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Abstract 

This research examines the effectiveness of the SHapley Additive exPlanations (SHAP) approach in enhancing the interpretability of 
landslide susceptibility models. With the growing popularity of machine learning, we aim to understand how geoenvironmental and 
physically based factors impact modelling and to explain their interactions. The study focuses on the landslide-prone region of Bhutan 
and compares the performance of two approaches. The first approach incorporates geoenvironmental factors, while the second 
integrates both geoenvironmental factors and an additional physically based model. Random Forest (RF) algorithm is used to develop 
and compare these landslide susceptibility models. Various evaluation metrics, including overall accuracy and precision-recall, are 
employed to assess the predictive capabilities of each model. The findings reveal the strengths and limitations of both models, providing 
valuable insights for stakeholders and decision-makers involved in land use planning and disaster preparedness. Ultimately, this 
research seeks to advance landslide susceptibility modelling by highlighting the role of SHAP and its interaction with 
geoenvironmental and physically based factors, thereby contributing to more effective risk mitigation strategies. 

1. Introduction

Interpretability and explainability are increasingly recognized as 
critical aspects of machine learning models, especially in high-
impact fields like disaster risk management, where decisions can 
significantly impact lives and property. In landslide susceptibility 
modelling, these qualities are essential, as they allow 
stakeholders—such as land use planners and disaster 
management officials—to understand and trust the predictions 
generated by the models, enabling more informed and effective 
decision-making (Arrieta et al, 2020). Landslides pose a severe 
natural hazard, particularly in regions with complex terrains like 
Bhutan, where the risk is increasing (Froude, and Petley, 2018). 
Accurate prediction and effective management of landslide 
susceptibility are vital for mitigating risks and protecting 
communities (Bukhari et al, 2023). Traditional approaches to 
landslide susceptibility modelling often rely on statistical and 
physically based methods (Reichenbach et al, 2018; Guzzetti et 
al, 1999). While physically based models, which depend on 
detailed geotechnical data, are known for their explainability, 
they are also costly and resource-intensive to implement (Chen 
et al, 2015; Van Westen et al, 2008). 

In contrast, machine learning methods have gained significance 
due to their ability to process large datasets, including remote 
sensing data from various sensors, such as optical, radar, and 
LiDAR, along with historical landslide data (Hussain et al, 2022). 
Despite their predictive power, these models often suffer from a 
"black box" problem, where their internal workings are not easily 
interpretable, posing a challenge to their practical use 
(Casalicchio et al, 2019; Maxwell et al, 2021). The growing field 
of eXplainable AI (XAI) offers solutions to this challenge by 
enhancing the transparency of complex models. Among the 
leading XAI techniques is SHapley Additive exPlanations 
(SHAP), which decomposes model predictions into contributions 
from individual features, providing valuable insights into the 

model’s decision-making process (Lundberg et al, 2017). 
Although SHAP has been widely applied across various domains, 
its application to landslide susceptibility modelling remains 
relatively unexplored yet promising, marking a novel 
contribution of this study (Guidotti et al, 2022; Binu et al, 2024; 
Arrogante-Funes et al, 2024). 

This research explores how SHAP can enhance the 
interpretability of landslide susceptibility models in the 
challenging terrain of Bhutan, where accurate geotechnical data 
is limited. By comparing models that incorporate physically 
based methods with those that do not, the study assesses the 
additional value SHAP brings to different modelling scenarios 
(Meena and Hasija, 2022). Random Forest (RF) algorithm was 
utilized for its effectiveness with limited training data and its 
performance in various scenarios, including when the data is 
scarce (Biau and Scornet, 2016). 

In this study, evaluation metrics such as overall accuracy, 
precision-recall, Kappa Index and the area under the receiver 
operating characteristic curve (AUC-ROC) are used to provide a 
comprehensive assessment of the models' predictive capabilities. 
The findings aim to lighten the strengths and limitations of 
integrating SHAP into landslide susceptibility models, offering 
critical insights for decision-makers involved in risk assessment 
and mitigation in complex terrains. Ultimately, this research 
sheds light on the role of SHAP in making landslide susceptibility 
models more transparent and interpretable (Samek et al, 2021), 
thereby supporting more informed and effective decision-making 
in disaster risk management. 

