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Abstract 

 

Accurate land cover classification in riverine environments is essential for understanding hydrological dynamics, ecological health, 

and resource management. This study utilizes high-resolution LISS-4 imagery from the IRS-R2 satellite to address the complex 

classification challenges in the dynamic confluence of the Mahanadi and Shivnath Rivers. To enhance classification accuracy, two 

distinct feature sets were developed: the first feature set (FS-1) contained the original three spectral bands of the imagery, and the 

second feature set (FS-2) added eight derived spectral indices to improve class separation. Three machine learning classifiers, 

Random Forest (RF), Support Vector Machine (SVM), and Gradient Tree Boosting (GTB), were applied to assess the effectiveness 

of each feature set. The results demonstrated that the combination of FS-2 and RF yielded the most accurate and interpretable 

classification, achieving an overall accuracy of 84.48% and a Cohen’s Kappa coefficient of 0.81. Visual results demonstrated precise 

delineation of narrow water channels and sandbars, when using the enhanced feature set FS-2 with the Random Forest (RF) 

classifier, the model achieved an F1-score of 86.96% for dense vegetation and 83.78% for water. FS-2 consistently improved F1-

scores across all classifiers, aiding in distinguishing visually similar classes like wet sand, dry sand, and sparse vegetation. These 

findings highlight the value of combining spectral indices with high-resolution imagery to achieve accurate land cover classification 

in complex landscapes, supporting applications in ecological monitoring, flood risk assessment, and resource management for 

riverine ecosystems. 

 

1. Introduction 

Classifying land cover from satellite imagery is fundamental for 

understanding and managing diverse ecosystems (Foody, 2002). 

In riverine environment, where shifting patterns of water, 

vegetation, and sediment create complex landscapes, precise 

classification is especially important for effective flood 

management, habitat protection, and resource planning 

(Boothroyd et al., 2021). With the increasing availability of 

high-resolution remote sensing data, advancements in machine 

learning (ML) algorithms have been pivotal in enhancing 

classification accuracy across varied land cover types. Several 

studies underscore the effectiveness of algorithms like Random 

Forest (RF), Support Vector Machine (SVM), and 

Convolutional Neural Networks (CNNs) when used with 

satellite imagery data (Rahman et al., 2020; Talukdar et al., 

2020; Ouchra et al., 2023). These classifiers benefit 

substantially from the integration of spectral indices, which 

amplify specific land cover characteristics such as vegetation 

health and water content, thereby improving the accuracy of 

classification outputs (Verma et al., 2016; Arora et al., 2020; 

Tadese et al., 2020). 

 

Riverine landscapes, characterized by narrow water bodies, 

diverse vegetation types, and sedimentary features, present 

unique classification challenges due to the similarity of spectral 

signatures between classes like wet sand, dry sand, and sparse 

vegetation. Studies demonstrate that spectral indices such as the 

Normalized Difference Vegetation Index (NDVI) and 

Normalized Difference Water Index (NDWI) enhance feature 

separability in these environments, contributing to accurate 

mapping of land cover (Boothroyd et al., 2021; Tobón-Marín 

and Barriga, 2020). Furthermore, texture-based features derived 

from high-resolution imagery capture spatial patterns at finer 

scales, which improves the detection of landscape structures in 

heterogeneous areas (Vishnoi and Pareek, 2024; Arora et al., 

2020). 

 

The application of advanced machine learning classifiers has 

gained traction in recent years due to their adaptability to high-

dimensional and complex data. RF, for example, is noted for its 

robustness and stability, especially in diverse landscape 

classification, while SVM has proven effective in high-

dimensional feature spaces, such as when spectral and textural 

indices are combined (Boothroyd et al., 2021; Tobón-Marín and 

Barriga, 2020). CNNs, meanwhile, have demonstrated high 

accuracy in LISS-IV image classification when combined with 

object-based deep feature extraction, which significantly 

improves classification precision by preserving edge details 

(Rajesh et al., 2019; Vishnoi and Pareek, 2024). Moreover, 

feature selection techniques such as correlation-based feature 

selection (CFS) have been shown to reduce data redundancy 

and computational costs, thus optimizing the classifier's 

efficiency and accuracy (Zhang et al., 2023; Arora et al., 2020). 

