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Abstract: 
 
The quality of road infrastructure significantly influences road safety, vehicle performance, and the overall driving experience. 
Traditional methods of assessing road quality, such as manual inspections, often lack the efficiency and accuracy needed to address 
modern transportation challenges. To overcome these limitations, this project focuses on developing an innovative model to assess 
road roughness using sensor data. The model leverages Android sensor technologies, primarily utilizing two types of sensors: 
accelerometers (inertial sensors) and GNSS (Global Navigation Satellite System) sensors. Given resource constraints, data was 
collected using an Android phone mounted on bicycles, which provided valuable insights despite some challenges and errors 
encountered during data collection. At the core of our model is the analysis of the International Roughness Index (IRI), which has been 
widely recognized as a reliable indicator for assessing road roughness on a quantitative scale. By deriving the parameters associated 
with IRI and applying the proposed formulae, we were able to recognize and categorize road surface irregularities such as potholes and 
humps. Our approach was further validated through the application of statistical methods, including the Kolmogorov-Smirnov (KS) 
test and Q-Q (Quantile-Quantile) plots. These methods demonstrated that the IRI is indeed a robust metric for indicating road roughness 
and low-cost sensors can be used for estimating road roughness. The metrics established in this study can serve as the foundation for 
developing more sophisticated algorithms that assess road roughness based on accelerometer data, ultimately contributing to enhanced 
transportation efficiency and road safety. 
 

1. Introduction 
 

The backbone of modern economies, transportation 
infrastructure, is undergoing unprecedented strain due to 
increasing urbanization and vehicular traffic. India, a rapidly 
developing nation, faces significant challenges in maintaining 
and improving its road network. The consequences of suboptimal 
road conditions are far-reaching, encompassing economic losses, 
environmental degradation, and, most critically, a heightened 
risk of road accidents. 
 
India possesses one of the largest road networks in the world, 
spanning millions of kilometres and serving as a critical 
component of the nation's transportation system. Roadways are 
the predominant mode of transport, particularly for short 
distances, due to their cost-effectiveness and convenience. They 
facilitate door-to-door service, minimize loading and unloading 
costs, and connect remote areas to major transport hubs, 
including railway stations, airports, and seaports. Despite the 
importance of road transport, India faces a significant road safety 
crisis. India witnessed a troubling surge in road accidents during 
2022. According to the Ministry of Road Transport and 
Highways, the number of road accidents reached 461,312, 
resulting in a staggering 168,491 fatalities and 443,366 injuries 
(The ministry of road transport and highways India 2022).These 
figures represent a significant increase compared to the previous 
year. Analysing the data, it's evident that a concerning 36.53% of 
road accidents in India resulted in fatalities, while a substantial 
96.09% led to injuries.  
 
The alarming rise in road accidents underscores the urgent need 
for enhanced road safety measures and improved infrastructure. 
Addressing pavement roughness and fostering road safety 
awareness are essential for reducing fatalities and promoting 
safer transportation across the country. 
 
The motivation for this project on road roughness analysis using 
inertial sensors stems from the pressing challenges within India’s 
road transportation system. The increasing accident rate, often 

linked to deteriorating pavement conditions, necessitates a more 
effective monitoring and maintenance strategy. By leveraging 
low-cost inertial sensors, this papers aims to provide a robust 
solution for detecting and quantifying pavement roughness. This 
approach will enable the prediction of road degradation, enhance 
ride quality, and reduce vehicle delays, fuel consumption, and 
maintenance costs. Ultimately, the goal is to improve road safety 
and efficiency, contributing to a more reliable transportation 
network in India. 
 
1.1  Traditional Road Assessment Limitations 

 

Traditional road roughness assessment methods in India face 
significant challenges that limit their effectiveness and 
scalability. One of the primary concerns is the high cost and 
equipment requirements of techniques like profilometers, 
roughometers and laser-based systems. These methods, while 
precise, are expensive to deploy on a large scale, particularly in 
remote or rural areas where financial and logistical constraints 
are more prominent 
(Chenglong Liu , Difei Wu, Yishun Li , Yuchuan Du 2021). 
Furthermore, these methods are time-consuming and labour-
intensive, as they often rely on manual inspections or specialized 
vehicles, which slows down the process of identifying and 
rectifying road issues. 
 
