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Abstract

Detecting public transit signs in urban environments is a complex and challenging task due to the significant variability of these
signs across different regions and cities. Unlike standardized traffic signs, transit signs often vary considerably, requiring adaptable
and robust solutions for effective detection. In this work, we propose a novel Domain-Specific Agnostic Segmentation Method
with Contrastive Learning, integrated into a scalable two-phase detection pipeline. This innovative approach enables our model
to adapt to city-specific visual patterns without manual prompts, achieving accurate detection even for small and distant transit
signs. As a significant contribution, we introduce the first dataset dedicated to public transit signs, consisting of 2,300 manually
annotated images from multiple European cities. Our method significantly outperforms existing Swin Transformer-based detection
models in real-world tests. These results establish a new benchmark for public transit sign detection, highlighting the effectiveness
of our approach in providing a robust, scalable solution for intelligent transportation systems and reducing the need for retraining
in diverse urban environments.

1. Introduction

Public transit signs, such as those that indicate bus stops,
metro entrances, and tram stations, are integral to urban nav-
igation and optimization of route systems (Liu et al., 2023).
These signs provide essential information to pedestrians and au-
tonomous vehicles (Ashraf and Idrisi, 2024), enhancing spatial
awareness and facilitating efficient movement within densely
populated areas. Therefore, accurate detection of public transit
signs is a critical component in the development of intelligent
transportation systems.

Unlike standardized traffic signs, which maintain consistent de-
signs across regions (for example, stop signs or speed limit indi-
cators), public transit signs exhibit significant variability. They
often differ not only between countries, but even among cities
within the same country. This variability poses substantial chal-
lenges for detection algorithms, as transit signs can closely re-
semble traffic signs, increasing the risk of misclassification. For
example, a tram stop sign in one city might be visually similar
to a pedestrian crossing sign in another. Consequently, effec-
tive detection of transit signs requires models that are flexible
and adaptive, capable of handling diverse visual patterns while
minimizing confusion with traffic signs.

Detecting public transit signs involves several key challenges.
First, transit signs are subject to frequent changes due to up-
dates in routes or transit lines, which requires real-time detec-
tion methods (Liu et al., 2022). Second, significant design vari-
ability across different regions complicates the detection task,
as models must generalize across a wide range of visual appear-
ances. Third, the scarcity of publicly available large-scale data
sets specifically dedicated to public transit signs hinders the de-
velopment of robust detection models (Ertler et al., 2020).

Although recent methods like Co-DETR (Zong et al., 2023)
have been introduced, they predominantly rely on the Swin
Transformer backbone and focus on enhancing detection heads
rather than fundamentally altering backbone architectures.
Consequently, performance improvements over traditional deep

learning methods remain limited, especially when addressing
the core challenges of transit sign detection, such as design vari-
ability and visual similarity to other signs.

Traditional deep learning object detection approaches often
struggle to generalize in diverse urban environments without
extensive manual labeling or retraining (Zhu and Yan, 2022).
Fine-tuning pre-trained models on small, localized datasets can
lead to overfitting, resulting in poor generalization to different
regions (Malpani et al., 2023). Furthermore, visual similarities
between traffic and transit signs can lead to frequent misclas-
sifications (Zhang and Sabuncu, 2018), which undermines the
reliability of detection systems.

Recent advancements in unsupervised learning, such as DE-
TReg (Bar et al., 2022) and JoinDet (Wang et al., 2022), have
shown promise in object localization and embedding, achiev-
ing encouraging results in general object detection tasks. Sim-
ilarly, models such as LOST (Siméoni et al., 2021) and To-
kenCut (Wang et al., 2023) leverage vision transformers and
graph-based algorithms to localize and segment salient objects
without relying on extensive labeled data. However, these un-
supervised approaches face significant challenges when applied
to the detection of public transit signs. The small size and high
visual similarity of the transit signs, often embedded in com-
plex urban scenes, make it difficult to differentiate them from
the traffic signs and other background elements. This is par-
ticularly problematic in fine-grained recognition tasks, where
unsupervised methods struggle to accurately distinguish subtle
visual details (Yang et al., 2012). Even recent improvements,
such as EAGLE (Kim et al., 2024), which enhance object-level
semantics through spectral clustering and contrastive learning,
continue to face limitations when distinguishing small, visually
similar objects due to the inherent challenges of vision trans-
former architectures.

