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Abstract 

 

The Prosopis cineraria, commonly known as the Ghaf tree, is an ecologically significant species that prevents desertification, enhances 

soil fertility, and supports biodiversity within arid ecosystems. Mapping and monitoring Ghaf trees using unmanned aerial systems 

(UAVs) and deep learning are essential for advancing conservation efforts through reliable, automated assessments. In this study, we 

performed a comparative analysis of several transformer-based deep learning models, including Mask DETR with Improved Denoising 

Anchor Boxes (Mask DINO) and Mask R-CNN models based on the Vision Transformer (ViT), Swin Transformer, and Enhanced 

Multiscale ViT (MViTv2), for mapping Ghaf trees from UAV images captured in diverse urban and agricultural environments. Results 

demonstrated strong potential for the assessed instance segmentation architectures in mapping Ghaf trees, achieving mean average 

precision values of 80% to 84.2% for detection and 82.2% to 85.1% for segmentation, with F1-scores ranging from 83.55% to 88.3% 

for detection and 85.5% to 88.6% for segmentation. This study underscores the effectiveness of transformer-based deep learning 

architectures for mapping Ghaf trees from UAV images, with findings and refinements that can be applied and extended to map other 

native tree species and support broader conservation initiatives. 

 

1. Introduction 

The Ghaf tree (Prosopis cineraria) is often celebrated as the "tree 

of life" in regions such as Bahrain and parts of Arabia due to its 

extraordinary resilience in arid desert environments (Kalarikkal, 

Kim, and Ksiksi 2022). Known for its ability to survive centuries 

in harsh, hot climates without artificial irrigation, the Ghaf tree 

was declared the National Tree of the United Arab Emirates 

(UAE) in 2008, symbolizing its profound cultural and historical 

significance (Bhardwaj 2021). Traditionally, Ghaf leaves were 

used as fodder for camels, while young leaves continue to have 

culinary and medicinal applications. However, rapid urban 

development in the UAE has increasingly placed this iconic tree 

under threat (Gallacher and Hill 2005).  

 

The Ghaf tree is ecologically critical, playing a pivotal role in 

preventing desertification, enhancing soil fertility, and 

supporting biodiversity in the UAE’s fragile desert ecosystem. 

This tree’s significant carbon sequestration capacity also aids in 

mitigating climate change impacts. In recognition of its 

ecological value, the UAE government has initiated conservation 

efforts like the "Give a Ghaf" campaign to replenish the tree’s 

population, now estimated at over 100,000 across the country 

(“The Ghaf Tree - National Tree of the UAE - Importance, Uses, 

Facts,”, 2004,) These initiatives highlight the Ghaf tree’s status 

as a symbol of sustainability within the UAE's environmental 

agenda. 

 

Monitoring Ghaf habitats in the challenging desert landscape 

increasingly relies on aerial surveillance technologies, 

particularly Unmanned Aerial Vehicles (UAVs) (Sankey et al. 

2018). UAV-based imagery has gained traction in recent years 

for a variety of ecological applications, including mapping 

woody plant encroachment in grasslands (Oddi et al. 2021) and 

estimating carbon stocks in desert vegetation (Abdullah, Al-Ali, 

and Srinivasan 2021). Despite its utility in large-scale, high-

resolution mapping, real-time UAV application remains limited 

due to operational constraints (Hill and Rowan 2022; Hashemi-

Beni et al. 2018). 

 

In recent years, deep learning (DL) has emerged as the preferred 

approach for tackling complex computer vision (CV) tasks, 

including denoising, segmentation, and object detection, offering 

significant advantages over traditional machine learning (ML) 

methods (Dixit et al. 2023; Tang et al. 2023). This shift is largely 

due to DL's capacity for automatic feature extraction, in contrast 

to the manual feature engineering typical of classical ML. 

Convolutional Neural Networks (CNNs) are prominent DL 

techniques, especially effective in extracting features from 

imagery, making them ideal for segmentation tasks. Various 

CNN-based models have proven successful in identifying and 

mapping tree crowns using UAV imagery (Zhang et al. 2022; Li 

et al. 2022; Moura et al. 2021; Mo et al. 2021; Erdem et al. 2023; 

Sun et al. 2022). 