Another limitation is that traditional methods are typically 
focused on major highways and roads, leaving many secondary 
and rural roads unmonitored. This lack of coverage poses safety 
risks, as road deterioration in these areas may go unnoticed for 
long periods. Additionally, manual inspections are prone to 
human error and subjectivity, leading to inconsistencies in data 
collection. Even mechanical or laser-based methods can yield 
variable results due to differences in calibration, equipment 
condition, or operator technique . 
 
The inaccessibility of remote, hilly, or conflict-prone regions 
presents another challenge, as traditional methods struggle to 
reach these areas. Furthermore, many of these techniques require 
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road closures or traffic diversions during measurements, which 
disrupts traffic flow and inconveniences road users. 
Environmental factors like rain, snow, or fog can also impact the 
accuracy of measurements, further complicating the process. 
 
Lastly, traditional methods often produce data that is difficult to 
integrate with modern digital systems for road management and 
predictive maintenance. This makes it harder to develop real-
time, data-driven strategies for road upkeep, leaving much room 
for improvement in how road conditions are monitored and 
maintained. 
 
1.2  The Advent of Mobile Sensing 
 
Recent advancements in mobile technology present a promising 
solution to address the challenges associated with traditional road 
roughness measurement. Smartphones, which are now 
ubiquitous, come equipped with various sensors such as 
accelerometers and GNSS that can capture essential data for 
evaluating road conditions. By utilizing these sensors, it becomes 
possible to develop a scalable and cost-effective method for 
assessing road quality. 
By harnessing smartphone sensors (e.g., accelerometers and 
GPS), this paper offers a cost-effective, scalable, and efficient 
alternative to traditional methods of measuring road roughness. 
With data collected from widely available devices, the proposed 
model can cover vast areas at lower costs, provide frequent 
updates, and be implemented even in remote regions. 
Additionally, the matrix system designed within the project can 
facilitate real-time data analysis and support more effective road 
maintenance planning, ultimately enhancing road safety and 
transportation across India.. 
 

2. Research Objectives 
 
This paper which focuses on measuring road roughness and 
creating a matrix system for analysis, can greatly improve road 
transportation in India by identifying and addressing hazardous 
road conditions. By pinpointing areas with significant roughness, 
the model can help prioritize road repairs, enhancing overall road 
safety and reducing the risk of accidents caused by poor road 
surfaces. Additionally, this system can assist in planning 
preventive maintenance, leading to more efficient road 
management and safer driving experiences for millions of road 
users across the country. 
 
This study aims to investigate the feasibility of using mobile 
phone sensors to estimate road roughness. By analysing 
accelerometer and GNSS data collected during vehicular 
movement, the paper aims to develop a robust algorithm for 
quantifying road irregularities. The research will contribute to the 
development of a comprehensive framework for road 
assessment, facilitating data-driven decisions for infrastructure 
improvement and enhanced road safety. The objectives of this 
paper are: 

1. Exploring the correlation between accelerometer 
observations and road roughness. 

2. Developing algorithms to extract relevant features 
from sensor data. 

3. Creating a road roughness index based on extracted 
features. 

 
By addressing these objectives, this research seeks to contribute 
to the advancement of road infrastructure assessment and 
ultimately contribute to improving road safety in India. 
 

3. Literature Review 

Research on road surface roughness measurement has evolved 
with the integration of affordable technologies like smartphones 
and GPS systems. Zang et al. (2018) introduced a method using 
GPS and accelerometer sensors on bicycle-mounted smartphones 
to assess road roughness. Their approach, which calculates the 
International Roughness Index (IRI) and detects road features 
like potholes, showed a high correlation with professional 
instruments, making it a viable option for crowdsourcing road 
data in non-motorable areas. 
 
Bidgoli et al. (2019) expanded on this by developing a cost-
effective system for motorable roads. Using an extra wheel with 
accelerometers and GPS, their system accurately calculated the 
IRI, achieving an 87% coefficient of determination with low error 
margins. This further demonstrates the feasibility of using simple 
sensors for large-scale road monitoring. Rao et al. (2023) took a 
safety-focused approach, evaluating road conditions through a 
multi-criteria technique and Artificial Neural Networks (ANN). 
They highlighted how poor road conditions impact safety and 
suggested mitigation strategies, emphasizing the need for 
comprehensive studies on road infrastructure. 
 