To address these limitations, we propose a scalable deep learn-
ing framework for public transit sign detection that minimizes
the need for extensive fine-tuning and enables robust detection
across regions with minimal retraining. Using advanced tech-
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niques in computer vision, our framework achieves high accu-
racy in diverse urban environments.

Our key contributions are as follows:

1. Two-Phase Detection Method: We propose a scalable
two-phase detection method that combines agnostic seg-
mentation with a custom matcher network to accurately
identify and match detected signs, achieving high accuracy
with minimal training data.

2. Scalability: Our system addresses the challenges of scal-
ing by eliminating the need to retrain models for each new
city, significantly reducing deployment time and effort.

3. Improved Detection Performance: Our method sur-
passes state-of-the-art detection models, demonstrating
substantial enhancements in the detection and classifica-
tion of public transit signs across diverse urban settings.

4. Novel Dataset: We introduce a new dataset compris-
ing approximately 2,300 manually annotated public transit
signs collected from ten European cities, providing a crit-
ical resource for advancing research in transit sign detec-
tion.

2. Method

Our framework integrates advanced techniques for the detec-
tion of scalable transit signs in diverse urban environments, as
illustrated in Figure 1(b) and Figure 1(c). The methodology is
divided into two main stages.

1. Detection Stage: This stage includes:

(a) Domain-Specific Agnostic Segmentation: A Swin
Transformer-based Mask R-CNN, pre-trained on di-
verse urban datasets and fine-tuned without class la-
bels, detects small and distant sign-like objects, cap-
turing potential transit and traffic signs.

(b) Class-Specific Interference Suppression (CSIS):
The CSIS network filters out irrelevant traffic signs,
isolating transit signs for more accurate detection.

2. Classification Stage: Detected signs are matched with
predefined transit sign templates using a matching network
for accurate classification in cities.

2.1 Domain-Specific Agnostic Segmentation

Agnostic segmentation focuses on segmenting objects in an im-
age without relying on specific class labels. Models like Seg-
ment Anything Model 2 (SAM 2) (Ravi et al., 2024) generate
segmentation masks using prompts, but rely heavily on grid-
based embeddings and manual input, which are not ideal for de-
tecting small and distant objects like public transit signs. These
signs often lack prominent features and vary significantly in ur-
ban environments, making manual prompting impractical.

To overcome these limitations, we propose a novel Domain-
Specific Agnostic Segmentation method that eliminates the
need for manual prompts and grid-based embeddings. As il-
lustrated in Figure 1(a), our approach employs an automated
domain-adaptive process optimized to detect small objects such

as transit signs in diverse urban landscapes. The key innovation
lies in using contrastive learning tailored to each specific city.

Our method operates in two main steps. First, the model under-
goes contrastive learning on city-specific data to learn unique
urban visual patterns. This allows it to capture subtle differ-
ences and features characteristic of a particular city’s transit
signs without requiring explicit annotations or prompts. Sec-
ond, we fine-tune the model using a Swin Transformer-based
Mask R-CNN (He et al., 2018), deliberately excluding the clas-
sification loss during training. By focusing solely on segmen-
tation and regression losses, the model achieves true class-
agnostic segmentation, identifying sign-like objects based on
visual cues alone.

This approach offers several advantages over existing methods
like SAM 2:

• Automated Segmentation: By eliminating manual
prompts, our method streamlines the segmentation pro-
cess, making it fully automated and efficient for real-world
applications.

• Optimized for Small Objects: The combination of city-
specific contrastive learning and exclusion of classifica-
tion loss enhances the detection of small and distant transit
signs, addressing a key limitation of SAM 2.

• Domain Adaptability: Iterative training in different cities
enables the model to generalize effectively across diverse
urban environments, capturing a wide range of visual pat-
terns associated with transit signs.

We pre-train our model extensively on street view images from
multiple cities, utilizing datasets like VISTAS (Neuhold et al.,
2017) and the Mapillary Traffic Sign Dataset (Ertler et al.,
2020). During training, we integrate both segmentation masks
and bounding boxes by converting bounding boxes into pseudo-
segmentation masks, treating the bounding box area as a posi-
tive mask. This hybrid approach allows the model to learn more
precise object boundaries, improving its ability to detect small
objects with high precision.