 

Traditional CNNs focus on localized features through 

convolutional operations, which can restrict their ability to 

capture long-range dependencies (Dixit et al. 2023). To address 

this limitation, recent approaches have integrated self-attention 

(SA) mechanisms, enhancing CNNs' ability to capture global 

information (Yuan, Chen, and Wang 2020). Yet, many of these 

models still aggregate global context by combining localized 

feature maps rather than encoding it directly (Mou, Hua, and Zhu 

2020). Consequently, fully leveraging CNNs for comprehensive 

context extraction in complex remote sensing tasks remains 

challenging. 
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The advent of transformers (Vaswani 2017) has revolutionized 

CV by enabling models to capture global contextual information 

through parallelizable, order-independent operations. Vision 

transformers (ViTs) have demonstrated their strength in 

capturing global context, enhancing representational capacity in 

CV tasks (Dixit et al., 2023). In remote sensing, ViTs are 

increasingly investigated for their potential across various 

applications (Aleissaee et al., 2023; Dixit et al. 2023). Swin 

Transformers (ST) (Liu et al. 2021) further build on this 

capability by introducing a hierarchical structure with local SA 

within shifted windows, which allows for efficient computation 

and enhanced spatial localization. ST have already been explored 

as backbones in object detection and instance segmentation, 

including their integration with Mask R-CNN (He et al. 2017), 

where they have shown to improve precision by effectively 

capturing both local and global features (Gibril et al. 2024). This 

adaptability and efficiency make ST valuable in complex tasks 

like remote sensing and UAV-based image analysis, where 

accurate object delineation is critical. 

 

This study aims to perform a comparative analysis of four DL-

based models for the instance segmentation and mapping of Ghaf 

trees using UAV imagery. The contribution of this research is the 

evaluation of Mask R-CNN based on Swin Transformer, Mask 

DINO, and Mask R-CNN based ViT an enhanced multiscale ViT, 

to provide insights into accurate segmentation and delineation of 

Ghaf trees in challenging environments. 

 

The paper is organized as follows: Section 2 describes the study 

area and dataset. Section 3 details the methodology, experimental 

setup, and evaluation metrics. Section 4 presents the results, and 

Section 5 summarizes the study's key findings and contributions. 

 

2. Study area and dataset 

2.1 Study Area 

The study area, Figure 1, spans diverse urban and agricultural 

regions within the Fujairah and Sharjah emirates, focusing on 

some in Kalba and Fujairah city. The region covers an area of 

approximately 25 km² and includes various tree species, notably 

Ghaf, Neem, and Acacia tortilis. The selection of this study 

region allows for a comprehensive examination of vegetation 

across urban and agricultural settings within the Emirates. 

 

For this study, imagery was collected using a Sensefly eBee X 

fixed-wing drone, equipped with a professional-grade Sensefly 

S.O.D.A RGB camera. Drone flights were conducted over the 

study area at a consistent altitude of 122 meters. Each flight 

adhered to civil aviation regulations, ensuring safe and efficient 

data capture across selected agricultural areas. 

 

Flight missions were planned using eMotion mission planner 

software, establishing 40% vertical and 70% horizontal overlap 

to optimize coverage. The eBee X drone operates at speeds 

between 40 and 110 km/h and can manage winds up to 46 km/h, 

allowing for both belly landings and manual hand launches. With 

a single battery, the drone is capable of covering areas up to 5 

square km, with additional extension options as needed. 

 

The S.O.D.A camera onboard has a variable focal length (2.8–11 

mm) and a 5,472 × 3,648 pixels resolution, capturing detailed 

imagery with a 3:2 aspect ratio. It offers exposure compensation 

of ±2.0 EV (in 1/3 EV increments), a global shutter speed ranging 

from 1/30 to 1/2000 seconds, and an ISO sensitivity between 125 

and 6400. At the operational altitude of 122 meters (400 feet), the 

ground sampling distance of the generated orthomosaic is 2.5 cm 

per pixel, ensuring high-resolution data capture. Imagery was 

collected on clear days from 9:00 a.m. to 1:00 p.m. (GMT +3) for 

optimal lighting conditions. 