Additionally, Kumar et al. (2018) evaluated the structural 
integrity of low-volume roads using non-destructive techniques. 
Their study compared the Light Weight Deflectometer (LWD) 
and Benkelman Beam Deflectometer (BBD), revealing useful 
insights into road overlay thickness and its variations, which 
inform future pavement management practices. Together, these 
studies provide insights into low-cost, scalable methods for road 
roughness assessment, offering significant potential for 
improving road safety and infrastructure management. 
 

4. Methodology 
 

The smartphone equipped with GNSS, and inertial sensors is 
installed a bicycle. A fundamental aspect of the experiment was 
the smartphone's installation position. It was recognized that 
mounting the device on different parts of the bicycle would lead 
to variations in acceleration data. To capture consistent road 
roughness measurements, the was securely mounted on the top 
tube of the bicycle’s main frame. This location was chosen to 
minimize instability-related errors, ensuring the phone remained 
steady during rides, which in turn enhanced the reliability of the 
recorded data. 
 
The decision to utilize a bicycle as the vehicle for this experiment 
was intentional. Bicycles, with their rigid structure, are highly 
sensitive to road irregularities, making them ideal for capturing 
detailed road surface data. To further mitigate interference from 
suspension systems—which could dampen vibrations from 
uneven surfaces—the bicycle employed in this study was 
specifically designed without suspension. This design allowed 
the mounted sensors to directly record the impact of road 
conditions on the bicycle's movement. 
 
Prior to data collection, the smartphone’s sensors were calibrated 
to align the z-axis of the accelerometer with the direction of 
gravitational acceleration. This calibration was crucial for 
ensuring vertical measurements accurately reflected the true 
vertical displacements experienced during the ride. Additionally, 
the cyclist maintained a stable speed to reduce variations in data 
caused by changes in velocity or instability, thereby enhancing 
the overall accuracy of the measurements. 
 
The experiment operated under several assumptions regarding 
road conditions and data capture methods. One key assumption 
was that roads were relatively flat. For roads with sufficiently 
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large slopes, a correction needs to be applied. Consequently, 
vertical acceleration was selected as the primary metric for 
analysing road roughness, allowing the model to account for road 
gradients. Moreover, the experiment assumed relatively straight-
line motion to simplify velocity calculations, approximating 
velocity as equal to speed for streamlined data analysis. 
 

 
Figure 1 : Setup of the smartphone on crossbar of the bicycle. 

 
The choice to mount the smartphone on the top tube, rather than 
on the handlebars, was another significant consideration. 
Handlebar-mounted sensors are prone to noise from the frequent 
movements and turns during cycling, potentially introducing 
errors into the data. By selecting a more stable mounting point on 
the bicycle frame, the experiment aimed to minimize such 
disturbances, ensuring more accurate and consistent data 
collection. 
 
Given the extensive dataset available for analysis, the study 
focused on evaluating 3-meter sections of roads rather than 
assessing entire road lengths. This targeted approach facilitated a 
detailed examination of specific road conditions, such as potholes 
and irregularities. Analysing smaller segments allowed for a 
more precise identification and characterization of localized 
issues, leading to improved assessments of road surface 
roughness and better insights into maintenance needs. 
 
This paper leveraged the unique sensitivity of bicycles to road 
irregularities, combined with careful sensor placement and 
calibration, to capture precise data on road roughness. The results 
are intended to inform more effective road maintenance 
strategies, ultimately contributing to improved ride quality and 
road safety. This paper addresses existing research gaps by 
proposing a method for measuring road surface roughness in 
bicycle and pedestrian lanes using GNSS and accelerometer 
sensors on bicycle-mounted smartphones, with a focus on IRI. 
We analyse the computing model of road surface roughness, 
deriving IRI model parameters from smartphone sensors, and 
introduce an algorithm to identify potholes and humps. 
To validate IRI's efficacy as a true measure of road roughness, 
we conduct statistical analyses, including Quantile-Quantile (Q-
Q) plots and the Kolmogorov-Smirnov (KS) test, to assess sensor 
data reliability. Inertial sensors (accelerometers) record vertical 
accelerations due to road irregularities, while GNSS provides 
precise geolocation data. The integration of these datasets 
enables comprehensive road condition analysis. The statistical 
analysis examines data distribution using Q-Q plots and the KS 
test to compare empirical sensor data against theoretical 
distributions, further validating measurement consistency. 
 

