difficulties for scientists and water 

resource management. 

 

Advancements in computer modeling, computing power, and 

information processing have led to the development of practical 

tools for understanding complex natural systems. In the field of 

hydrology, researchers have focused on the applicability of 

machine learning methods to improve groundwater studies 

(Shortridge et al., 2015). Machine Learning is the subset of 

artificial Intelligence which develops computer algorithms and 

statistical models (Kenda et al., 2018). It is well known that the 

behavior of ML models changes as data structure changes. So 

far supervised learning techniques seem better for prediction 

purposes, but both cluster and ensemble learning models also 

useful subject to availability of good quality of data sets.  

 

Not all machine learning (ML) techniques are universally 

suitable for groundwater problems due to variations in data 

quality and availability (Kasiviswanathan et al., 2016). Some 

methods may underperform with limited, sparse, or noisy data 

(Brajard et al., 2020; Nguyen et al., 2019). The K-Nearest 

Neighbor (KNN) method is widely used for both regression and 

classification due to its simplicity and robustness, making it 

effective for ML-based prediction and forecasting in noisy data 

environments (Navot et al., 2005; Nguyen et al., 2019). Random 

Forest, developed by Leo Breiman in 2001, uses multiple 

regression trees based on bootstrap resampling, averaging their 

outputs to improve accuracy and reduce high bias (Breiman 

2001; Dietterich 2000; Mohammadi 2019). Support Vector 

Machines (SVM), proposed by Cortes and Vapnik (1995), aim 

to find an optimal hyperplane to separate classes, often 

outperforming earlier classification methods (Farzin et al., 

2021). Polynomial regression fits data with a polynomial 

function, offering moderate flexibility and computational 

efficiency, and is still considered linear in statistical estimation 

(Peckov 2012). XG-Boost, a popular boosting algorithm, 

constructs shallow decision trees, minimizing errors and 

preventing overfitting through regularization; it has become 

widely used in data mining due to its adaptability in 

hyperparameter tuning (Lu and Ma, 2020; Chen and Guestrin, 

2016; Bhagat et al., 2020). Each method offers unique 

advantages depending on data characteristics and problem 

context. 

 

This study aims to address this challenge by evaluating the 

effectiveness of five specific machine learning models, namely 

K-Nearest Neighbors (KNN), Random Forest (RF), Support 

Vector Machine, Polynomial regression and XG-boost in 

predicting groundwater levels using limited site-data. The 

primary focus is on assessing their capacity to handle sparse and 

noisy samples. To achieve this objective, the study assesses the 

potential of the ML models in dealing with limited data and has 
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been explored for its likely contribution to sustainable 

groundwater management. 

 

2. Material and Methods 

2.1 Study Area 

This study area is shown in Fig. 1 and lies in the Roorkee block 

of state Uttarakhand, India, situated between 77° 50' 30.012" E 

to 77° 56' 30.012" E longitude and 29° 48' 15.012" N to 29° 55' 

30" N latitude, covering a total area of 99.401 km² (refer to 

Fig.1). The area is characterized by flat terrain, with an 

elevation range of 254 to 279 meters above mean sea level 

(msl). Land use is primarily agricultural (57%), with residential 

zones occupying 39% of the area. Groundwater levels at the 

specified wells range from 5.30 to 9.00 meters below ground 

level (bgl), with seasonal fluctuations between 0.47 and 3.65 

meters. Subsurface layers reveal a cyclic succession of grey 

micaceous sands, silt, clay/brownish-grey clay, sand, and 

gravel, interspersed with occasional pebbles and boulders. 

These deposits are part of the quaternary alluvium associated 

with terrace, fan, and channel formations (Mishra et al., 2024). 

 

Roorkee experiences a highly unpredictable continental climate, 

heavily influenced by its proximity to the towering Himalayas 

(Sudha et al., 2010). The city experiences four distinct seasons. 