 

Recent research emphasizes the role of cloud-based platforms, 

like Google Earth Engine (GEE), in facilitating large-scale 

spatial analyses. These platforms overcome storage and 

processing limitations, allowing for multitemporal analysis of 

river morphology and land cover dynamics across wide spatial 

scales. By enabling the integration of diverse datasets, including 

Landsat and Sentinel imagery, GEE has proven invaluable for 

the study of geomorphic features, particularly in assessing 

temporal changes in riverine environments (Tobón-Marín and 

Barriga, 2020; Boothroyd et al., 2021). 

 

In this study, we employ a feature-rich approach integrating 

spectral bands and indices from high-resolution LISS-IV 

imagery with machine learning classifiers, RF, SVM, and 

Gradient Tree Boosting (GTB) for evaluating classification
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Figure 1. Study area map 

 

performance in the dynamic confluence of the Mahanadi and 

Shivnath Rivers in Chhattisgarh state of India (Figure 1). This 

region was chosen for its dynamic and diverse land cover, 

which includes water bodies, wet and dry sand deposits, sparse 

vegetation, and dense vegetation, making it an ideal 

environment for testing riverine land cover classification. By 

capturing the natural variability across these complex landscape 

features, our approach aims to address the limitations of 

previous methodologies, enhancing classification accuracy and 

offering actionable insights for riverine ecosystem management, 

sustainable resource planning, and environmental conservation. 

 

2. Data and Methods 

2.1 Dataset 

For this study, we utilized Linear Imaging Self-Scanning Sensor 

4 (LISS-4) satellite imagery provided by the National Remote 

Sensing Centre (NRSC), India. The image was acquired on 

January 1, 2024, from the Indian Remote Sensing Satellite 

(IRS-R2). This high-resolution imagery has a nominal spatial 

resolution of 5.8 meters, with three spectral bands: Green, Red, 

and Near-Infrared (NIR). To ensure that the analysis focused 

solely on the riverine landscape, the banks of the river were 

manually digitized, and all subsequent processing was confined 

to the area within the river boundaries. 

 

2.2 Feature set creation 

A feature set represents the input data used for classification, 

and a robust feature set is essential for capturing the underlying 

characteristics of a landscape, especially in complex 

environments like riverine systems. To enhance model 

performance and ensure accurate classification, this study 

developed two distinct feature sets, combining spectral data and 

derived indices. These feature sets provide both reflectance 

information and biophysical insights, improving the model’s 

ability to differentiate between diverse land cover types. 

 

The first feature set (FS-1) consisted of the three spectral bands 

from LISS-4: Green, Red, and Near-Infrared (NIR). These 

bands provide essential reflectance data, but they may not be 

sufficient to capture subtle differences in mixed land cover, 

such as distinguishing between wet and dry sand or sparse and 

dense vegetation. Therefore, additional indices were introduced 

in the second feature set to enrich the dataset. 

 

The second feature set (FS-2) included the original three bands 

along with seven indices. These indices were selected to provide 

insights into vegetation health, water presence, and soil 

moisture, which are the key elements in riverine landscapes. 

The indices used in this study include the NDVI (Rouse et al., 

1974), NDWI (McFeeters, 1996), Green-Red Vegetation Index 

(GRVI) (Gitelson et al., 1996), Soil Adjusted Vegetation Index 

(SAVI) (Huete, 1988), Optimised Soil Adjusted Vegetation 

Index (OSAVI) (Rondeaux et al., 1996), Water Index (WI) 

(Peñuelas et al., 1993) and Global Environment Monitoring 

Index (GEMI) (Pinty & Verstraete, 1992). The formulas and 

descriptions for these indices are provided in Table 1. Together, 

these indices provide detailed insights into vegetation, water 

bodies, and soil conditions, improving the reliability of land 

cover classification across the study area. 

 

Combining raw spectral bands with indices helps enrich the 

dataset with more meaningful features that directly correlate 

with biophysical properties. Using both spectral bands and 

derived indices allows the classification models to address the 

heterogeneity and complexity of the riverine environment. 