After segmentation, identified sign-like objects are converted
back into bounding boxes for integration with the two-phase
method, ensuring compatibility with downstream processes that
require bounding-box input.

2.2 Class-Specific Interference Suppression (CSIS)

The Class-Specific Interference Suppression (CSIS) network is
used to remove traffic signs from input images, preventing mis-
classification with transit signs. Using Faster R-CNN (Ren et
al., 2016) trained on the Mapillary Traffic Sign Dataset to gen-
erate a traffic sign mask Mtraffic. The mask is applied to the
input image I as follows:

Iclean = I ⊙ (1−Mtraffic), (1)

where:

• Iclean = cleaned image without traffic signs,

• I = original input image,
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• Mtraffic = predicted traffic sign mask,

• ⊙ = element-wise multiplication.

This operation removes traffic signs, leaving only transit signs
and relevant background, thus improving classification accu-
racy in subsequent steps.

2.3 Matcher Network: Feature Correlation and Classifi-
cation

The Matcher Network classifies transit signs by using Vision
Transformers (ViT) (Dosovitskiy et al., 2021) for feature ex-
traction and cosine similarity for matching. The embedding,
E(L), of the input image is compared with template embed-
dings, E(k)

template, corresponding to each transit sign class using
cosine similarity:

Sk =

〈
E(L),E

(k)
template

〉
∥E(L)∥

∥∥∥E(k)
template

∥∥∥ , (2)

where Sk is the similarity score for class k, ⟨·, ·⟩ denotes the
dot product, and ∥ · ∥ is the Euclidean norm. The class with the
highest similarity score is selected as:

k∗ = argmax
k

Sk. (3)

To ensure reliable classification, a similarity threshold τ is ap-
plied, meaning a match is accepted only if:

Sk∗ ≥ τ. (4)

Choosing an appropriate threshold is crucial for balancing de-
tection performance. As observed in our experiments, setting
τ too low (below 0.5) results in excessive matches, increasing
false positives. Conversely, increasing τ above 0.5 makes the
classifier too restrictive, leading to a high rate of false nega-
tives. The optimal value τ = 0.5 achieves a balance between
precision and recall, ensuring robust classification.

For feature extraction, we compared two pre-trained back-
bones: DINO (Caron et al., 2021) and CLIP (Radford et al.,
2021). Both models were fine-tuned using contrastive learning
on our custom Mapillary Traffic Sign dataset. DINO, a self-
supervised Vision Transformer, provides solid visual represen-
tations. However, CLIP, trained with image-text pairs, outper-
formed DINO in capturing finer details, leading to higher pre-
cision in classification, as shown in our ablation studies.

The final step computes the cosine similarity between the ex-
tracted features and template embeddings, assigning the class
if the similarity exceeds the threshold. The complete computa-
tional process is described in Algorithm 1, and the architecture
is shown in Figure 1(c), where dual ViT backbones are used for
feature extraction, and cosine similarity is employed for classi-
fication.

Algorithm 1 Matcher Network Computational Process

Require: Input image I , Template embeddings {E(k)
template}

K
k=1,

Similarity threshold τ
Ensure: Predicted class k∗ or negative detection

1: Step 1: Divide I into patches and compute input embed-
ding E(L) using ViT.

2: Step 2: For each class k do

3: Compute similarity score Sk =

〈
E(L),E

(k)
template

〉
∥E(L)∥

∥∥∥E(k)
template

∥∥∥
4: End For
5: Step 3: Determine k∗ = argmaxk Sk

6: Step 4: If Sk∗ ≥ τ then
7: Return Predicted class k∗

8: Else
9: Return Negative detection

10: End If

(a) Domain-Specific Agnostic Segmentation with Contrastive Learning.

(b) Overview of our framework for urban transit sign detection.

(c) Workflow of the Matcher Network using dual ViT backbones for fea-
ture extraction.

Figure 1: Illustration of our urban transit sign detection
framework. (a) Shows our innovative Domain-Specific Agnostic
Segmentation method, (b) presents the overall architecture, and

(c) details the Matcher Network.