Summer begins in March and lasts until July, with temperatures 

around 28°C. Following this, the monsoon season brings 

significant changes in weather, marked by heavy rainfall due to 

monsoon clouds blocked by the Himalayas. This rainy season 

typically continues until October. After the monsoons, the post-

monsoon period offers mild weather, with temperatures ranging 

from 15°C to 21°C. Roorkee receives an average annual rainfall 

of about 260 mm. 

 

The winter season spans from December to February, bringing 

frigid conditions and occasional cold waves due to katabatic 

winds descending from the Himalayas. Groundwater is the 

primary water resource for the city, although the Ganga Canal 

traverses the center of Roorkee, and the perennial Solani River 

flows through the area. Both water bodies support agriculture, 

which significantly contributes to the economy of Roorkee, as 

well as to the district and state. These water sources also play an 

essential role in recharging groundwater levels. 

 

The site was selected to study groundwater (GW) level 

fluctuations around Roorkee. A total of 14 bore wells were 

identified to monitor temporal groundwater levels through 

gravity measurements. Additional details about the study area 

can be found in Fig.1. 

2.1.1 Data 

A relative gravimeter (ZLS-B-96) with a precision of 0.001 

mGal was used to record gravity observations near the 

observation wells. Since the relative gravimeter measures only 

relative gravity values, these readings were converted to 

absolute gravity values using a reference absolute gravity 

station on the IIT Roorkee campus. Simultaneously, the depth to 

the water table was measured using a water level indicator, 

which has a precision of 5 mm. The field data were collected on 

a weekly basis. Gravity and GWL data collection procedure is 

presented in Fig.2. Geographical positioning (latitude, 

longitude, and orthometric height) of the observation wells 

essential for gravity observations, a dual-frequency GPS 

receiver was used for this purpose. meteorological data have 

been collected from the meteorological observatory located at 

the hydrology department of IIT Roorkee. A total of 165 

samples were collected for the gravity-based model and 

meteorological-based model run. Observation wells have been 

selected in the area such that to form a network. The gravity 

data obtained from the observation well has been transformed 

into absolute gravity values measured in Gal, while the water 

levels have been converted to orthometric height expressed in 

meters. Additionally, the time of observation has been 

converted to seconds. 

 

Figure 1. Observation stations are located in the study area. 

 

 

Figure 2. Gravity and Water level observation taking process at 

Asaf Nagar site. 

 

2.2 Relation Between Temporal Gravity and GWL 

Gravity is the force that the Earth exerts on a unit mass, acting 

perpendicular to the equipotential surface. According to 

Newton's law of gravitation, this force depends on the 
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distribution of mass and its spatial position relative to the 

Earth's surface. At any given point, variations in groundwater 

levels cause an increase or decrease in the surrounding water 

mass, directly affecting the gravitational force at that location. 

This change in mass, reflecting fluctuations in groundwater 

storage, can be determined by observing changes in the water 

level. Thus, as per Newton's law, an increase or decrease in 

mass around a station leads to a corresponding rise or drop in 

gravity readings. The change in gravity, ∆g, associated with 

variations in total groundwater storage ∆h, can be calculated 

accordingly (Jacob et al., 2010). The equation can be given by  

 

                                        (1) 

 

2.2.1 Approximation Analysis Between Gravity Variation 

and GWL Fluctuation 

According to the Jacob approximation discussed in section 2.2, 

the relationship between changes in the value of acceleration 

due to gravity (∆g) and the altitude difference (∆h) in a time lag, 

changes in the gravity value have been suggested to vary 

linearly with the altitude (GWL) difference (Eqn. 1). The above 

approximations have been analyzed here.  

This analysis focuses on examining the applicability of the 

above relationship over the field dataset recorded for this study. 