 

2.3 Land cover classes 

The study focuses on classifying five key land cover classes 

within the riverine environment: water, dry sand, wet sand, 

sparse vegetation, and dense vegetation. These classes represent  

the dynamic elements of the confluence area of the Mahanadi 

and Shivnath Rivers, providing essential insights into the 

ecological and hydrological variability of the landscape. 
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2.3.1 Water: Water bodies are a critical component of 

riverine systems, encompassing flowing rivers, stagnant pools, 

and small channels. In remote sensing, water is typically 

identified by its strong absorption of NIR radiation and higher 

reflectance in the Green band (McFeeters, 1996). Accurately 

mapping water bodies is essential for monitoring seasonal 

changes, flood events, and resource availability. 

 

2.3.2 Dry Sand: Dry sand deposits are common along 

riverbanks, floodplains, and sandbars, especially during the dry 

season when river levels recede. These areas exhibit high 

reflectance across the visible spectrum and are often challenging 

to distinguish from other bright surfaces. Proper classification 

of dry sand helps in understanding sediment transport, erosion 

processes, and sand mining impacts. 

 

2.3.3 Wet Sand: Wet sand refers to sand deposits that retain 

moisture from recent river flows or are submerged under 

shallow water. These areas are critical indicators of seasonal 

water dynamics and flooding patterns. Wet sand exhibits 

intermediate reflectance between dry sand and water, making its 

classification challenging without texture-based analysis. 

 

2.3.4 Sparse Vegetation: Sparse vegetation covers areas 

with minimal plant density, including grasslands, shrublands, or 

degraded vegetation patches along the riverbanks. These areas 

play an essential role in preventing soil erosion and maintaining 

riverbank stability. Sparse vegetation is often characterized by 

low to moderate NDVI values, as it reflects more of the Red 

spectrum compared to dense vegetation (Huete, 1988). 

 

2.3.5 Dense Vegetation: Dense vegetation refers to areas 

with high plant density, such as forests or thick riparian zones 

along the riverbanks. These regions exhibit high NDVI and NIR 

reflectance due to the abundance of chlorophyll. Mapping dense 

vegetation is important for understanding biodiversity, carbon 

sequestration, and the ecological health of the riverine 

landscape (Rouse et al., 1974). 

 

This classification framework is designed to capture the 

essential features of the riverine system by effectively 

distinguishing between the spectral and textural characteristics 

of each land cover class. By addressing the unique spectral 

signatures and biophysical properties of water, dry sand, wet 

sand, sparse vegetation, and dense vegetation, this approach 

provides a comprehensive understanding of the ecological and 

hydrological dynamics at the confluence of the Mahanadi and 

Shivnath Rivers. This refined mapping enhances the accuracy of 

land cover classification and also supports informed resource 

management, conservation planning, and environmental 

monitoring in this sensitive riverine landscape. 

 

2.4 Classification Algorithm 

This study employed three widely used supervised machine 

learning classifiers: Random Forest (RF), Support Vector 

Machine (SVM), and Gradient Tree Boosting (GTB). These 

algorithms were chosen for their robustness, performance in 

remote sensing applications, and ability to handle both spectral 

and textural data (Belgiu & Drăguţ, 2016; Pal & Mather, 2005). 

Each classifier was trained using 30 points per class (a total of 

150 points) to ensure a balanced representation of all five land 

cover types. 

 

2.4.1 Random Forest (RF): RF is an ensemble learning 

algorithm that builds multiple decision trees and combines their 

predictions to improve accuracy (Breiman, 2001). Each tree is 

trained on a randomly selected subset of the data, reducing the 

risk of overfitting. RF can efficiently handle large datasets with 

high-dimensional features, such as those in remote sensing 

applications. Its robustness against noise and flexibility in 

dealing with both categorical and continuous data make it a 

popular choice for land cover classification. 

 

2.4.2 Support Vector Machine (SVM): SVM is a powerful 

algorithm known for its ability to find the optimal hyperplane 

that maximally separates different classes (Cortes & Vapnik, 

1995). It is particularly effective in high-dimensional spaces, 

making it suitable for remote sensing datasets with multiple 

features (Pal & Mather, 2005). SVM works well for complex 

Index Formula Purpose Characteristics 

NDVI (NIR - Red) / (NIR + Red) Assesses vegetation 

health, vigor, and 

density 

Values range from -1 to 1; higher values indicate 

denser vegetation, while lower values represent 

non-vegetated surfaces 

NDWI (Green - NIR) / (Green + NIR) Enhances detection of 

open water bodies 

Values range from -1 to 1; higher values indicate 

water presence, useful for mapping rivers and 

channels 

GRVI (Green – Red) / (Green + Red) Distinguishes areas with 

active vegetation 

Values range from -1 to 1; higher values indicate 

vegetation presence, aiding in vegetation pattern 

detection in riverine landscapes. 