3. Experiments

We conducted extensive experiments to validate the effective-
ness and scalability of our proposed method, using diverse
datasets and state-of-the-art models.
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3.1 Datasets

The performance of object detection models is highly depen-
dent on the diversity and quality of the datasets used. We used
three data sets in this study: the Mapillary Traffic Sign Dataset,
the VISTAS Dataset, and our custom In-House Transit Sign
Dataset. These datasets offer a complementary blend of global
and localized perspectives for traffic and transit sign detection
under various environmental conditions.

3.1.1 Mapillary Traffic Sign Dataset The Mapillary Traf-
fic Sign Dataset (Ertler et al., 2020) includes more than 100,000
high-resolution images, with 52,000 fully annotated and 48,000
partially annotated images. The data set features over 300 traffic
sign classes and covers various environmental conditions such
as weather, seasons, and camera types, making it ideal for train-
ing models that need to generalize across multiple real-world
scenarios.

3.1.2 VISTAS Dataset The VISTAS Dataset (Neuhold et
al., 2017) contains approximately 25,000 images annotated
with 124 semantic object categories. Unlike Mapillary, VIS-
TAS captures a wide range of environmental conditions across
various geographic regions, making it suitable for urban and
suburban object detection tasks.

3.1.3 In-House Dataset Our custom In-House Transit Sign
Dataset focuses on transit signs from ten major European cities,
including London, Paris, Berlin, and Zurich. Comprising 2,300
manually annotated images, the dataset captures a diverse range
of environmental conditions, lighting variations, and transit
sign designs. Unlike existing datasets, which primarily focus
on traffic signs, our dataset provides a dedicated benchmark
for transit sign detection, addressing a crucial gap in urban ob-
ject recognition. The images were collected using the Mapil-
lary API and meticulously annotated with bounding boxes us-
ing the CVAT tool (CVAT.ai, 2024). To ensure broader appli-
cability, the dataset accounts for regional disparities in transit
sign designs, enabling robust model generalization across dif-
ferent urban settings. To support future research and devel-
opment, the dataset will be publicly available at the follow-
ing link: https://www.kaggle.com/datasets/nsavioli/

urbantransitsigns

3.2 Evaluation Metrics and Implementation Details

We evaluated our urban sign detection model using three met-
rics: Intersection of Union (IoU), mean average precision
(mAP) and precision, providing a thorough performance as-
sessment. The framework was implemented using MMDetec-
tion (Chen et al., 2019), with Mask R-CNN and a Swin Trans-
former backbone for Domain-Specific Agnostic Segmentation
(Figure 1(a)), and Faster R-CNN for Class-Specific Interference
Suppression (CSIS).

The Two-Phase Method, as well as the entire framework (Fig-
ures 1(b) and 1(c)), were developed in PyTorch and trained on
8 NVIDIA RTX 3090 GPUs using the Adam optimizer (learn-
ing rate: 0.001, batch size: 100). The segmentation model was
fine-tuned with AdamW, using random cropping and data aug-
mentation to improve adaptability across different urban envi-
ronments.

3.3 Limitations of Current State-of-the-Art Methods

Despite advancements in detection methods with limited data,
current state-of-the-art models still encounter significant chal-

lenges in real-world scenarios. We conducted extensive experi-
ments using both supervised learning (SL) and self-supervised
learning (SSL) pre-training strategies to assess model perfor-
mance across various object sizes and accuracy thresholds.

As shown in Table 1, pre-trained models with SSL techniques,
such as the MoBY framework (Xie et al., 2021), were tested
on datasets like the Munich street view images, VISTAS, and
the Mapillary Traffic Sign Dataset (TSD). Although SSL in the
Mapillary TSD dataset achieved the highest mAP scores in the
validation set, these improvements did not consistently trans-
late to practical applications. In real-world deployments, par-
ticularly in cities with varying transit sign designs, the models
exhibited poor generalization and high false positive rates.

Figure 2 illustrates these limitations. Even with advanced
SSL pretraining methods such as SSL (Mapillary TSD), the
models struggled to accurately distinguish transit signs from
other visually similar objects, resulting in numerous false posi-
tives. These results highlight that, while pretraining with large
datasets improves validation performance, it is insufficient to
address the complexity of detecting transit signs in diverse and
complex urban environments.

