
Comparative analysis of high-resolution UAV photogrammetry and terrestrial laser scanning 

for detecting and quantifying urban vegetation changes 

Osama Bin Shafaat*1, Heikki Kauhanen1, Arttu Julin1  , Matti Vaaja1

1Department of Built Environment, School of Engineering, Aalto University, FI-00076 Aalto, Finland - (osamabin.shafaat@aalto.fi, 

heikki.kauhanen@aalto.fi, arttu.julin@aalto.fi, matti.t.vaaja@aalto.fi)

 
Keywords:3D point clouds, TLS, UAV photogrammetry, Change detection, Urban vegetation, Laser scanning. 

Abstract 

Extensive urban expansion has significantly impacted green spaces leading to the degradation of urban vegetation. Hence, monitoring 

variations in vegetation using remote sensing methods is essential. However, 2D remote sensing methods have drawbacks as they lack 

vertical structures in urban areas, shadows caused by buildings, cloud cover and require substantial preprocessing to encounter these 

limitations. This study focuses on identifying and quantifying changes in Malminkartano, Helsinki during the leaf-off and leaf-on 

seasons for the year 2022. The research utilized terrestrial laser scanning (TLS) and UAV-photogrammetry datasets for change 

detection in urban vegetation and point cloud-based algorithms for seasonal variations such as C2C, C2M, and M3C2. Notably, many 

existing methods involve rasterizing point clouds as DSM which results in the loss of significant information. Therefore, this paper 

investigates the potential of utilized datasets in detecting changes directly on point clouds. However, there are uncertainties associated 

with point clouds including data registration, point density, weather effects, and misalignment therefore this study aims to take these 

limitations into account. The results from TLS and UAV-photogrammetry demonstrated competence in identifying the maximum 

growth of urban vegetation up to 2.0 m and 2.8 m respectively. However, the accuracy assessment of data corresponded to a 4 cm 

difference in both datasets at a 95% confidence threshold and potential vertical height differences accounted for the difference in 

change detection. This study underscores data processing uncertainties associated with registration, vertical height, and data noise and 

proposes the integration of point clouds with different sensors for completeness and improved change detection in urban vegetation. 

1. Introduction

Recent urbanization trends are densifying urban areas and 

impacting urban green spaces (UGS). It has been observed that 

urbanization directly resulted in the lack and decrease of the UGS 

over the past few decades.(Haaland & van den Bosch, 

2015).Moreover, the deterioration of UGS is impacting 

ecosystem services such as air quality, noise pollution, 

temperature flow, and cultural services for residential well-being. 

(Bolund & Hunhammar, 1999; Cortinovis & Geneletti, 

2019).Urban vegetation is mainly less explored(Bressane et al., 

2024), and very limited research is done in this domain compared 

to the forests. The potential reason to that is that urban areas are 

usually complex in structure having mixed vegetation and tree 

species makes the process of mapping and monitoring more 

demanding and time-consuming.(M. Wang et al., 2022; Zhao et 

al., 2021) 

The City of Helsinki is expanding drastically, and greenhouse gas 

(GHG) emissions increased by 12% in the year 2022 compared 

to previous years. Furthermore, Finnish Meteorological Institute 

(FMI) data showed that from year 2010-2020, the average 

temperature in Helsinki rose from 4.3˚C to 8.0˚C (Statistics from 

1961 Onwards - Finnish Meteorological Institute, 

n.d.).Considering urban vegetation one of the important sources

in reducing urban temperature and GHG emissions, there is a

need to monitor the vegetation changes with up-to-date remote

sensing data (Kafy et al., 2022). Two dimensional (2D) remote

sensing datasets such as satellite or aerial imagery can be utilized

in vegetation change detection, though these sources are prone to

atmospheric and illumination conditions, limited viewpoint

angles and potential radiometric distortions in urban areas

necessitating reasonable computational time to mitigate these

problems (Kharroubi et al., 2022). However, the open-source 

point cloud data provided by the National Land Survey, Finland, 

and the City of Helsinki is available till 2020 and the resolution 

of the data is coarser limiting the detailed vegetation analysis to 

the urban tree level.  