To carry out this study, the gravity values were recorded at 

different altitudes in the vicinity of the wells to study their 

influence on groundwater extraction. These readings were used 

to obtain ∆g and ∆h values for different step sizes or time lags, 

i.e., studying the relationship between these two parameters by 

taking differences between the consecutive values, then 

increasing the step size and obtaining the values with a step size 

of two, then increasing the step size to three, and so on. For 

instance, if the recorded gravity values are: 

 

 
 

and the respective GWL altitude be: 

 
 

For the first case, keeping the step size at 1: 

, , 

,……….  
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For the second case, keeping the step size at 2: 
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2.2.2 Visualization of the approximation 

Similarly, higher step sizes can be analyzed to study the effect 

of altitude differences on gravity values over large values. For 

every step size was plotted against  and the relationship 

between the two parameters was observed and compared with 

the linear relationship between the two, as stated in section 

2.2.1. This analysis has been performed here for a single-well 

observation case. The approximation has been realized through 

scatter plots drawn between  vs  as described in time lag 

(1- 2) and shown in Fig. 3. 

 

 
(a) 

 
(b) 

Figure 3. Scatter plots between at different time 

lags- a. at Lag 1, b. at Lag 2. 

 

Upon comparison, the observation of the plots leads to the 

conclusion that for every step size, one obtains a nonlinear 

relationship between the two parameters under study, with 

significantly low correlation values for all the cases. To 

encounter this nonlinearity in the relationships between the two 

parameters, the approximation is being realized by evaluating 

artificial AI-based machine learning algorithms applied over the 

dataset to optimize the values towards linearity. 

 

2.3 Development of ML models 

In this study, the models were developed using two different 

sets of parameters. The first set consisted of gravimetric 

parameters, and the second set was combined with gravity and 

meteorological parameters shown in Table 1. The dependent 

variable used in the models was the groundwater level from 

Mean Sea Level.  
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Table 1. Model Group 

Sr. 

no 

Model Group 

Names 

Parameters Total no 

of 

Samples 

1 Gravimetric 

Group 

Gravity, time, 

Location of wells 

(latitude, 

longitude) 

165 

2 Combined 

gravity and 

meteorology 

group 

Gravity, time, 

Location of wells 

(latitude and 

longitude), Mean 

temperature and 

precipitation. 

165 

 

A comparison was made between these two parameter groups. 

Prior to training the models with the available data, an 

Exploratory Data Analysis (EDA) was conducted to understand 

the data structure, pattern identification, and the selection of 

models. Subsequently, the data was divided into training and 

testing datasets in a ratio of 85:15. Hyper-parameter tuning of 

the selected models was performed using the grid search cross-

validation method, and evaluation metrics such as Root Mean 

Square Error (RMSE) and R2 were employed. The models were 

compared with each other and also within their respective 

parameter groups to assess their performance. If the testing error 

of the model was deemed high, the initial process was repeated 

to refine the model. Conversely, if the error fell within an 

acceptable range, the developed model was compared to other 

models for further analysis and evaluation. The workflow of the 

entire process can be visualized in the accompanying Fig. 4. 

The aim was to analyze the effectiveness of the gravimetric 

parameters versus the meteorological parameters in predicting 

the groundwater level. 

 

This section focused on the development of machine learning 

models (KNN, Random Forest, SVM, XG-Boost, and 

Polynomial regression) that have been created as part of current 

research to predict groundwater levels. These prediction models 

have been developed using the open-source software Jupyter 

Notebook. Machine learning models applied in practice can be 

influenced by varying input variable ranges. To put it 

differently, when input variables possess differing ranges, the 

model's calculations may be skewed, as it might assign greater 

importance to input variables with larger ranges, regardless of 

the actual significance of input variables with smaller ranges in 

predicting the target variable. Consequently, it is imperative to 

normalize the data before constructing these predictive models. 

In the case of the datasets used in the KNN, Random Forest 

(RF), XG-Boost, SVM, and polynomial regression models, 

normalization has been executed in such a manner that the 

values fall within the range of zero to one. This normalization 

technique employs the minimum and maximum normalization 

methods, which have been demonstrated to enhance model 

performance by reducing computation time and minimizing 

errors during the model execution process. 