4.1 International Roughness Index 
 

Road surface roughness is a complex characteristic without a 
universal definition, typically assessed through three stages: data 
collection, preparation, and quantitative analysis. This study 
employs the International Roughness Index (IRI) (Smith, K. and 
Ram, P 2016, Sayers, M.W. 1995) as the primary metric for 
quantifying road surface unevenness. 
The IRI is a standardized measure derived from longitudinal road 
profile measurements, quantifying the impact of pavement 
irregularities on vehicle suspension. Calculated using a quarter-
car vehicle mathematical model (Smith, K. and Ram, P 2016), 
IRI represents a cumulative response expressed in slope units. 
While generally computed per wheel path, it can also yield a 
Mean Roughness Index (MRI) when data from both wheel paths 
are available. Compared to other pavement performance 
indicators like the Pavement Condition Index (PCI) (St. Maryam 
H, Bulgis and Rustam Madami 2023), IRI exhibits lower 
stochasticity and subjectivity, though variability can arise from 
differences in test vehicle runs and discrepancies between wheel 
path readings (Piryonesi, S. M. (2019),  Piryonesi, S. Madeh; El-
Diraby, Tamer E. (2020-09-11). Since its introduction in the mid-
1980s, IRI has become the global standard for road evaluation, 
mandated for reporting to the United States Federal Highway 
Administration and defined by ASTM International standards 
(e.g., ASTM E1926, ASTM E1364). Additionally, IRI plays a 
critical role in new pavement assessments and contractual 
agreements based on smoothness. 
 
4.1.1 Measurement model: For example, for a vehicle 

driving on a road like that shown in the figure 
below, 𝑡𝑡𝑖𝑖 (𝑖𝑖∈[1,n]) is the sampling time, and hi is the 
longitudinal offset of the road surface at 𝑡𝑡𝑖𝑖. Through 
calculation, the vertical displacement ( ) of each 
sampling interval can be obtained: 

 
                                                               (1) 

 
Figure 2: Example of a road longitudinal profile. 

 
According to the IRI definition (Sayers, M.W. 1995), the index 
can be computed by accumulating the total vertical displacement 
across all sampling intervals, then dividing this sum by the total 
travel distance S. 
 

           IRI =          (2) 

 
 
Using the IRI  on a road with a slope can be challenging but not 
impossible. The IRI is designed to measure the smoothness of a 
road surface and is typically computed using vertical height 
variations of the road. On the other hand, we presume that the 
road is relatively flat. When dealing with sloped roads, the main 
issue is that the vertical height measurements might be influenced 
by the road's incline, which could lead to inaccurate assessments 
of roughness. 
 
Therefore, when computing IRS, we must know the total travel 
distance and the vertical displacement value of each sampling 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-G-2025-839-2025 | © Author(s) 2025. CC BY 4.0 License.

 
841



time. Travel distance can be computed via the GPS location. 
However, vertical displacement is not a value that can be 
obtained directly and can be derived from the output of the 
accelerometer sensors.  is vertical acceleration. It is the 
second derivative of .  is the vertical displacement. 
Therefore 
 

                                        (3) 

 
Given the inaccuracy of the data, smaller time intervals are used 
to minimize the amplification of errors. 
 

IRI =            (4) 

 
Vertical Acceleration calculation : In order to address the 
problem of sloped roads, vertical acceleration can be used to 
compute road roughness instead of directly using the height 
difference. The process involves the following steps: 
 

• Reference Vector: The first data point in the 
acceleration data is used as the reference vector, 
assumed to be (0, 0, g), where  g represents the 
acceleration due to gravity (approximately 9.8 m/s²), 
and the device is considered to be at rest and oriented 
horizontally. 

 
• Scalar Projection: For each data point, vertical 

acceleration is derived by projecting the acceleration 
vector onto the reference vector. This is achieved by 
calculating the dot product between the current 
acceleration vector and the reference vector, and then 
normalizing this value by dividing it by the magnitude 
of the reference vector. 

 
This approach allows for an accurate measurement of vertical 
acceleration that is less influenced by the road's slope. 
 