Considering severe climate changes and lack of open-source-data 

availability the research aims to utilize the three-dimensional 

(3D) point clouds acquired from Terrestrial laser scanning (TLS) 

and high-resolution UAV photogrammetry to examine the 

changes in urban vegetation. The purpose of this research is to 

examine the potential of TLS and UAV-photogrammetry in the 

identification and quantification of vegetation changes and 

investigate the challenges associated with both data sources. 

Moreover, both these sources have been utilized in many 

applications of change detection as they can generate very dense 

and high-resolution point clouds(Fraser et al., 2016; Kaasalainen 

et al., 2014) enabling direct change detection on 3D point clouds. 

However, uncertainties are still associated with TLS and UAV-

photogrammetry that arose due to sensor-specific limitations 

such as viewing angle and scene geometries, point cloud 

accuracy, data registration errors, vertical height distribution, and 

some common issues such as data noise, point density, and scale 

differences.(Aicardi et al., 2016; Gruszczyński et al., 2017; Q. 

Wang et al., 2020) 

This article concentrates on implementing the point cloud-based 

algorithms to identify and display changes directly in 3D. 

Therefore, widely used algorithms including cloud-to-cloud 

(C2C), Cloud-to-mesh (C2M), and Multiscale Model to Model 

Cloud Comparison (M3C2) will be implemented to detect 

changes in vegetation. Noteworthy, a framework will be 

established to quantify significant and real changes from overall 
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changes impacted by sensor-specific, atmospheric, and data 

acquisition uncertainties. 

 

The objective of this research will be accomplished by 

developing a framework that can be applied to multitemporal 

point clouds for change detection in vegetation. Moreover, to 

propose the potential solutions to challenges that arise during this 

analysis and to answer a) investigate the challenges associated 

with multitemporal datasets to make the datasets suitable for 

change detection b) identification and quantification of 

vegetation cover changes and c) implementing a process to 

segregate the significant changes from the overall changes 

considering the error budget of datasets. 

 

2. Data acquisition and processing 

2.1 TLS and UAV-photogrammetry data acquisition 

The study area selected for this article is an urban area called 

Malminkartano in the northwest region of Helsinki, Finland. The 

total site area is 7827 m² and it is a green developing area with a 

plan to build houses for 1300 residents in this district of Helsinki, 

according to the City of Helsinki. The study area for this article 

is presented in Figure 1 below marked in red rectangle. TLS point 

cloud data was acquired by Leica RTC 360 hardware with the 

capability to acquire 2 million points per second using the Time-

of-flight (ToF) principle. Similarly, two UAVs were utilized to 

acquire the images of the study area. Geodrone-6 with resolution 

of 7952*5304 pixels was utilized to generate the 3D point clouds 

from images using Agisoft Metashape software and imagery 

acquired by DJI Mavic-3 with resolution of 5272*3948 served as 

ground truth for results verification. Noteworthy, the DJI Mavic-

3 was flown at low flight altitude to acquire detailed images of 

the study area. Two multi-temporal datasets were acquired over 

the study area during leaf-off (TLS-1 and UAV-1) and leaf-on 

seasons (TLS-2 and UAV-2) in 2022.Moreover, UAV-1 and 

UAV-2 datasets were acquired at relatively high altitudes up to 

124m flight altitude. In contrast, TLS data acquisition ranged 

from few meters to tens of meters, depending upon the scan 

stations position and proximity of the objects. This variation in 

TLS projects might led to non-uniform point density whereas 

generate more uniform point densities, influenced by the higher 

altitudes, and used camera systems.  

 

Figure 1. Illustration of Study area Malminkartano, Helsinki 

 

2.2 Point cloud data processing. 

TLS and UAV point clouds were processed individually as both 

involved different techniques for data processing. To make the 

datasets comparable, TLS datasets were subsampled by 

implementing space-sampling algorithm in CloudCompare 

software using 1 cm minimum distance between points. 

However, UAV datasets were decimated to 1cm as a part of 

photogrammetric workflow in Agisoft metashape. Furthermore, 

both datasets were segmented to include only a common study 

area, and points clouds were cleaned manually. To encounter, 

isolated points, occlusions and data noise dataset went through 

statistical outlier removal process in cloud compare. 