 

      (2) 

Where Xmin and Xmax are the minimum and maximum values, 

respectively, and Xn is the normalized value. 

 

Figure 4. Flowchart of methodology 

 

The process of splitting the normalized input dataset into two 

segments, namely the training and validation sets. Although 

there is no universally prescribed ratio for dataset splitting 

during model calibration and validation, it is generally 

recommended that the size of the validation dataset should fall 

within the range of 10% to 40% of the total dataset. In the case 

of the models applied in our study, the specific data partitioning 

ratios were determined through a series of trials involving 

variations in the splitting ratios ranging from 70:30 to 85:15. 

Ultimately, the choice of the splitting ratio was made based on 

the criterion of achieving the lowest error, as measured by the 

Root Mean Square Error (RMSE), during the model calibration 

process. 

 

2.3.1 Model Calibration 

The calibration of machine learning models stands as a crucial 

phase in the development and implementation of predictive 

systems. The calibration process encompasses fine-tuning the 

model by optimizing the training algorithm to minimize the cost 

function. The model learns its weights from the provided 

training dataset. However, a common challenge that arises at 

this stage is overfitting, where the model becomes overly 

sensitive to noise, resulting in adverse training effects. 

Hyperparameters, while not directly learned from the training 

data, introduce complexity and play a crucial role in achieving 

the optimal model architecture. Consequently, one can engage 

in hyperparameter tuning for all models as part of the 

calibration process to ensure that they are finely adjusted and 

perform at their best. 

 

Calibration also serves as a corrective measure, rectifying any 

systematic biases or uncertainties inherent in a model's 

predictions. This not only enhances the model's reliability but 

also makes it more interpretable and actionable for decision-

makers, ultimately leading to more informed and effective 

choices in various domains, from finance to healthcare to 

environmental science. 
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2.3.2 Model Validation 

Validation of machine learning models is a critical step in the 

development and evaluation of predictive models. It involves 

assessing the model's performance to ensure its accuracy and 

reliability in predictions. The model's performance during 

training and testing is assessed using the following metrics: root 

mean square error (RMSE) and coefficient of determination 

(R2). 

   (3) 

   (4) 

 

where ‘ypredict’ is predicted output, ‘yactual’ - actual output, 

‘ymean’ - mean from actual prediction, and ‘n’ - total number of 

the dataset. 

 

 

3. Results and Discussion 

For both model groups total 166 numbers of samples were 

collected from 14 different observation wells. There were a total 

of 14 wells, of which the water level depth, gravity data, and all 

the required data have been collected. All five models were 

trained in both model groups using 85% of the total data, and 

the rest of the 15% was used for testing. Using metrics such as 

RMSE and R2 the model evaluation was done. Additionally, 

techniques like K-fold cross-validation have been employed to 

further enhance validation by partitioning the data into multiple 

subsets and iteratively training and testing the model. As the 

training samples were less, cross-validation method has been 

used for model evaluation using five folds in the dataset. 

Testing samples have been used for testing the models and also 

to know how the model is predicting the new data. To check the 

prediction capability of the models, 23 samples have been used 

to test data sets.   

  

Hyperparameter tuning was carried out using the Grid search 

cross-validation method in which three cross-validation (CV) 

folds are used for every model. For linear regression there was 

no hyperparameter tuning was done. For polynomial regression, 

grid search CV has been used to identify the correct polynomial 

degree for the combined gravity and meteorological models. For 

KNN, the value of k is determined, for the gravimetric model, 

the value of k is 5, and for the meteorological model, the value 

of k is 3. For the SVM model, the radial basis function (RBF) 

kernel has been used as a hyperparameter for both models. Then 

for both Random forest and XG boost, no of estimates i.e. no of 

trees for the model and maximum depth of each is determined 

using hyper parameter tuning. Details about hyper-parameter 

tuning are shown in Table 2. 