4.1.2    Vertical Acceleration calculation: To determine vertical 
acceleration, we establish an initial reference point. Assuming the 
device is stationary and horizontally oriented at the data's 
beginning, a reference vector of (0, 0, g) is defined, where g is 
the acceleration due to gravity. For each subsequent data point, 
vertical acceleration is calculated by projecting the acceleration 
vector onto the reference vector. This involves computing the dot 
product of the current acceleration vector and the reference 
vector, followed by dividing the result by the magnitude of the 
reference vector. As the smartphone's installation and orientation 
on the bicycle are unknown and variable, vertical acceleration 
may appear in any dimension of the tri-axial accelerometer data. 
Therefore, the z-axis acceleration cannot be directly taken as 
vertical acceleration, requiring a method to derive it from tri-axial 
values 
 
In the acquisition process, we set a requirement in advance: when 
the bicycle rider started the recording, the bicycle had to be in the 
normal riding posture, and kept stationary for more than 5 s. As 
the smartphone, which is mounted on the bicycle, is stationary, 
the only force it receives is the gravitational one, and the direction 
is vertical and downward, with a value of 1 g. Therefore, 
 

                            (5) 
 
where , , and  are the average acceleration values of 
the x, y, and z axes in these 5 s, obtained from the accelerometer 
sensor on the smartphone .Deriving the vertical acceleration (

 ) from any tri-axial acceleration output  
can be considered as projecting the vector  onto the reference 
vector , measured at the beginning of the 
acquisition process. In other words,  is the scalar projection of 
vector .       

(6) 
 
 
4.1.3       Calculating the travel distance: There are two methods 
for calculating travel distance (S). The first method uses GNSS 
to obtain the longitude and latitude coordinates of each sampling 
point. The travel distance is then computed by summing the 
distances between each pair of adjacent points. The distance 
between two sampling points can be approximated using the 
Haversine formula [E Maria et al 2020], which is specifically 
designed for this purpose. 
 

  (7) 

 
where 𝜑𝜑1 and 𝜆𝜆1 are the latitude and longitude of point 
1, 𝜑𝜑2 and 𝜆𝜆2 are the latitude and longitude of point 2, and R is 
the Earth’s radius (mean radius = 6371 km). 
Alternatively, the travel distance can be computed using the 
travel speed measured at each sampling point. Specifically, 
 

                                                                      (8) 

 
While inertial sensors theoretically offer the capability to 
calculate distance by integrating speed measurements, practical 
limitations arise when using a simple setup like a phone mounted 
on a bicycle handlebar. The inherent susceptibility of inertial 
sensors to noise, drift, and vibrations induced by the dynamic 
cycling environment can significantly compromise the accuracy 
of integrated distance calculations (Kok, Manon & Hol, Jeroen & 
Schön, Thomas 2017). Additionally, challenges in maintaining 
precise sensor calibration and accounting for complex motion 
patterns during cycling further hinder the reliability of this 
approach. In contrast, GNSS-based location data offers a more 
direct and robust method for determining distance travelled . By 
providing precise geographic coordinates, GNSS can accurately 
calculate distance based on changes in position, mitigating the 
impact of sensor errors and effectively handling the complexities 
of cycling routes. Consequently, relying on GNSS location data 
is generally preferred for distance estimation in road roughness 
assessment. 
 
Smartphone GNSS typically provide location accuracy within 10 
meters, while instantaneous speed accuracy ranges from 0.1 to 
0.2 m/s according to manufacturers (Jeonghyeon Yun , 
Cheolsoon Lim and Byungwoon Park 2022). However, due to the 
inherent challenges of maintaining a perfectly straight path while 
cycling, using instantaneous speed to calculate total travel 
distance is impractical. To address this, data segmentation is 
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employed. Assuming an average speed covers 10 meters in 
approximately 3 seconds, both accelerometer and location data 
are divided into 3-second segments to calculate IRI for each 10-
meter patch. Accordingly we have segmented both the location 
and inertial data. 
 
 

5. Results and discussion 
 
IRI can be used as a measure of road quality and it varies 
significantly over short distances due to localized road 
irregularities. Therefore as mentioned in 4.1.3 the data was 
segmented into 10-m patches, and an IRI value was computed for 
each patch of both rough and smooth roads. The resulting graphs 
from this analysis are presented below, demonstrating the 
variations in IRI values across different road conditions. 
 

 
(a) 

 
(b) 

 
Figure 3 : The IRI obtained for the smooth (a) and rough (b) 

roads as shown in the graphs above. 
 