Our findings demonstrate that relying solely on SSL and SL
pretraining methods is not enough for robust transit sign detec-
tion across multiple cities. This emphasizes the need for more
advanced methods, such as our proposed two-phase method,
which overcomes these limitations and delivers more accurate
and reliable detection results in real-world settings.

3.4 Effectiveness and Scalability of Our Proposed Two-
Phase Method

To overcome the limitations of current detection methods, we
have developed a scalable two-phase detection pipeline that sig-
nificantly enhances the detection of transit signs in multiple
cities. The scalability of our approach is inherently built into
the design: By using a single, generalizable model, we elim-
inate the need to retrain or fine-tune the model for each new
city, regardless of variations in transit sign designs. Instead, we
directly apply our two-phase method, which adapts to different
urban environments without additional training.

We evaluated the performance of our method using an inter-
nal dataset comprising transit signs from ten major European
cities. The images were sourced from Mapillary and meticu-
lously annotated to ensure diversity and representativeness. As
shown in Figure 4, our two-phase method consistently outper-
formed state-of-the-art models such as Faster R-CNN with a
Swin Transformer backbone (Liu et al., 2021), achieving higher
mean Average Precision (mAP) and Intersection over Union
(IoU) scores across all cities evaluated.

Tables 2 and 3 provide detailed comparisons of these improve-
ments. For example, in Paris, our method achieved an IoU
of 71% and an mAP of 81%, while the baseline model only
achieved 6. 5% IoU and 1% mAP. Similar enhancements were
observed in London, with significant increases in both IoU and
mAP. These results highlight not only the effectiveness but also
the inherent scalability of our approach. By eliminating the
need for city-specific retraining or fine-tuning, our method sig-
nificantly reduces deployment time and resource requirements,
making it highly practical for real-world applications where
transit signs vary between regions.
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Figure 2: This figure shows two images from different cities: London (top) and Paris (bottom). It visualizes the results using three
different methods: no pre-training (NP), SSL (self-supervised learning) using state-of-the-art (SOTA) detection methods, specifically

SSL (Mapillary TSD, which is the Mapillary Traffic Sign Detection dataset), and our proposed Two-Phase Method. Even with the best
pre-training methods, such as SSL (Mapillary TSD), we observe detection errors and false positives that are not present when using

our approach. The pre-training methodology applied across different cities replicates the process used for Munich, as shown in
Table 1. This demonstrates that even with the best SSL (Mapillary TSD) pre-training and SOTA detection methods, real-world

performance can still suffer from false positives in complex urban settings, which our Two-Phase Method overcomes, ensuring more
accurate and robust detection results.

Figure 3: Comparison of segmentation results between SAM 2 (Ravi et al., 2024) and our Domain-Specific Agnostic Segmentation
with Contrastive Learning method (see Figure 1(a)). SAM 2 tends to over-segment, including irrelevant objects like traffic signs. Our

method, by focusing on city-specific contrastive learning and fine-tuning, avoids this issue and achieves more accurate transit sign
detection.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-779-2025 | © Author(s) 2025. CC BY 4.0 License.

 
783



Metrics NP SL (VISTAS) SSL (Munich SV) SSL (VISTAS) SSL (Mapillary TSD) SSL (Munich+VISTAS)
bbox mAP 37.3% 38.1% 38.8% 39.5% 39.9% 38.9%
bbox mAP 50 51.9% 52.5% 53.6% 54.1% 54.8% 53.6%
bbox mAP 75 43.3% 44.3% 45.0% 46.5% 46.1% 45.5%
bbox mAP s 17.3% 17.5% 17.5% 18.1% 18.9% 18.2%
bbox mAP m 39.7% 40.6% 41.8% 42.5% 42.8% 41.7%
bbox mAP l 56.6% 57.6% 58.4% 58.7% 58.8% 57.9%

Table 1: Performance comparison of object detection models using various pre-training strategies on validation data. NP = No
Pretrain, SL = Supervised Learning, SSL = Self-Supervised Learning, VISTAS = VISTAS Dataset, SV = Street View, TSD = Traffic