 

In gravimetric parameter model run, among all models XG-

Boost model has provided best training and testing RMSE of 

0.123 and 0.65 and model has R2 of 0.985. Although, RF also 

has training and testing RMSE of 0.182 and 0.678 and R2 of 

0.961. Performance of all models run has been shown in Table 

3. As tested the prediction capability of all models, it has been 

observed that XG-Boost and RF have similar prediction 

accuracy of 3.17 m and 3.11m. The correlation output of all 

models prediction capability against the actual presented 

through the Taylor diagrams in Fig. 5 and Fig. 6. 

 

Table 2. Best parameters for each model 

Model Hydro-

Gravimetric 

parameters 

Meteorological 

Parameter 

KNN K=5 K = 3 

SVM-RBF kernel='rbf' kernel='rbf' 

Random 

Forest 

max_depth=5, 

n_estimators= 100 

max_depth=3, 

n_estimators= 100 

XG-Boost 
max_depth=7, 

n_estimators=100 

max_depth=5, 

n_estimators= 200 

Polynomial 

regression 
Degree = 2 degree = 2 

 

In gravimetric parameter model run, among all models XG 

Boost model has provided best training and testing RMSE of 

0.123 and 0.65 and model has R2 of 0.985. Although, RF also 

having training and testing RMSE of 0.182 and 0.678 and R2 of 

0.961. Performance of all models run has been shown in table 3. 

As tested the prediction capability of all models, it has been 

observed that XG boost and RF have similar prediction 

accuracy of 3.17 m and 3.11m. The correlation output of all 

model's prediction capability against the actual presented 

through the taylor diagrams in Fig. 5 and Fig. 6. 

 

Table 3. Training and testing outcomes of all groups of models 

run. 

Model With Gravimetric 

Parameters 

With Hydro-Gravimetric 

Parameters 

RMSE  

R2  

RMSE R2  

Traini

ng 

Testi

ng 

Traini

ng 

Testing 

KNN 0.379 0.497 
0.86

7 
3.754 4.052 0.211 

Rando

m 

Forest 

0.182 0.678 
0.96

1 
3.423 3.211 0.343 

SVM-

RBF 
0.392 0.478 

0.84

2 
4.457 3.873 0.113 

Polyno

mial-

regressi

on 

0.761 0.90 
0.40

4 
4.144 3.687 0.038 

XG 

Boost 
0.123 0.65 

0.98

5 
3.339 3.149 0.376 
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Figure 5. Taylor diagram representing the correlation between 

observed and predicted GWL during model development in the 

gravimetric group. 

 

 

Figure 6. Taylor diagram representing the correlation between 

observed and predicted GWL during model development in the 

Hydro-gravimetric group. 

 

In the model run with gravity and meteorological parameters, 

XG Boost also performs best with training and testing RMSE of 

3.339 and 3.149, and the model has R2 of 0.376. XG Boost 

provided prediction accuracy of 3.29 m.  From the remaining 

four models, RF and KNN also have shown relatively good 

performance with training and testing RMSE and R2. Training 

and testing performance of all models is shown with detailed 

information in Table 3. Output of all model’s prediction 

capability against the actual is shown in Fig. 6 and Fig. 7. 

 

 

Figure 7. Prediction outcomes of all models with respect to 

actual data for gravimetric group. 

 

 

Figure 8. Prediction outcomes of all models with respect to 

actual data for gravity and meteorological combined group. 

 

In both model groups, it has been observed that SVM has not 

performed well during training and testing. This denotes that the 

model has not generated a proper relation between independent 

variable and dependent variable. But interestingly, the model 

gives feasible R2 and also less prediction error. Among all of the 

models, outputs of polynomial regression tend to over fitting as 

the training error is very high as compare to the testing error and 

R2. In this study the performance of the model categorized as 

excellent model fit (RMSE ≤ 0.50 or R2 > 0.75), good model fit 

(0.50< RMSE or 0.50 < R2 ≤ 0.75), fair model fit (0.60<RMSE 

0.70 or 0.25 < R2 ≤ 0.50) and poor model fit (RMSE > 0.70 or 

R2 ≤ 0.25). 