2. Methodology

This research employed a machine learning approach, 
specifically RF, to develop and compare two landslide 
susceptibility models, each corresponding to a different setting. 
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The primary objective was to evaluate how SHAP can enhance 
the interpretability of these models (Samek et al, 2021), 
particularly in understanding the contribution of different factors 
to landslide susceptibility. The first model did not consider the 
physically based factors, whereas the second model incorporated 
a derived analysis of the physically based factor of safety (FOS). 
The Transient Rainfall Infiltration and Grid-Based Regional 
Slope-Stability (TRIGRS) model (Baum et al., 2008) was used to 
generate the physically based model, which includes critical 
parameters for assessing slope stability, such as 
geological/geomechanically data that account for variations in 
material properties and slope conditions. By integrating these 
factors, the second model seeks to better capture the physical 
processes influencing landslides, including soil cohesion, 
rainfall, and geological composition 
 
2.1 Model Development  

The RF was employed to predict landslide susceptibility for the 
two susceptibility mappings. The models were trained using a 
supervised learning approach, with landslide occurrence as the 
dependent variable. The first model primarily considers 
geoenvironmental factors, while the second model also uses 
physically based factors to assist in the training. The models were 
trained using a 70/30 data split, with hyperparameters tuned for 
optimizing predictive performance. 
 
2.2 SHAP Analysis for Model Interpretation 

To gain insights into the contributions of individual features to 
the model's predictions, we employed SHAP (Lundberg and Lee, 
2017), a game-theoretic approach for interpreting machine 
learning models. SHAP values quantify the impact of each 
feature on the model's output by attributing the difference 
between the prediction and the average prediction to the presence 
of a specific feature. This method provides both global and local 
interpretability, allowing us to understand not only the overall 
importance of features across the dataset but also how specific 
features influenced individual predictions (Lundberg and Lee, 
2017). Based on Equation (1), the SHAP value represents the 
average marginal contribution of features (Kim and Kim, 2022). 
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Here, 𝑁 represents the complete set of features (38), and 𝑛 refers 
to the total count of features in 𝑁, 𝑁\ሼ𝑖ሽ denotes the set of all 
features in 𝑁 excluding feature 𝑖. 𝑆 indicates the number of 
subsets of 𝑁 that do not include feature  i, and 𝑣ሺ𝑁ሻ represents 
the baseline value, which is the predicted output for the features 
in 𝑁 without any specific feature values. The model's output (as 
given in Equation 2) is obtained by summing the SHAP values 
for each feature (observation). 
Furthermore, by defining 𝑀 as the total number of input features, 
with 𝑧ᇱ𝜖 ሼ0, 1ሽM and ∅଴ representing the constant value when all 
inputs are absent, we analyzed the global impact of features using 
a summary plot that ranks feature importance along with their 
corresponding effects. 
 
Figure 1(a) provides a broad overview of SHAP visualization 
techniques used for model interpretability, and Figure 1(b) 
demonstrates the process of converting a black-box model into 
an explainable one. 

 

 

(a) 

 

(b) 

Figure 1. SHAP concept; (a) SHAP visualization techniques, (b) 
TreeSHAP concept for a landslide susceptibility model, 

comparing a black-box model with an explainable model. 
(adapted with modifications from: https://github.com/shap/shap) 

 
SHAP analysis was applied to assess the importance of 
geoenvironmental and physically based factors in predicting 
landslide susceptibility. By visualizing SHAP values through 
Beeswarm plot, we were able to identify the most influential 
factors driving the model's predictions and gain a deeper 
understanding of the underlying mechanisms that contribute to 
landslide occurrences. This interpretability is crucial for 
validating the model's behaviour and ensuring that the 
predictions align with domain knowledge.  
 
2.3 Model Evaluation and Analysis 

The performance of the two models was evaluated using several 
metrics, including overall accuracy, precision, recall, Kappa 
Index and (AUC-ROC). Additionally, the interpretability of the 
models, as provided by the SHAP analysis, was assessed in terms 
of how well it could explain the model's predictions and highlight 
key factors contributing to landslide susceptibility. A 
comparative analysis was conducted to assess the impact of 
including the physically based model (FOS) in selecting 
landslide and non-landslide points for training. The study focused 
on evaluating both the predictive performance and 
interpretability of the models. More specifically, SHAP values 
were analyzed to determine which features had the greatest 
influence in each model and how the presence of the FOS 
affected the feature importance rankings. This comparison 
provided insights into the trade-offs between model complexity, 
predictive accuracy, and interpretability. 
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3. Data and Study Area  