SAVI ((NIR – Red) * (1 + L) / (NIR + Red + 

L) 

where L = 0.5 

Reduces soil brightness 

impact in sparse 

vegetation areas 

Values range from -1 to 1; L is typically 0.5, 

effective for semi-arid areas with sparse 

vegetation 

OSAVI (NIR – Red) / (NIR + Red + 0.16) Further reduces soil 

influence for sparse 

vegetation regions 

Values range from -1 to 1; optimized for mixed 

soil and vegetation cover in floodplains 

WI NIR/Green Measures water content 

on the surface 

Lower values indicate wetter surfaces; useful for 

detecting moisture along riverbanks, floodplains, 

and wetlands. 

GEMI  = (2 *(NIR -Red) + 1.5*NIR + 

0.5*Red) / (NIR + Red + 0.5),  

GEMI = ( * (1 – 0.25 * ) – ((Red – 

0.125)/ (1 – Red)) 

Monitors vegetation 

under varying 

atmospheric conditions 

GEMI reduces atmospheric effects and enhances 

vegetation detection, suitable for riverine and 

floodplain environments with fluctuating 

atmospheric conditions. 

Table 1. Description of spectral indices 
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classification tasks, even with a limited number of training 

samples, which is a common scenario in remote sensing studies. 

 

2.4.3 Gradient Tree Boosting (GTB): GTB is a boosting 

algorithm that builds models sequentially, improving the 

prediction accuracy by minimizing errors made by previous 

models. This algorithm is highly effective for structured data 

and performs well in classification tasks with complex patterns 

(Natekin & Knoll, 2013). In remote sensing, GTB has been 

successfully used for land cover mapping due to its ability to 

handle both non-linear relationships and high-dimensional data 

(Rodriguez-Galiano et al., 2015). 

 

All three classifiers, RF, SVM, and GTB, were applied to both 

the feature sets, resulting in a total of six classified images. This 

dual approach enabled a comprehensive evaluation of how well 

each feature set and classifier performed in mapping the riverine 

land cover types. The outcomes of these models were then 

assessed through accuracy metrics to determine the most 

effective combinations for the study area.  

 

2.5 Accuracy Assessment 

The accuracy assessment involved a total of 174 points 

carefully selected across the five land cover classes: 42 points 

for water, 30 for dense vegetation, 36 for wet sand, 26 for dry 

sand, and 40 for sparse vegetation. These points were chosen 

from challenging locations within the study area, where 

classifiers were expected to encounter difficulties due to 

spectral similarities and mixed boundaries. This included areas 

such as the transition zones between wet and dry sand, along 

water channels, narrow river sections, and the edges of 

sandbars. This strategic sampling allowed for a more rigorous 

test of the ability of the classifier to handle complex land cover 

scenarios, beyond simple homogeneous areas. 

 

Following this sampling, the accuracy of the classification 

outputs was assessed using key metrics, including the confusion 

matrix, overall accuracy, Cohen’s Kappa coefficient, and F1-

Score by class. Each classified image was carefully evaluated to 

determine how well the classifiers distinguished between the 

five land cover classes, providing deeper insights into their 

strengths and limitations in mapping the complex riverine 

landscape. 

 

The confusion matrix is a tabular representation that compares 

the predicted classifications with the actual ground truth data, 

providing insight into where misclassifications occur. Each row 

of the matrix represents the true class, and each column 

represents the predicted class, enabling a detailed analysis of 

which classes are confused with one another. 