 

 
  Figure 1. Geographic Map of Study Area. 

 

2.2 Dataset  

The preparation of input data for model training involved a 

detailed manual delineation of each Ghaf tree within the imagery. 

This process used field data alongside visual evaluations 

conducted through ArcGIS software to ensure accurate 

annotation. For the purpose of testing, validation, and training, 

the study area was segmented into three distinct regions, each 

providing UAV images and their corresponding labels. These 

images were then converted into annotation formats. 

 

Figure 2. Representation of various image patches (A–I) with 

corresponding annotations. 
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In total, 2770 images in COCO format were used for training the 

evaluated DL models, encompassing 3890 instances of Ghaf 

trees. Additionally, 680 COCO-formatted images containing 

1020 instances of Ghaf trees were reserved for validation. A 

distinct testing dataset was created to evaluate model 

performance, including 885 images with 1273 instances of Ghaf 

trees specifically set aside for this purpose. Annotated examples 

of Ghaf trees across image patches (A–I) are displayed in Figure 

2. 

 

3. Methodology 

3.1 Instance Segment Architectures 

In this work, we performed a comparative study on various 

transformer-based instance segmentation architectures to detect 

and map Ghaf trees from UAV data. The evaluated DL models 

include Mask R-CNN based on ViT, Swin transformer, and an 

enhanced multiscale ViT architecture. Moreover, the study 

included the analysis of Mask DINO (DETR with Improved 

Denoising Anchor Boxes). 

 

Mask R-CNN is an extension of the Faster R-CNN object 

detection framework that adds a branch for predicting 

segmentation masks on a per-instance basis. It operates in two 

stages: the first stage generates region proposals, while the 

second stage classifies these proposals and refines their 

boundaries. In addition to bounding box regression and 

classification, Mask R-CNN introduces a pixel-level 

segmentation mask for each detected object, enabling precise 

object segmentation.  

 

A Vision Transformer (ViT) (Dosovitskiy et al. 2021) is a DL 

model that uses a transformer-based architecture for image 

recognition. Unlike CNNs, which rely on convolutional layers, 

ViTs partition an image into fixed-size, non-overlapping patches 

and treat each patch as an individual “token.” These patches are 

then flattened into vectors, with positional embeddings added to 

retain spatial context. The ViT architecture consists of multiple 

transformer layers, each containing self-attention (SA) 

mechanisms and feed-forward networks. The SA mechanism 

captures relationships between patches, enabling the model to 

learn long-range dependencies and better interpret complex 

visual patterns. 

 

The multiscale ViT (Y. Li et al. 2022) uses a window attention 

mechanism to maintain tensor resolution while applying local 

SA, alongside pooled attention that aggregates features through 

downsampling and global SA. Traditional window attention only 

performs local SA within isolated windows, which limits 

connectivity across windows. To mitigate this, the multiscale 

ViT incorporates Hybrid Window Attention (Hwin), enabling 

cross-window connections by applying local attention within 

individual windows across most blocks, while the final three 

stages that connect to the Feature Pyramid Networks (FPN) (Lin 

et al. 2017) retain global context. 

 

Swin Transformer (ST) (Liu et al. 2021) is a DL model that 

extends traditional transformers for image recognition by using a 

hierarchical structure and local SA within overlapping windows. 

Unlike ViTs, which use fixed-size patches, ST divides images 

into smaller windows, allowing efficient computation and better 

spatial localization. The architecture consists of stages that merge 

windows progressively, enabling the capture of both local and 

global features. The SA is computed within these windows, 

promoting computational efficiency, while shifted windows 

improve cross-window interactions for enhanced feature 

learning. 

 

Mask DINO (F. Li et al. 2023) is a unified framework designed 

for object detection and segmentation tasks utilizing a 

transformer-based architecture. As an extension of DINO, Mask 

DINO incorporates a mask prediction branch capable of handling 

instance, panoptic, and semantic segmentation tasks, ensuring 

versatility across segmentation domains. It utilizes DINO’s query 

embeddings to create high-resolution pixel embeddings, which 

enable the production of binary masks.  