Sign Dataset. “NP” refers to models trained from scratch without pre-training, “SL (VISTAS)” denotes supervised learning
pre-training on the VISTAS dataset, while the “SSL” variants use self-supervised learning techniques like MoBY (Xie et al., 2021)

applied to datasets such as Munich street view images (randomly extracted from the city of Munich), VISTAS, and Mapillary.
Although SSL on the Mapillary Traffic Sign Dataset achieves the highest mAP scores in validation, the SSL (Munich SV) results are

very close, indicating that Munich street view images provide valuable information for pre-training. However, the presence of noisy or
irrelevant images in the Munich dataset slightly impacted the performance, but only marginally. As seen in Figure 2, the left image

shows results with NP, while the center image displays results from the best pre-training (SSL on Mapillary TSD). Even though SSL
on Mapillary TSD uses the best pre-training methods and state-of-the-art detection networks, these gains do not consistently translate
into better real-world results, as highlighted by the remaining detection challenges in complex urban settings and the presence of false

positives.

City Baseline [IoU] Baseline + Pretraining [IoU] Our Model [IoU] Improvement (%)
London 3.5% 3.8% 36% +32.2%
Paris 6.5% 7.0% 71% +64.0%
Rome+Milan 1% 1.2% 49% +47.8%
Lyon 0.9% 1.0% 12% +11.0%
Edinburgh 2% 2.3% 59% +56.7%
Berlin+Munich 1% 1.1% 29% +27.9%
Vienna 2% 2.2% 36% +33.8%
Zurich 0.2% 0.3% 16% +15.7%

Table 2: Intersection over Union (IoU) comparison across various cities between the baseline detection model, the baseline model
with pretraining, and our proposed two-phase method. IoU values are normalized and presented as percentages. The “Improvement”
column represents the absolute increase in IoU achieved by our model compared to the best-performing baseline model for each city.

These results were obtained by evaluating the models on our in-house dataset of transit signs from ten European cities, ensuring
diverse urban conditions.

City Baseline [mAP] Baseline + Pretraining [mAP] Our Model [mAP] Improvement (%)
London 0.5% 0.6% 50% +49.4%
Paris 1% 1.2% 81% +79.8%
Rome+Milan 0% 0.1% 27% +26.9%
Lyon 0% 0.1% 52% +51.9%
Edinburgh 0.4% 0.5% 34% +33.5%
Berlin+Munich 0.1% 0.2% 17% +16.8%
Vienna 0.4% 0.5% 47% +46.5%
Zurich 0% 0.1% 7% +6.9%

Table 3: Mean Average Precision (mAP) comparison across various cities between the baseline detection model, the baseline model
with pretraining, and our proposed two-phase method. mAP values are normalized and presented as percentages. The “Improvement”
column represents the absolute increase in mAP achieved by our model compared to the best-performing baseline model for each city.

These results highlight the significant performance gains achieved by our method in diverse urban settings.
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Model Precision
DINO (Caron et al., 2021) 0.83
CLIP (Radford et al., 2021) 0.96

Table 4: Precision comparison of the Matcher Network
fine-tuned with DINO and CLIP as backbone models. CLIP

achieves higher precision, leveraging its multimodal capabilities,
demonstrating the advantage of using a multimodal backbone in

diverse visual understanding tasks.

Figure 4: Comparison of performance between the baseline
model (Faster R-CNN with Swin Transformer) and our proposed

two-phase method. The chart highlights significant
improvements achieved by our method across various cities,

demonstrating its superior ability to handle complex and diverse
urban environments.

Substantial improvements demonstrate that our two-phase
method can effectively handle the variability in transit sign de-
signs without additional training for each city. This inherent
scalability addresses one of the main challenges in the deploy-
ment of detection systems in diverse urban environments, show-
casing the practicality and robustness of our approach.

3.5 Ablation Study

To further validate our approach, we conducted an ablation
study focusing on two key components of our method: the ag-
nostic segmentation and the Matcher Network’s backbone.

3.5.1 Comparison with Existing Agnostic Segmentation
Methods We compared our Domain-Specific Agnostic Seg-
mentation method with the Segment Anything Model 2 (SAM
2) (Ravi et al., 2024), a leading model in the literature for ag-
nostic segmentation.