 

The next step involved the registration of datasets in a common 

coordinate system in GK25FIN (EPSG:3879) whereas data 

registration in urban areas with the existence of trees and human 

activity made this process challenging. However, TLS and UAV-

1 were already georeferenced in the local coordinate system 

however georeferencing was not suitable for accurate change 

detection. Therefore, the registration processing is carried out in 

two steps. TLS-1 was selected as a reference dataset and other 

point clouds were registered w.r.t this dataset. Initially, buildings 

were segmented from all the datasets and registered using the 

Iterative Closest Point (ICP) algorithm w.r.t to TLS-1 and the 

results indicated satisfactory registration with RMSE of 2 cm for 

TLS and 1 cm for UAV building clouds. Then, the translation 

matrix of registered building clouds was applied to corresponding 

original datasets to ensure proper alignment. The specifications 

of both utilized datasets are presented in the Table 1 below. 

 

Paramet

ers  

TLS-1 TLS-2 UAV-1 UAV-2 

No. of 

scans 

51 58 515 

images 

241 

images 

Acquisiti

on dates 

03/05/20

22-

05/05/20

22 

15/08/2022 09/05/20

22 

12/09/20

22 

Original 

No. of 

points 

876,705,

765 

1,824,878,

835 

62,860,7

80 

61,781,6

28 

Sub-

sampled 

1cm 

93,379,5

73 

163,629,12

4 

N/A N/A 

ICP 

RMSE 

w.r.t 

TLS-1 

N/A 0.1649 m 0.1263 

m 

0.1489 

m 

 Table 1. TLS and UAV point cloud parameters. 

 

Finally, the integration of original datasets is performed by 

merging TLS-1 with UAV-1 and TLS-2 with UAV-2 using the 

static objects in the point clouds such as buildings. Moreover, the 

datasets went through a segmentation process and all the objects 

except vegetation were removed from the datasets for detection 

of changes in urban vegetation. 

 

2.3 Change detection using point cloud and mesh-based 

algorithms. 

Three different methodologies were employed to detect changes 

in urban vegetation including C2C, C2M and M3C2. TLS-1, 

UAV-1 and merged-1 were used as the reference datasets in all 

the methods and TLS-2, UAV-2 and merged-2 were considered 

as compared datasets. Significantly, C2C and C2M have 

common parameters therefore similar values were used for these 

parameters to keep the workflow consistent and investigate the 

impact of the parameters on change detection. Therefore, higher 

octree levels were selected for both these methods with a value 

of 9 to ensure faster distance computation. C2M algorithm 
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require a mesh to be used as reference dataset, therefore three 

mesh models were created for leaf-off season datasets i.e. (TLS1, 

UAV-1, merged-1) and before computing mesh models, normal 

were calculated for these datasets as a requirement of method in 

+Z direction using triangulation local model.  

 

M3C2 has completely different parameters to detect the changes 

between reference and compared clouds. It requires categorizing 

the clouds as cloud 1 and cloud 2 where compared clouds were 

considered as cloud 1 and reference cloud as cloud 2 in this case. 

Moreover, compared datasets (cloud 2) were also utilized as core 

points to perform the computations relative to the reference 

cloud. The M3C2 algorithm also requires normal computation as 

a part of the change detection process unlike C2M where mesh 

normals are calculated separately. Noteworthy, M3C2 is 

sensitive to model parameters as selection of model parameters 

influence the results of change detection. The selection of normal 

and projection diameters was carefully considered as smaller 

radii would lead to amplify the impact of noise and surface 

roughness while larger radii would minimize this impact with 

increase in computational costs. Therefore, the normal 

computation was performed using the multiscale method in the -

Z direction using 10 cm normal and projection diameter. These 

three techniques were implemented on TLS, UAV-

photogrammetry, and integrated datasets to detect the changes in 

compared clouds relative to reference clouds. 

 

2.4 Quantification of detected changes using threshold 

To quantify the changes detected by utilized algorithms 

necessities to consider uncertainties that could potentially impact 

the results. Moreover, wind condition, point density, registration 

differences and data noise could impact the results and all these 

factors can lead to false changes that do not reflect actual 

changes. For instance, moving trees due to impact of wind would 

not be able to be captured properly by UAV-photogrammetry. 