3.1 Data Collection and Study Area 

The study area is in a landslide-prone region of Bhutan, as shown 
in Figure 2, where 269 historical landslide occurrences were 
documented from 1998 to 2015. The dataset used in this study 
included a combination of remote sensing data, geotechnical 
information, and other relevant environmental factors known to 
influence landslide susceptibility. Remote sensing data was 
obtained from various sources, including optical (Landsat 8), 
radar sensors (ALOS PALSAR), while geotechnical data was 
gathered from field surveys and existing databases from Border 
Roads Organization of the Government of India 
(https://www.Bro.gov.in) and the National Center for Hydrology 
and Meteorology of the Royal Government of Bhutan 
(http://www.hydromet.gov.bt).  
 

  

Figure 2. Study area, showing the altitude and landslide data 
points. 

The data underwent preprocessing to ensure consistency and 
quality. This involved data cleaning, normalization, handling of 
missing values, and data balancing.  
The factors considered in the models included 38 features, 
including landform, topographic indices (e.g., Topographic 
Diversity Index, mTPI), Synthetic Aperture Radar (SAR) data 
(from 2007 to 2015) with HH and VH polarizations, Normalized 
Difference Vegetation Index (NDVI) data (from 2013 to 2019), 
terrain attributes (e.g., Topographic Wetness Index (TWI), 
Sediment Transport Index (STI), total curvature, slope, slope 
length, aspect, and altitude), proximity factors (e.g., distance to 
streams), and lithological and geological characteristics. 
 
FOS was also calculated using geotechnical parameters and 
incorporated as an additional input feature. The preprocessing of 
ALOS PALSAR was done based on ALOS data user’s handbook.  
The models were implemented using Python, with key libraries 
including scikit-learn for machine learning, SHAP for 
interpretability analysis, and ArcGIS for data processing and 
visualization. 
 

4. Results and Discussion 

Table 1 summarizes the performance metrics for the landslide 
susceptibility models with and without the incorporation of a 
physically based model. The model incorporating the physically 
based factor (FOS) shows slightly higher overall accuracy and 
precision, suggesting that including this factor improves the 
model's predictive capabilities. The ROC value also indicates 
better discrimination ability in the model with the physically 
based factor. Also, the increase in Kappa Index implies a better 
agreement and reliability in classification. Although the second 
model outperformed the first model, it has a slightly lower recall. 
This implies that the model may be slightly less sensitive to true 
positives, but this is minimal. 
 

Metric Without 
physically based 

model 

Incorporating 
physically 

based model 
F1-score 0.77 0.80 
Precision 0.85 0.95 

Recall 0.70 0.69 
Kappa Index 0.72 0.76 

ROC 0.94 0.95 
Overall Accuracy 0.91 0.92 

Table 1. Result of two models; (a) without physically based 
model; (b) Incorporating physically based model. 

The SHAP analysis presented in Figure 3 provides insights into 
the importance and impact of various features on the model 
outputs for landslide susceptibility. It displays the top 20 
contributing features among all features. It shows the SHAP 
values for two models: one without the physically based model 
(Figure 3a) and one incorporating the physically based model 
(Figure 3b). In both models, altitude emerges as the most 
influential feature, with consistently high SHAP values. This 
suggests that altitude plays a critical role in determining landslide 
susceptibility in the study area. Other significant features include 
NDVI from various years (e.g., NDVI-2014, NDVI-2018, 
NDVI-2015) and ALOS-Topography-derived Indices (ALOS-
TpogrphydiVE and ALOS mTPI), indicating that vegetation 
cover and topographical attributes are also crucial in landslide 
prediction. When the physically based model is incorporated 
(Figure 3b), the feature rankings slightly change. Particularly, 
FOS and geology become more prominent, highlighting the 
additional value that physically based features bring to the model. 
The incorporation of physically based parameters seems to 
redistribute the importance among certain features. For instance, 
FOS appears as an important feature in the physically based 
model, which was not highlighted in the first model. 
 