 

Overall accuracy measures the proportion of correctly classified 

points out of the total sampled points, offering a simple, yet 

broad indicator of the classifier’s performance. It is calculated 

using the following formula: 

 

Overall Accuracy = 100*(Number of correctly Classified   

Points/ Total Number of Points) 

 

While it provides a useful summary, it does not account for 

chance agreement, which can sometimes inflate accuracy 

metrics, particularly when imbalanced class distributions. To 

address this limitation, the Cohen’s Kappa coefficient (𝜅) is 

employed. Kappa adjusts for the likelihood of agreement 

occurring by chance, offering a more nuanced assessment of the 

classifier’s reliability. The formula for Kappa is: 

 

 = (ρₒ - ρₑ) / (1 - ρₑ) 

 

where  ρₒ= observed agreement (the proportion of correctly 

classified points) 

 ρₑ= expected agreement by chance 

 

A Kappa value close to 1 indicates strong agreement between 

the predicted and actual true classes, while values near 0 

suggest the performance is no better than random chance. 

 

Finally, the F1-Score balances two critical metrics: precision 

and recall. Precision measures the proportion of correctly 

predicted positive instances out of all predicted positives. In 

contrast, recall measures the proportion of correctly predicted 

positives out of all actual positives in the ground truth. The 

formula for the F1-Score is:  

 

F1 = 2* (Precision * Recall) / (Precision + Recall) 

 

where  Precision = (TP) / (TP + FP), and  

 Recall = (TP) / (TP + FN) 

TP is True Positive; FP is False Positive and FN is False 

Negative.  

 

Together, these metrics provide a comprehensive evaluation 

framework for classification performance, highlighting both 

overall effectiveness and specific areas where classifiers may 

encounter challenges, such as distinguishing between closely 

related classes. While overall accuracy gives a general measure 

of success, Kappa accounts for chance agreement, and the F1-

score offers class-level insights, which are particularly valuable 

for handling complex boundary regions and mixed land cover 

types. 

 

In the following section, we apply these metrics to assess the 

performance of each classifier and feature set, establishing a 

robust basis for comparing their effectiveness in this complex 

riverine environment. 

 

3. Results and Discussion 

The classification results were obtained by applying three 

machine learning algorithms, RF, SVM, and GTB, on two 

distinct feature sets (FS-1 and FS-2) and are presented in Figure 

2 along with their respective confusion matrices. The classified 

images were carefully interpreted to analyze the spatial 

distribution of the identified land cover types, providing insights 

into the landscape's composition and variability. The 

interpretation focused on assessing how well the classifiers 

handled the spectral and spatial variability within the riverine 

environment, highlighting the strengths and limitations of each 

feature set in capturing key land cover characteristics. 

 

The inclusion of eight indices in FS-2 improved the 

classification performance across all classifiers, resulting in 

smoother, more coherent outputs with fewer instances of salt-

and-pepper noise. RF and GTB both showed noticeable 

improvements in sandbar delineation when using FS-2, 

reducing misclassification of sand as sparse vegetation that was 

evident in FS-1. Specifically, in the RF classification for FS-2 

classification, narrow water channels are well captured, 

demonstrating the importance of spectral indices in identifying 

subtle features within the riverine landscape. However, the same 

classifier struggled with separating wet sand from sparse 

vegetation, a challenge reflected in both the visual output and 
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Figure 2. Land cover Classification and corresponding confusion matrices 

 

the confusion matrix, where wet sand pixels were occasionally 

assigned as sparse vegetation. 

 

While SVM showed relatively similar performance across FS-1 

and FS-2, the smoothness of the output was slightly enhanced 

with FS-2. However, due to the absence of a built-up class in 

this study, hydraulic structures near the river, which should 

ideally be classified as sand due to their similar reflectance 

properties, were often misclassified as water because of their 

proximity to water bodies. This highlights the sensitivity of the 

SVM classifier to neighbouring spatial relationships. In 

contrast, RF and GTB tended to misclassify these structures as 

sparse vegetation and wet sand, respectively. Additionally, 

SVM encountered challenges in accurately mapping narrow 

water channels, where portions of these channels were 

incorrectly assigned as wet sand, as shown in the confusion 

matrices for both FS-1 and FS-2. 