When these trees compared with the TLS trees then change 

detection methods could consider these differences as changes 

which are not actual changes. Thus, these factors necessitate the 

development of a threshold that could consider these 

uncertainties and quantify the actual changes without the 

influence of these uncertainties. The threshold was determined 

by implementing a parametric approach developed by (Lague et 

al., 2013) which calculated the threshold at 95% confidence level. 

This estimation involves the surface roughness and registration 

error measured along the normal direction. The following 

equation is utilized to determine the value of the threshold. 

 

𝐿𝑂𝐷95%=±1.96 ∗ [√
𝜎1(𝑑)²

𝑛1
+

𝜎2(𝑑)2

𝑛2
    + registration error. ](1)  

 

Where, 𝜎1 and 𝜎2 is plane fitting variance computed on two sub-

clouds of diameter 𝑑. 𝑛1 and 𝑛2are the number of points of sub-

clouds. The value of 1.96 was used in  𝐿𝑂𝐷95% in equation 1 

presents the threshold for a corresponding dataset and it is the z-

statistics at the 95% confidence level. To achieve this, two sub-

clouds were selected from stable areas with no change during 

both seasons sharing a common area. The technique considered 

the point density, surface roughness, and registration differences 

into account while calculating the threshold. The plane fitting 

𝜎(𝑑)2 variance dependent upon the data noise and surface 

roughness was calculated for both the sub-clouds with the 

constant diameter. 

 

3. Results 

3.1 TLS-based change detection results. 

TLS based change detection results illustrated in Figure 2-4 

revealed that all the utilized method detected the changes in the 

urban vegetation up to approximately 2.0 meters. Moreover, all 

the methods visually identified reasonable changes in shrubbery, 

ground grass, and seasonal growth of the vegetation. However, 

C2C and C2M method were able to identify the majority of 

changes up to 0.5 meters and M3C2 results showed the detected 

changes in an extended range of distances. Mainly, C2C and 

C2M identify those changes above 0.5 meters that are caused by 

human activities, wind impact, and seasonal growth in birch trees 

while most of the changes identified by the M3C2 method were 

up to 1.388 meters with very few changes occurring after this 

range. 

 

Figure 2. TLS-based change detection using the C2C method. 

 

 

Figure 3. TLS-based change detection using the C2M method.  

 

 

Figure 4. TLS-based change detection using the M3C2 method. 

 

3.2 UAV-photogrammetry-based change detection. 

The results of UAV-photogrammetry showed a reasonable 

difference in detected changes up to 2.8 meters presented in 

Figure 5-7, whereas changes in TLS were limited to 2.0 meters. 
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This also corresponds to the fact of different data acquisition 

techniques of UAV and TLS and UAV data acquisition dates as 

well. UAV data was acquired later than the TLS as presented in 

table 1. Moreover, it is evident from the results that C2C and 

C2M identified reasonable changes above the range of 0.5 meters 

in shrubbery and birch trees. However, it is a well-known fact 

that during the leaf-off season, limited leaves and foliage in urban 

vegetation results in incomplete capturing of the vegetation 

structure using UAV photogrammetry. Due to tree movement 

and lack of greenery led to lower confidence in the UAV datasets. 

On comparing leaf-off dataset with leaf-on, the absence of 

sufficient greenery and insufficient representation of actual 

vegetation in leaf-off dataset resulted in majority of the changes 

above 0.5 meters. Comparably to TLS case study, M3C2 showed 

the same pattern in this case by detecting the changes in an 

extended range and clearly identified the changes. M3C2 results 

illustrated the detected changes approximately to 2.38 meters in 

shrubbery and trees as well.  

 

Figure 5. UAV-based change detection using the C2C method. 

 

 

Figure 6. UAV-based change detection using the C2M method. 

 

 

Figure 7. UAV-based change detection using the M3C2 

method. 