 

To assess and visualize differences in model performance, 

absolute error was calculated for both model groups and 

displayed through error box diagrams in Fig. 9 and Fig. 10. 

These diagrams indicate that XG-Boost generally exhibits lower 

bias with non-linear data structures, achieving a more accurate 

fit. However, this model may also show high variance due to its 

sensitivity to specific data points and localized patterns within 

the training set. This trade-off between bias and variance can 

lead to decreased performance on new, unseen data, as reflected 

in the elevated RMSE and absolute error observed in the hydro-

gravimetric group, indicating potential overfitting issues. 

 

 

Figure 9. Violin box diagram representing the absolute error 

between observed and predicted GWL during model 

development in the gravimetric group. 
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Figure 10. Violin box diagram representing the absolute error 

between observed and predicted GWL during model 

development in the Hydro-gravimetric group. 

 

For comparative evaluation between the model groups, it has 

been observed that the gravimetric model group has been giving 

good results as compared to meteorological parameter group. 

Hyper parameters tuning is done to tune the model according to 

the data set for having good training and testing results. Among 

the various ML algorithms, XG boost has demonstrated 

favorable performance when compared to other models and 

meteorological group. This is evident from the evaluation 

metrics, such as RMSE and R2 values, which indicate the 

accuracy and explanatory power of the models. With limited 

data source, regression models have shown promising results, 

indicating their potential for accurate groundwater level 

estimation. Gravity parameters have shown comparable 

performance to meteorological parameters, and the inclusion of 

additional observation data can lead to further improvements. 

 

4. Conclusions 

This study has undertaken a comprehensive analysis of five 

groundwater level prediction models, utilizing data from 14 

observation wells and two distinct sets of parameters: 

gravimetric and meteorological. The primary objective was to 

evaluate the performance of various machine learning 

algorithms in predicting groundwater levels, with a focus on 

model accuracy and generalization of parameters. Several key 

findings and insights have emerged from this study: 

 

Model Performance and Evaluation: 

i. In the both model group, both XG Boost and 

Random Forest (RF) models demonstrated 

outstanding performance. XG Boost achieved a 

remarkable training and testing RMSE. These 

models displayed a high degree of precision in 

predicting groundwater levels. 

 

ii. The study employed hyperparameter tuning 

techniques, including Grid Search Cross-

Validation, to optimize model performance. 

These efforts ensured that each model was fine-

tuned to the dataset, enhancing their predictive 

capabilities. 

 

Comparative Evaluation and Insights: 

i. A comparative analysis between the gravimetric and 

meteorological model groups revealed that the 

gravimetric models generally outperformed their 

meteorological counterparts. This underscores the 

significance of gravimetric data in groundwater level 

prediction. 

ii. Among the various machine learning algorithms 

assessed, XG Boost consistently demonstrated 

superior performance, highlighting its effectiveness in 

handling limited data sources and producing accurate 

groundwater level estimates. 

iii. The study's findings indicate that even with a 

relatively small dataset, regression models can 

provide promising results for groundwater level 

estimation. This suggests the potential for leveraging 

machine learning approaches in real-world 

applications related to water resource management. 

iv. The study also emphasized the valuable role of 

gravity parameters in predicting groundwater levels, 

showing their comparable performance to 

meteorological parameters. The inclusion of diverse 

observation data can lead to further improvements in 

model accuracy. 

In conclusion, this study provides valuable insights into the 

predictive modelling of groundwater levels, offering a 

framework for data-driven decision-making in water resource 

management. The demonstrated accuracy and generalization of 

the models, particularly XG Boost and Random Forest, 

highlight their potential utility in addressing groundwater-

related challenges, which are crucial for sustainable water 

resource management and urban planning. 
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