The plots demonstrate that the smooth road exhibits minimal 
deviation in IRI values over time, stabilizing after an initial 
period. In contrast, the IRI for the rough road continues to 
fluctuate significantly as potholes and other surface irregularities 
are encountered. This consistent variation highlights the impact 
of road anomalies on IRI measurements for rough surfaces. 
 

 

(a) 

 
(b) 

Figure 4 : Road anomalies such as potholes (a) and (b) 
 
Up to this point, an established index (IRI) has been utilized to 
quantify road roughness. To further validate the accuracy of this 
measure, the focus will now shift to applying statistical models 
to the collected data. It is important to note that all analyses were 
conducted on the same set of roads, ensuring consistency in the 
evaluation process. 
 
5.1   Distribution Analysis 
 
Following are the plots for acceleration in tri-axial directions for 
a rough road and a smooth road- 

 
(a) 

 

                                                  (b) 
Figure 5 : Acceleration plot for smooth (a) and rough road 
(b)(The horizontal axis shows the number of data points 

captured). 
 
As seen in Figure 5, the acceleration varies significantly on rough 
roads, whereas the disturbance on smooth roads is comparatively 
insignificant. Total acceleration was calculated using all three 
accelerations measured in the inertial data, followed by plotting 
a distribution curve to analyse the data's nature. It helps to 
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understand the distribution of acceleration on a smooth road. 
Essentially, we aim to establish a reference point using the  
smooth road which will be used to compare and analyse 
comparatively rough road conditions. 
The data obtained from the smooth road was initially analysed, 
resulting in a histogram that displayed the data distribution as 
shown below: 
 

 
                                                                                           (m/s2) 

Figure 6: Histogram and KDE of the resultant acceleration of 
smooth road data. 

 
Based on the graph we proposed a Hypothesis: The dataset for a 
smooth road follows the normal distribution closely and deviates 
as the road gets more and more rough. This indicates that while 
traveling on a smooth road, the collected data closely adheres to 
a normal distribution pattern. This hypothesis suggests that the 
acceleration data collected from a smooth road will exhibit a 
pattern that closely resembles a normal distribution. A normal 
distribution is characterized by a bell-shaped curve, where the 
majority of data points cluster around the mean (average) value, 
with fewer data points occurring at the extremes. 
The assumption is that as the road surface becomes rougher, the 
acceleration data will increasingly deviate from this normal 
distribution pattern. This deviation might manifest in various 
ways, such as: 

• Increased spread: The data points become more 
dispersed, leading to a wider distribution. 

• Skewness: The distribution becomes asymmetrical, 
with a longer tail on one side. 

• Kurtosis: The distribution's peak becomes more 
pronounced or flatter than a normal distribution. 

By comparing the distribution of acceleration data from different 
road conditions to the normal distribution, researchers can assess 
the degree of roughness of the road surface. 
Essentially, the hypothesis posits that the normal distribution 
serves as a benchmark for smooth road conditions, and deviations 
from this benchmark can be used to quantify road roughness. 
Based on the analysis of inertial data captured from smooth 
roads, particularly focusing on resultant acceleration, we 
observed that the data closely follows a normal distribution. 
Using this distribution as a reference point, further analysis of 
rougher road conditions reveals significant deviations from the 
normal curve. As road roughness increases, the distribution of 
vertical acceleration becomes more skewed, indicating higher 
variability and irregularities in the data. This variation suggests 
that rougher roads introduce greater inconsistencies in the inertial 
measurements, and tools designed to identify the underlying 
distribution can effectively quantify the extent of deviation. Such 
insights are crucial for assessing road quality and improving the 
accuracy of roughness metrics like the International Roughness 
Index (IRI). 
 

In order to  assess the distribution of the datasets and create a 
comparison matrix, we will utilize tools such as the Q-Q Plot and 
the Kolmogorov-Smirnov (KS) ,  (Clay Ford 2015, Vance W. 
Berger, YanYan Zhou 2014) test. These tools will allow us to 
define the primary distribution patterns of the data and evaluate 
how closely they align with the reference distribution, helping us 
quantify any deviations across different road conditions. 
 