 

3.3 TLS and UAV integration-based change detection 

Integrated dataset-based change detection results were in line 

with the UAV-photogrammetry based change detection 

statistically. The changes detected by integrated dataset 

presented in Figure 8-10 indicated that the all the methods 

detected the changes up to 2.8 meters, however the visual 

examination of the results showed an improved representation of 

detected changes and vegetation structure compared to above 

both case studies. Interestingly, C2C method exhibited similar 

pattern to the results observed in TLS case study where maximum 

changes were detected up to 0.5 meters. However, C2C method 

identified reasonable changes exceeding 0.5 meters in the case of 

UAV based change detection. Despite this, when the datasets 

were integrated, C2C detected changes were limited to 0.5 meters 

suggesting that C2C showed efficiency in indicating changes in 

shorter distance ranges. Moreover, C2M and M3C2 methods 

identified sufficient changes above 0.5 meters and the efficacy of 

these method in detecting changes in longer range could be 

possible due the involvement of normal computation during the 

change detection process which was not the case in C2C method. 

 

Figure 8. Integration-based change detection using C2C 

method. 

 

 

Figure 9. Integration-based change detection using the C2M 

method. 
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Figure 10. Integration-based change detection using the M3C2 

method. 

 

3.4 Accuracy assessment of detected changes by 

implementing threshold at 95% confidence level. 

The value of the threshold at a 95% confidence level was 

estimated for both UAV and TLS datasets. The registration error 

for unchanged multi-temporal TLS and UAV sub-clouds was 

determined as 0.0204 meters and 0.0198 meters respectively. The 

value of 𝜎1(𝑑)² and 𝜎2(𝑑)² for both datasets were estimated as 

0.002426 m, 0.002379m for TLS and 0.002459 m, 0.002881 m 

for UAV dataset. Finally, the estimated values of threshold for 

both datasets were approximately similar with 0.04017 m for 

TLS and 0.03889 m for UAV datasets. This approximately 4 cm 

threshold was implemented to segregate the significant changes 

from overall changes. Therefore, changes below 4 cm were not 

considered statistically, and changes identified above 4 cm were 

taken into account for statistical analysis.   

 

3.5 Statistical analysis of change detection  

3.5.1 TLS-based statistical change detection analysis 

To estimate the statistically significant changes from overall 

changes. pre-determined threshold value of 0.04017 m for TLS 

dataset was applied and changes above this value were 

considered as statistically significant changes. The results are 

showed in Figure 11-13 below. Statistical findings affirmed the 

visually examined results as C2C and C2M detected 95.8% and 

96.2% of the changes within the range of 0-0.5 m. Moreover. 

only 4.2% and 3.8% of the changes occurred after this range by 

C2C and C2M methods. These results suggested that C2C and 

C2M methods were able to identify changes in a short range of 

distances. In comparison, 74.9% of significant changes were 

occurred in the range of 0-0.5m by M3C2 method and overall 

changes identified up to 1 meter by M3C2 were 90.4% leaving 

only 9.6% changes after 1 meter.   

In this study, the results revealed that the major changes in urban 

vegetation between leaf-off and leaf-on season were typically up 

to 50 cm with changes exceeding this range were relatively 

minor.  

 

Figure 11. Statistical analysis of TLS-based change detection 

using C2C method. 

 

 

Figure 12. Statistical analysis of TLS-based change detection 

using C2M method. 

 

 

Figure 13. Statistical analysis of TLS-based change detection 

using the M3C2 method. 

 

3.5.2 UAV-based statistical change detection analysis 

UAV-based statistically significant changes were quantified by 

using a threshold value of 0.03889 meters determined for UAV 

point cloud. UAV-based change detection results showed a 

distinct pattern compared to TLS as can be seen in 14-16. The 

detected changes were estimated up to 2.8 meters, unlike TLS 

where most changes were up to 0.5 meters. The change detection 

results indicated maximum changes to the range of 1 meter with 

93.03% by C2C, 87.29% by C2M and 74.32% by M3C2 method. 

However, C2C estimated a very minor percentage of changes 

exceeding 1 meter while C2M and M3C2 estimated 12.71% and 

25.64% above 1 meter respectively. These results suggested the 

efficacy of C2M and M2C3 methods in detecting changes in a 

wider range of distances. Remarkably, M3C2 showed the highest 

percentage of changes in the range of 2.6-2.8 meters with 7.69% 

changes identified in this range whereas C2C and C2M indicated 

below 1% changes in this range. This difference affirmed the 

point, discussed in section 3.2 related to technical limitation of 

UAV methods and absence of greenery in leaf-off season which 

resulted in changes being detected in a higher range. 