 

Among the classifiers, GTB produced relatively balanced 

outputs, but its performance was somewhat inconsistent with 

narrow water channels, particularly in FS-1. In these cases, 

GTB often misclassified wet sand as sparse vegetation or vice 

versa. However, when applied to FS-2, GTB demonstrated 

better separation of land cover types along sandbar edges, 

although it still underperformed slightly in identifying narrow 

water channels compared to RF. The confusion matrix for GTB 

of FS-2 reflects this, with more accurate identification of water 

and dry sand, but occasional misclassification of sparse 

vegetation in wet sand areas. 

 

In comparing the classifiers, SVM provided the smoothest 

classification outputs, particularly in FS-2, minimizing 

fragmentation across the landscape. However, RF was the most 

effective in capturing narrow water channels, a critical feature 

in the riverine landscape, although it occasionally suffered from 

scattered sparse vegetation within wet sand areas. GTB, while 

offering balanced performance, struggled in certain areas, 

particularly in distinguishing between dry and wet sand, 

reflecting limitations in handling spectral similarities between 

these two classes. 

 

For a more comprehensive evaluation of the classifier’s 

performance, Kappa coefficient and overall accuracy metrics 

were calculated and are listed in Table 2. These metrics provide 

quantitative insights into how well each classifier distinguished 

between the five land cover classes, across the two feature sets. 

The results demonstrate a clear improvement in classification 

accuracy and Kappa coefficient when indices are added in FS-2, 

highlighting the importance of incorporating additional features 

for remote sensing applications. 
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Classifier Feature 

Set 

Kappa 

coefficient 

Overall 

Accuracy 

RF FS-1 0.70 75.86% 

SVM FS-1 0.81 84.48% 

GTB FS-1 0.73 78.16% 

RF FS-2 0.81 84.48% 

SVM FS-2 0.81 84.48% 

GTB FS-2 0.80 83.91% 

Table 2. Kappa coefficient and overall accuracy 

 

RF showed significant improvement with FS-2, where its Kappa 

coefficient increased from 0.70 to 0.81, and overall accuracy 

improved from 75.86% to 84.48%. This indicates that the 

enriched feature set helped reduce confusion between 

overlapping classes, especially between wet and dry sand, 

which posed challenges in FS-1. SVM demonstrated high 

stability, achieving the same Kappa value of 0.81 and an 

accuracy of 84.48% with both feature sets. This suggests that 

SVM effectively captures both spectral and spatial variability, 

providing reliable classifications in complex riverine 

landscapes. 

 

GTB, while performing well, exhibited slightly lower accuracy 

compared to RF and SVM. It achieved a Kappa of 0.73 and 

78.16% accuracy with FS-1, improving to 0.80 and 83.91% 

with FS-2. Although the inclusion of indices enhanced its 

performance, GTB still encountered some difficulty 

distinguishing between wet sand and sparse vegetation, 

highlighting its limitations with spectrally similar classes. 

 

The F1-Score heatmap (Figure 3) offers valuable insights 

highlight the nuanced strengths and weaknesses of each 

classifier when tasked with mapping complex classes such as 

wet sand and sparse vegetation within the riverine landscape. 

For the water class, all classifiers demonstrate marked 

improvement with FS-2, highlighting the role of indices in 

enhancing water detection. GTB, in particular, achieves the 

highest F1-Score for water at 85.33% with FS-2, suggesting that 

the additional indices helped in better distinguishing water from 

other reflective surfaces. This improvement underscores how 

the enriched feature set provides a more refined spectral 

separation, minimizing confusion with features like wet sand or 

sparse vegetation that may otherwise exhibit overlapping 

spectral characteristics. In FS-1, however, the performance of 

RF and GTB is more moderate, scoring 80.00%, which 

indicates some misclassification likely due to overlapping 

spectral properties with wet sand or sparse vegetation near the 

water bodies. 

 

 
Figure 3. F1-Score heatmap 

When classifying dense vegetation, the performance remains 

stable across both feature sets, with RF achieving the highest 

F1-Score of 86.96% using FS-2. This consistency across 

classifiers reflects the distinct spectral signature of dense 

vegetation, which the classifiers can reliably identify even with 

minimal input data. However, adding indices in FS-2 further 

refines the classification, especially for RF, by minimizing 

misclassifications with sparse vegetation. 