 

3.2  Experimental Settings 

The experiments were conducted on a system equipped with 64 

GB of RAM and an NVIDIA Titan RTX GPU. The models were 

initialized with pre-trained weights and trained over 100,000 

iterations, with performance evaluations carried out every 2,000 

iterations to identify the best-performing models for further 

analysis. The AdamW optimizer was utilized, set with an initial 

learning rate of 0.0001, and a batch size of 2 was employed 

throughout the training process. 

 

3.3 Evaluation Metrics 

In this study, we used the mean Average Precision (mAP) and F-

score metrics to evaluate the performance. The Average 

Precision (AP) metric evaluates precision-recall (PR) 

performance for a specific class by calculating the area under the 

PR curve, which plots precision against recall across varying 

confidence thresholds. AP provides a score between 0 and 1, 

indicating the model’s accuracy in correctly detecting instances 

of an object, with higher scores representing a better balance 

between precision and recall. The mAP and F-score metrics are 

calculated as follows: 

 

� =
��

�����
,                (1) 

� =
��

�����
,                 (2) 

	
� =
AoI

AoU
,                  (3) 

�� = �� �����,                  (4) 

� − ��
�� =
�×�×�

���
,   (5) 

 

where  P = Precision;  R = Recall; 

  TP = true positive; 

 FP = false positive; 

 FN = false negative; 

 AoI = Area of intersection; 

                AoU = Area of union. 

 

4. Results 

The Mask R-CNN models showed notable differences in training 

times, with the MViTv2-tiny backbone completing the process in 

the shortest time at 6 hours, followed by the Swin transformer 

backbone at 10 hours, and the ViT-base backbone at 17.6 hours. 

Mask DINO with Swin transformer backbone required the 

longest time at 40 hours. Each model was evaluated on the 

validation dataset every 2000 iterations, and the best-performing 

weights were selected for further processing. The detection and 

segmentation results on the validation and testing datasets are 

presented in Table 1. 
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                 Figure 3. Selected images from the testing dataset (a–f) with corresponding annotations, presenting results from four models:   

Mask R-CNN with MViTv2-tiny Mask R-CNN with ViT-base, Mask DINO, and Mask R-CNN with Swin transformer. 

 

Table 1. Experimental results of the assessed DL network 

The mAP50 values for Acacia tree detection on the validation set 

ranged from 76% to 82%, while segmentation mAP50 scores 

ranged from 76.4% to 82.6%. For the F1-score, detection values 

on the validation set varied between 79.3% and 86.1%, and 

segmentation scores ranged from 79.5% to 86.4%. 

The evaluation on the testing dataset showed mAP50 values for 

Acacia tree detection between 80% and 84.2%, with 

segmentation mAP50 values ranging from 82.2% to 85.1%. 

Similarly, F1-scores for detection varied from 83.55% to 88.3%, 

while segmentation F1-scores ranged from 85.5% to 88.6%. The 

Mask R-CNN model with the Swin Transformer backbone 

surpassed the other evaluated models in detecting and 

segmenting Ghaf trees on the testing dataset, achieving an mAP 

of 84.2% and an F1-score of 88.3%. Although the Mask DINO 

model with the Swin Transformer backbone showed lower 

performance on the validation data, it reached a mAP50 of 84.1 

and 84.8% and an F1-score of 87.0 and 87.6 on the testing dataset 

for detection and segmentation tasks, respectively. The Mask R-

CNN models with ViT-base and MViTv2 backbones 

demonstrated competitive segmentation results, achieving F1 

scores of 86.14% and 85.5%, respectively. 