 

Figure 14. Statistical analysis of UAV-based change detection 

using the C2C method. 
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Figure 15. Statistical analysis of UAV-based change detection 

using C2M method. 

 

 

Figure 16. Statistical analysis of UAV-based change detection 

using M3C2 method. 

 

3.5.3 Integration-based statistical change detection 

analysis 

To assess the statistically significant changes, maximum value of 

threshold determined for TLS dataset was implemented and 

changes above 0.04017 meters were considered as significant 

changes. The results presented in Figure 17-19 below were in line 

with the statistical results of TLS-based change detection. 

Moreover, C2C estimated 97.05% changes in the range of 0-0.5 

meters, C2M 89.90%, and M3C2 showed 78.10% in the given 

range. The results suggested that data integration dominated the 

TLS-based detected changes over UAV-based change detection. 

However, the M3C2 method estimated 21.90% changes above 

0.5 meters showing efficacy in detecting changes in a wider 

range.  

 

Figure 17. Statistical analysis of integration-based change 

detection using C2C method. 

 

 

Figure 18. Statistical analysis of integration-based change 

detection using C2M method. 

 

 

Figure 19. Statistical analysis of integration-based change 

detection using M3C2 method. 

 

4. Discussion 

4.1 Effect of varying point densities on change detection 

The influence of point density on change detection is a well-

known fact, that the resolution and point density could potentially 

affect the minimum detectable changes(Xiao et al., n.d.).In the 

present case, where the point cloud density of the UAV dataset 

was sparser than the TLS dataset impacted the results during 

change detection. It is evident from Figure 20 that, during the 

leaf-off season, when trees did not have enough green leaves and 

were also moving with the impact of wind, UAV 

photogrammetry was not able to acquire the complete structure 

of the trees. This sparser coverage of the UAV dataset when 

compared with the leaf-on season when there were enough 

leaves, resulted in a higher change detection range compared to 

TLS. Noteworthy, it is evident from previous research that TLS 

provides more detailed information and dense point clouds in the 

context of monitoring vegetation however it is also sensitive to 

the uncertainties related to data noise. Consequently, UAV-

photogrammetry generates sparser point clouds with minimum 

noise compared to TLS.(Eltner et al., n.d.; Mohammadi et al., 

2021). 

 

Figure 20. TLS captured tree (Left) and UAV acquired 

tree(right) 
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The results indicated that the changes identified in shrubbery had 

differences with UAV and TLS results shown in Figure 20. This 

difference is further investigated, and it was observed that due to 

the sparser coverage of the UAV, and the absence of greenery in 

the leaf-off season, shrubbery was not captured properly by the 

UAV dataset. This led to the detection of changes from the 

ground points instead of shrubbery points as there were not 

enough points from shrubbery. Figure 21 also presented the 

100% zoom level of the shrubbery where it can be observed that 

there were very few green points. The ground sampling distance 

(GSD) was calculated to examine this difference, and the results 

showed that GSD is 2.77 cm for UAV imagery which means that 

changes below this range will not be detected by utilized methods 

in UAV datasets.  

 

Figure 21. UAV change detection (Left), TLS change detection 

(middle), and shrubbery at 100% zoom level(right) 

 

Moreover, the bigger observed change for UAV dataset is 

because the neighbouring points in UAV-1 (off-leaf) case are the 

ground points while with TLS they are the branches. This was 

confirmed when TLS-1 was considered as reference and UAV-2 

shrubbery was compared and changes were estimated, it can be 

seen that  in Figure 22, changes are below 0.50m and maximum 

change detected up to 0.40 meters which indicates that in TLS 

dataset branches are closer to the leaves compared to ground 

points and thus the leaves get smaller values for TLS than UAV. 

Same thing happens with trees and since the integrated dataset 

includes TLS points, that leads to smaller changes as well 

compared to just using UAV dataset and resulted in higher values 

of detected changes.  

 

Figure 22: Comparison of TLS-1(leaf-off) with UAV-2 (Leaf-

on) shrubbery.  

 

4.2 Impact of data acquisition techniques on change 

detection. 