5.2  Q-Q plot Evaluation 
 
In a Q-Q plot, the straight line represents the points where the 
quantiles of the sample data match perfectly with the quantiles of 
the theoretical distribution (in this case, a normal distribution). 
This line is often referred to as the 45-degree reference line. If 
the data points closely follow this line, it indicates that the data 
adheres to the theoretical distribution. 
 
A Q-Q (Quantile-Quantile) plot is a graphical tool used to 
compare the distribution of a dataset to a theoretical distribution. 
It plots the quantiles of the sample data against the quantiles of 
the chosen theoretical distribution, which is usually the normal 
distribution. If the data closely follows the theoretical 
distribution, the points in the Q-Q plot will fall along the 45-
degree reference line. 
 
We use the Q-Q plot in this analysis to assess whether the 
acceleration data from various road surfaces fits a normal 
distribution. By visually comparing the actual data to the 
theoretical normal distribution, we can determine how well the 
data aligns with expected patterns for smooth roads and identify 
deviations in rougher road conditions. The Q-Q plot is 
particularly useful in identifying deviations such as skewness, 
kurtosis, or outliers, which are indicative of road roughness and 
irregularities. 
 
The Q-Q plot compares theoretical quantiles (X-axis) with the 
sample quantiles from the acceleration data (Y-axis). A reference 
line at a 45-degree angle is drawn to represent the perfect fit. For 
each road type, a separate Q-Q plot is generated, allowing for a 
visual comparison between the empirical data and the theoretical 
normal distribution.  
 
Z-Score Approach : To standardize the data, we use Z-scores, 
calculated by the formula: Z = 𝑥𝑥− 𝜇𝜇

𝜎𝜎
, where x is the data point, µ 

is the mean of the dataset and σ is the standard deviation. A Z-
score of 0 indicates the data point is at the mean, while Z-scores 
greater than 2 or less than -2 suggest that the data point is more 
than two standard deviations from the mean, potentially 
identifying it as an outlier. For smooth roads, the data points 
aligned well with the 45-degree line, indicating that the 
acceleration data follows a normal distribution. This suggests 
consistent vehicle dynamics, with deviations from the mean 
typically falling within one or two standard deviations, as 
expected under normal conditions. In contrast, the data from 
rougher roads deviated significantly from the 45-degree line, 
particularly in the tails of the distribution. This implies heavier 
tails, where extreme values (both high and low accelerations) 
occur more frequently than expected under a normal distribution. 
This deviation suggests that rough road surfaces lead to more 
unpredictable vehicle dynamics, indicative of non-normality. For 
a clearer understanding, please refer to Figure 6 and 7. 
 
Based on these Q-Q plots, we will apply the Kolmogorov-
Smirnov (KS) test to further assess how well the acceleration data 
from different road types conforms to the normal distribution. 
The KS test will quantify the degree of deviation between the 
empirical and theoretical distributions. 
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5.3  KS-Test 
 
The Kolmogorov-Smirnov (KS) test was used to statistically 
evaluate whether the vertical acceleration data collected from 
different road surfaces follows a hypothesized normal 
distribution. After constructing Q-Q plots, which visually assess 
the alignment between the empirical data and the theoretical 
distribution, the KS test offers a quantitative method to confirm 
or challenge these visual assessments. 
 
The KS test measures the maximum distance between the 
empirical distribution function (EDF) of the sample data and the 
cumulative distribution function (CDF) of the theoretical 
distribution (in this case, the normal distribution). It helps to 
determine whether the sample data fits the specified distribution. 
 
The KS test involves two key variables: 
- KS Statistic: This quantifies the maximum difference between 
the empirical and theoretical distributions. A smaller KS statistic 
indicates that the empirical data closely follows the theoretical 
distribution, while a larger value suggests significant deviations. 
- P-value: The p-value measures the statistical significance of the 
observed difference. It represents the probability of observing a 
KS statistic as extreme as the one calculated, under the null 
hypothesis that the data follows the assumed distribution. A p-
value greater than a conventional threshold (usually 0.05) 
suggests that we fail to reject the null hypothesis, indicating that 
the data may indeed follow the hypothesized distribution. 
 
Hypothesis for Road Surface Roughness : The proposed 
hypothesis states that the acceleration data from smooth roads 
closely follows a normal distribution, while the data for rougher 
roads shows increasing deviation from this distribution. To 
manage the large dataset, the road was segmented into 3-meter 
sections, allowing for localized analysis of road conditions. In the 
context of the KS test: 
- A p-value > 0.05 indicates that the dataset for that 3-meter 
segment adheres to the normal distribution, supporting the 
hypothesis that smooth roads follow a normal pattern. 
- A p-value<0.05 suggests that the data significantly deviates 
from normality, likely due to increased road roughness for that 
segment. 
 