The SHAP plots also indicate the directionality (positive or 
negative) of the feature impacts. For example, in the case of 
altitude, the high SHAP values (in red) suggest that higher 
altitudes contribute positively to landslide susceptibility, whereas 
lower SHAP values (in blue) indicate a negative contribution. 
The variance in SHAP values for each feature suggests the 
interaction effects and non-linear relationships between the 
features and the model output. The spread of these values also 
indicates the robustness and consistency of each feature's 
contribution. The comparison between Figure 3a and 3b reveals 
that incorporating physically based models leads to a more 
diverse set of features being considered as important. This 
inclusion helps capture the complex interactions in the data, 
potentially leading to improved prediction accuracy. The model 
without the physically based inputs relies heavily on altitude and 
vegetation indices, while the model with the physically based 
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inputs considers a more balanced combination of topographical, 
geological, and vegetation features. 
 
Despite slope being a known key factor in landslide 
susceptibility, the SHAP analysis did not highlight it as the most 
important feature. This could be due to multicollinearity with 
other topographic features (e.g., altitude, TWI, STI), which might 
capture similar information, reducing slope’s apparent 
importance. Additionally, interaction effects with other variables 
like soil type or vegetation could explain why slope’s 
contribution wasn’t as prominent. The influence of slope may 
also vary across different spatial scales; at larger regional scales, 
other factors, such as geology and vegetation, might dominate. 
Furthermore, the preprocessing steps and the model’s structure 
could have led to a stronger focus on variables like altitude and 
vegetation indices, which might have more direct relationships 
with landslide occurrence. Finally, the SHAP methodology, 
while powerful, prioritizes predictive accuracy and may not 
always align with theoretical expectations, particularly in 
complex, multi-factorial processes like landslides. Overall, this 
result emphasizes the complex, non-linear relationships in 
landslide susceptibility and suggests the need for further 
exploration of feature interactions and spatial variability in future 
models. 
 
While the analysis provides a detailed understanding of feature 
contributions, the applicability of the model varies depending on 
the scale. Given SHAP's ability to explain the contribution of 
various features and their interactions, the model is particularly 
suited for regional and local beneficiaries, as it offers detailed, 
understandable insights into landslide susceptibility at these 
scales. At the global level, the model could serve as an initial 
screening tool or a guide for more localized studies, but it would 
require refinement for practical implementation in specific areas. 
 
This study highlights SHAP’s role in translating machine 
learning insights into actionable strategies for landslide-prone 
regions. By identifying key risk factors, SHAP enhances land-
use policies, enabling data-driven zoning and adaptive hazard 
mapping. It also refines early warning systems, improving alerts 
for at-risk communities and guiding public awareness 
campaigns. In urban planning, SHAP could inform resilient 
infrastructure design and supports GIS-based decision tools, 
ensuring new developments align with geospatial risk 
constraints. Furthermore, its explainability can aid in cost-
effective risk mitigation, helping allocate resources efficiently. 
Ultimately, SHAP can bridge the gap between black-box models 
and real-world disaster resilience strategies, making landslide 
susceptibility assessments more transparent and actionable. 
 

5. Conclusion 

While incorporating physically based model enhances the 
model's overall ability to correctly identify and differentiate 
cases, it might come at the cost of being too conservative in 
predicting positives, which slightly lowers the recall. This trade-
off is common in models that aim to reduce false positives but 
may inadvertently increase false negatives. Physically based 
factors alone may not capture all the essential or accurate 
information needed to fully predict landslide susceptibility, 
particularly at large scales. The integration approach can improve 
model performance by providing essential physical insights, but 
it must be combined with high-quality data and possibly other 
empirical or data-driven methods to ensure comprehensive and 
accurate predictions. 
The slight decrease in recall in the second model might reflect 
these limitations, where the physically based factors could be 

missing or misrepresenting certain key aspects, leading to a more 
conservative prediction approach. When data are scarce or 
historical records are limited, the inclusion of a physically based 
model might be considered an additional step to enhance model 
robustness, despite the potential for increased processing 
demands. Ultimately, this research contributes to the 
advancement of landslide susceptibility modelling by clarifying 
the role of SHAP in conjunction with physically based models, 
offering valuable insights for stakeholders and decision-makers 
in land use planning and disaster preparedness. 
 

 
(a) 

 

 
(b) 

Figure 3. Results of SHAP analysis for the two models: (a) 
without the physically based model; (b) incorporating the 

physically based model. 
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