Due to the implementation of different data sources exhibiting 

different data acquisition methodologies, the results of this study 

were influenced by this approach. It is obvious that TLS acquires 

the data from the ground-up direction and UAV acquires the data 

from a top-down approach. This led to the incomplete acquisition 

of the vegetation structure. The accuracy of the utilized data 

sources was assessed by examining their vertical height 

distribution and a common tree was selected to estimate its 

vertical height from both data sources. The results in Figure 23 

revealed that the TLS tree (red colour) with a dense structure 

missed the tree top while the UAV tree (blue colour) showed a 

sparser coverage and missed lower part of the tree during 

acquisition. However, TLS data acquisition and processing is 

more laborious, and time-consuming compared to UAV-

photogrammetry (Bin Shafaat, 2023). Moreover. Statistical 

analysis confirmed visual findings, indicating the TLS tree height 

was 21.54 m, whereas the UAV photogrammetry exhibited a 

maximum height of 23.03 m. 

 

Figure 23. Vertical height distribution of TLS and UAV; TLS-

tree(red), UAV-tree(blue).  

 

4.3 Effect of weather and human activities of change 

detection. 

The impact of wind on change detection is another reality that 

could lead to falsely detected changes when considering the 

seasonal growth or loss of urban vegetation (Shafaat et al., 2024). 

Figure 24 below presented a case where, no vegetation boxes 

were present during the leaf-off season in image (a), and in image 

(b) the vegetation boxes were placed there by a company called 

blokgarden https://www.blokgarden.com/.However, the utilized 

methods identified this change that is illustrated in image (c) 

whereas this change was not related to seasonal growth but 

instead to human activity. Moreover, image (d) also showed a 

tree where the change detection algorithm detected a significant 

change in a tree branch in red colour. Upon comparing with 

ground truth imagery from both durations, it was observed that 

this branch was broken by the wind impact during leaf-on season 

and therefore it was detected as a significant change as well. 

 

  

Figure 24. Examples of human activity and weather impact on 

change detection results.  

 

Therefore, considering all these uncertainties where point 

density, vertical height differences, and wind impact could 

potentially impact the data sources and the change detection 

process a threshold at a 95% confidence level was determined to 

estimate the total error budget of the utilized dataset and 

minimize the impact of these practical issues. Noteworthy, as it 

is obvious that different data sources are prone to different 

technical limitations, the research emphasized on integration of 

the different data sources to achieve accurate results and 

investigate the impact of uncertainties of data sources.  

 

5. Conclusion 

The article presented a workflow to process multitemporal TLS 

and UAV-photogrammetry 3D point clouds for change detection. 

The challenges related to georeferencing, data registration, point 

density, resolution, vertical height differences, and technical 

limitations of acquisition methods were examined and solved 

during the experimental work to ensure the datasets were 

accurate enough for change detection. However, technical 

limitations of TLS and UAV datasets led to the integration of 

datasets to ensure the comparability for change detection. 
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Moreover, the changes in vegetation cover were identified by 

using cloud-based algorithms including C2C, C2M, and 

M3C2.Particularly, seasonal change in vegetation along with 

dataset differences and weather impact indicated a maximum 

growth of 2.0 meters for TLS, and 2.8 meters for UAV and 

integrated datasets. Threshold value was determined for distinct 

data sources accounting for point density, registration, surface 

roughness differences, and wind effect on the datasets. The 

threshold value at a 95% confidence level was estimated as 

approximately 4 cm for both data sources, and changes below this 

threshold were considered as changes due to the total error 

budget, and only changes exceeding this value were quantified. 

The statistical results suggested that the maximum amount of 

changes was identified up to 50 cm for TLS and integrated 

datasets whereas UAV dataset indicated a most percentage of the 

changes up to 1 meter. Overall, the study concludes that this type 

of change detection mainly depends upon the data quality 

therefore, differences in datasets should be considered carefully 

and their impact on change detection should be taken into 

account. Moreover, considering the difference in the UAV and 

TLS change detection, the study also suggests comparing and 

using integrated datasets from different sources for accurate 

estimation of vegetation attributes such as biomass estimation, 

carbon sequestration by urban vegetation. 
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