As shown in Figure 3, our method provides superior detection
of transit signs compared to SAM 2. While SAM 2 offers a gen-
eralized object segmentation approach, it often over-segments
and includes irrelevant objects like traffic signs. This over-
segmentation occurs because SAM 2 relies on grid-based em-
beddings and requires prompts to generate segmentation masks,
which may not be precise enough for small, distant objects such
as transit signs. Additionally, SAM 2 struggles with small ob-
jects due to its architectural design and dependence on prompts,
making it unsuitable for scenarios where precise sign detection
is required.

In contrast, our Domain-Specific Agnostic Segmentation with
Contrastive Learning approach, as illustrated in Figure 1(a),
eliminates the need for prompts and focuses on city-specific
contrastive learning. By first applying contrastive learning to
each city’s unique urban environment, followed by a supervised
signal that only considers segmentation and regression losses,

our method adapts more effectively to real-world urban settings.
This allows the model to better detect small and distant objects
without over-segmenting irrelevant features.

Unlike SAM 2, our method iteratively trains on multiple cities,
generalizing across diverse urban environments. This leads to
a more accurate and scalable solution for transit sign detection.
Our ablation study shows that even though SAM 2 is consid-
ered a leading method in the literature, it is not sufficient for the
specific challenges of detecting small transit signs in complex
urban environments. Our Domain-Specific Agnostic Segmen-
tation with Contrastive Learning proves to be a more robust and
effective approach for this task.

3.5.2 Impact of Backbone Selection in the Matcher Net-
work A key component of our Matcher Network is the feature
extractor, which generates embeddings for both the detected
sign and the template images. These embeddings are compared
using cosine similarity to determine a match. To evaluate which
backbone performs best for this task, we experimented with dif-
ferent pre-trained models.

We compared two types of backbones: DINO v1 (Caron et
al., 2021), a vision transformer model pre-trained using self-
supervised learning solely on visual data, and CLIP (Radford et
al., 2021), a multimodal model pre-trained on a large dataset of
image-text pairs, integrating both visual and textual modalities.

To ensure a fair comparison and isolate the influence of the
backbone architecture, we fine-tuned both models on our cus-
tom Mapillary Traffic Sign dataset using contrastive learning,
adapting them to our specific domain.

As shown in Table 4, CLIP achieved a higher matching pre-
cision of 94%, outperforming DINO v1, which reached 83%.
This result suggests that the multimodal pre-training of CLIP,
which incorporates language information, enhances its abil-
ity to extract more discriminative visual features for matching.
Even though the matching process involves only visual fea-
tures, the pre-training with language data enriches CLIP’s fea-
ture space, enabling better differentiation between subtle varia-
tions in transit signs.

Our ablation study confirms that using a multimodal backbone
like CLIP enhances the Matcher Network’s capability to accu-
rately match transit signs, highlighting the unexpected benefit
of multimodal pre-training in visual matching tasks.

4. Conclusion and Future Work

We have developed a scalable two-phase detection framework
that effectively integrates domain-specific agnostic segmenta-
tion with a matcher network, enabling precise detection of pub-
lic transit signs with minimal training data requirements. Un-
like previous studies that rely on highly curated datasets, our
evaluation was conducted in real-world scenarios, using im-
ages collected from multiple European cities with varying en-
vironmental conditions, occlusions, and sign variability. This
ensures that our approach is robust to real-world deployment
challenges rather than being optimized solely for idealized
datasets. Our framework demonstrated significant improve-
ments in mean Average Precision (mAP) and robustness, setting
a new benchmark for public transit sign detection.

Additionally, we addressed a major gap in the field by provid-
ing a dataset of 2,300 manually annotated transit sign images,

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-779-2025 | © Author(s) 2025. CC BY 4.0 License.

 
785



offering a valuable and realistic resource for further research in
urban object detection.

Looking ahead, we plan to enhance our model’s adaptability by
incorporating adaptive decision networks to further reduce false
positives and improve detection accuracy in complex urban
scenes. We also envision extending our framework to broader
applications such as smart city infrastructure, real-time urban
mapping, and augmented reality navigation.

Furthermore, to make our dataset a global benchmark, we plan
to expand its coverage beyond Europe, incorporating transit
signs from multiple continents and diverse urban environments.
This worldwide dataset extension will facilitate the develop-
ment of more generalizable and robust models, reducing geo-
graphic biases and ensuring scalability across different transit
systems.
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