 Detection Segmentation 

mAP50 

 

F1-score mAP50 F1-

score 

V
al

id
at

io
n
 

Mask R-CNN- 

Swin transformer 

82.0 86.1 82.6 86.4 

Mask DINO- 

Swin-tiny 

76.0 79.3 76.4 79.5 

Mask R-CNN-

MViT-tiny 

80.1 

 

83.9 

 

79.6 

 

83.5 

 

Mask R-CNN- 

ViT-base 

80.5 

 

84.8 

 

79.5 

 

83.7 

 

T
es

ti
n
g
 

Mask R-CNN- 

Swin transformer 

84.2 88.3 85.1 88.6 

Mask DINO- 

Swin-tiny 

84.1 87 

 

84.8 87.6 

Mask R-CNN-

MViTv2-tiny 

80.0 83.55 

 

82.2 

 

85.5 

 

Mask R-CNN- 

ViT-base 

83.8 

 

86.4 

 

84.0 

 

86.49 
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Figure 4.  Examples illustrating the performance of the evaluated models in mapping Ghaf trees across diverse and challenging scenes. 

 

 

The evaluated models demonstrated promising capabilities in 

mapping Ghaf trees across diverse urban and agricultural 

landscapes, yet several classification challenges persist. Figure 4 

illustrates various cases where the evaluated models overlooked 

or misclassified Ghaf trees. The quality of acquiring and 

preprocessing UAV data can influence model accuracy in 

recognizing Ghaf trees. For instance, windy conditions during 

UAV data acquisition can lead to a loss of structural detail in 

Ghaf trees (Figures 4 a and b), which is essential for 

distinguishing tree species. This blurring or distortion often 

obscures fine leaf features, causing some trees, such as  Acacia 

trees, to appear fluffy, clouded, and rounded, with branches 
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grouped, resembling Ghaf trees' structure. Transformers rely on 

extracted global and contextual information—such as tree shape, 

shadows, and surrounding vegetation—to accurately recognize 

Ghaf trees. However, splitting the UAV data into smaller image 

tiles (e.g., 512 × 512) can result in losing important context, 

especially for trees positioned at tile edges, which might lead to 

overlooking or misclassifying Ghaf trees, as shown in Figure 4c. 

Under certain lighting conditions, intense reflections can cause 

some trees to appear similarly bright to Ghaf trees, leading to 

potential misclassifications (Figure 4d). One of the primary 

challenges arises from the difficulty in acquiring a large, diverse 

ground-truth dataset across the vast and heterogeneous areas 

where these trees are found, along with potential errors 

introduced during tree count augmentation through image 

interpretation of RGB data. Including ambiguous cases in the 

training data can reinforce misclassifications, complicating 

accurate between similar tree species. Addressing these 

complexities is essential to enhance deep learning models for 

accurate, scalable mapping of this important tree species across 

varied environments. 

 

5. Conclusion 

Preserving Ghaf trees is essential for combating desertification 

and supporting biodiversity within desert ecosystems. This study 

was motivated by the need for precise mapping and monitoring 

of Ghaf trees using unmanned aerial systems (UAVs) and deep 

learning, aiming to enhance conservation efforts through reliable, 

automated assessments. A comparative analysis was conducted 

on several transformer-based deep learning models, including 

Mask DETR with Improved Denoising Anchor Boxes and Mask 

R-CNN models based on the Vision Transformer (ViT), Swin 

Transformer, and Enhanced Multiscale ViT. These models 

leverage the capability of vision transformers to capture global 

and contextual information, thereby enhancing mapping 

accuracy. The results showed that the evaluated instance 

segmentation architectures hold strong potential for mapping 

Ghaf trees, with mean average precision values between 80% and 

84.2% for detection and 82.2% to 85.1% for segmentation, and 

F1-scores ranging from 83.55% to 88.3% for detection and 

85.5% to 88.6% for segmentation.. The findings of this research 

revealed that variations in UAV image quality—caused by 

environmental factors such as wind-induced motion blur and 

shifting shadow positions—introduce challenges that affect the 

model’s precision and recall. Specifically, these conditions can 

lead the model to misclassify non-Ghaf trees as Ghaf trees or 

Ghaf trees as non-Ghaf trees. However, despite these challenges, 

the evaluated transformer-based models demonstrated strong 

potential for real-world applications, highlighting its robustness 

in diverse environmental conditions. This study demonstrates the 

effectiveness of transformer-based deep learning architectures in 

mapping Ghaf trees from UAV images, offering insights and 

advancements that can be adapted to map other native tree 

species and support broader conservation efforts. 
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