 

The dry sand class exhibits strong performance across all 

models and feature sets, with RF and SVM consistently 

achieving F1 scores of 92.00%. This suggests that dry sand 

possesses clear and distinguishable spectral characteristics, 

making it easier to classify with high accuracy. The high scores 

across FS-1 and FS-2 indicate that additional indices provide 

only marginal improvement for this class, as the classifiers 

already performed well with the spectral bands alone. 

 

The dry sand class exhibits strong performance across all 

models and feature sets, with RF and SVM consistently 

achieving F1 scores of 92.00%. This suggests that dry sand 

possesses clear and distinguishable spectral characteristics, 

making it easier to classify with high accuracy. The high scores 

across FS-1 and FS-2 indicate that additional indices provide 

only marginal improvement for this class, as the classifiers 

already performed well with the spectral bands alone. 

 

The classification of wet sand, on the other hand, proves more 

challenging, especially with FS-1. RF achieves only 69.23% 

with FS-1, indicating frequent misclassification, possibly as 

sparse vegetation or dry sand. However, introducing indices in 

FS-2 leads to significant improvement across all classifiers, 

with GTB reaching 81.93%. This suggests that the spectral 

index in FS-2 captures subtle differences in moisture content, 

improving the identification of wet sand, which often overlaps 

spectrally with other classes. 

 

Sparse vegetation remains the most difficult class to classify 

accurately. RF with FS-1 struggles the most, with an F1-Score 

of 61.73%, suggesting considerable confusion with wet or dry 

sand. However, the use of FS-2 enhances the ability of the 

classifier to map sparse vegetation, with RF and SVM achieving 

82.86%. However, the results also suggest that some challenges 

remain, likely due to the spectral similarity between sparse 

vegetation and certain sand classes. This overlap makes it 

difficult for the classifiers to consistently separate these 

categories, indicating that further refinements in feature 

selection or additional data inputs may be necessary to enhance 

classification accuracy. Overall, the F1-score analysis indicates 

that FS-2 consistently improves classification performance by 

providing extra spectral information, helping to resolve 

ambiguities in complex land cover classes. 

 

4. Conclusion 

This research combined high spatial resolution imagery, albeit 

limited in spectral resolution, with derived indices to enhance 

land cover classification accuracy in riverine environments. 

Utilizing LISS-4 imagery from the IRS-R2 satellite, we 

developed two distinct feature sets and applied three machine 

learning classifiers to evaluate their effectiveness in mapping 

complex land cover types. The inclusion of additional indices in 

the second feature set (FS-2) significantly improved 

classification performance, particularly in distinguishing 

visually similar classes such as wet sand, dry sand, and sparse 

vegetation, underscoring the critical role of spectral indices in 

capturing detailed landscape features. 
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The results demonstrate that the combination of FS-2 and RF 

provided the most accurate and interpretable output for the 

riverine environment, especially in delineating narrow channels 

and sandbars. The inclusion of spectral indices allowed the 

classifiers to better capture landscape features and spatial 

variability, which were essential for mapping the dynamic 

features of the river confluence. This enhancement is further 

supported by accuracy metrics, including F1-scores, Cohen's 

Kappa, and overall accuracy, which demonstrated substantial 

improvements with FS-2, underscoring the value of 

incorporating additional indices to strengthen classifier 

performance across challenging classes. However, the persistent 

confusion between wet sand and sparse vegetation highlights 

the inherent complexity of the landscape and suggests that 

further refinement or the addition of texture-based features may 

be necessary to improve classification accuracy in these areas.  

 

Overall, the results indicate that FS-2 significantly enhances 

classification outcomes across all classifiers, confirming the 

importance of integrating spectral indices to improve model 

accuracy. Both RF and SVM emerge as the most effective 

classifiers, with RF excelling in mapping narrow water channels 

and vegetation, while SVM provides smooth, stable 

classifications across all classes. GTB offers competitive results 

but lags slightly behind RF and SVM, particularly in accurately 

separating sand and vegetation classes. Notably, GTB 

demonstrates considerable improvement with FS-2, especially 

for complex classes like wet sand. These findings highlight the 

importance of selecting appropriate feature sets and classifiers 

to achieve robust and reliable land cover classification in 

dynamic and heterogeneous landscapes, such as the confluence 

of the Mahanadi and Shivnath Rivers. 
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