Integration of the KS Test with Q-Q Plots: While Q-Q plots 
provide a visual way to assess how well the vertical acceleration 
data aligns with a normal distribution, they do not give a 
definitive statistical conclusion. The KS test adds rigor by 
quantifying the deviation from normality and providing a p-value 
to statistically verify or refute the observations from the Q-Q 
plots. 
 
This combined approach of visual and statistical analysis is 
particularly valuable for road roughness assessment. Smooth 
road data generally aligns closely with the 45-degree line in the 
Q-Q plots and returns a high p-value in the KS test, confirming a 
normal distribution. In contrast, rough road data exhibits greater 
deviations in the Q-Q plot and returns a lower p-value, indicating 
that the roughness introduces more extreme values and 
irregularities, leading to non-normality. 
 
By applying the KS test alongside Q-Q plots, we gain a robust 
analytical framework that quantifies how different road 
surfaces—smooth versus rough—affect the distribution of 
acceleration data. This statistical validation enhances the 
accuracy of road surface roughness assessments, offering clearer 
insights into road quality and the effectiveness of metrics like the 

International Roughness Index (IRI).Following were the plots  
obtained for different patches of a smooth road. The vertical axis 
represents the z-score. 
 

 
Figure 7: Q-Q Plots for different segments of the smooth road. A 
p value > 0.05 shows that the hypothesis is true and p value < 
0.05 shows that the hypothesis is false for a particular road 
segment. As seen in the figure 4 , a significant number of patches 
on the smooth road were found to support the hypothesis. 
However, it is noteworthy that for two patches containing a 
bump, the resulting plots deviated substantially from the 
expected pattern, indicating a different behaviour in the data for 
these sections. 
 

 
Figure 8 : Patches on the smooth road that contained a bump. here 
in figure 4, the data clearly deviates from a normal distribution, 
and the p-values are significantly low. For the rough road, the 
results obtained were opposite. Most of the patches deviated from 
the normal distribution and p values > 0.05 were rarely found. 
For speed breakers, the p values of the segments having them 
were extremely low (in the order of 10^(−132)) as compared to 
their neighbouring patches. 

 .  
Figure 9 : Q-Q Plot for s segment of the rough road 
 
 

6. Conclusions and future work 
 

The analysis undertaken in this study focused on evaluating the 
International Roughness Index (IRI) for various road segments, 
utilizing statistical models to assess the eligibility of each road 
type based on its condition. Initially, the IRI was computed for a 
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smooth road, which served as a reference point for the subsequent 
analysis of rougher road segments. The statistical evaluation 
began with the identification of the type of distribution for the 
smooth road data, revealing that it closely approximated a normal 
distribution. This was further validated through the creation of Q-
Q plots, which illustrated minimal deviations from the expected 
line, indicating a high degree of conformity to normality. 
 
The subsequent application of the Kolmogorov-Smirnov (KS) 
test provided a rigorous statistical framework to compare the 
empirical distribution of the acceleration data with the theoretical 
normal distribution. The results highlighted that the segments of 
road exhibiting significant deviations in IRI were indeed 
supported by the interpretations drawn from both the Q-Q plots 
and the KS test. In contrast, the smooth road's IRI plot remained 
undisturbed, reinforcing the idea that under optimal conditions, 
vehicle dynamics are predictable and stable. 
 
Crucially, the hypothesis that the dataset from smooth roads 
follows a normal distribution and that deviations would occur as 
road roughness increases was substantiated by the statistical 
findings. The p-value derived from the KS test was greater than 
0.05, leading to the conclusion that there was insufficient 
evidence to reject the null hypothesis for the smooth road 
segment. This supports the assertion that the acceleration data 
from smooth roads can indeed be modelled using a normal 
distribution. Conversely, the rougher road segments displayed 
marked deviations, indicating that their IRI values and associated 
acceleration data diverged significantly from normality. 
 
In conclusion, this analysis introduces a new metric, the p-value, 
which highlights the distributional characteristics of the 
accelerometer data obtained from various road surfaces. Across 
all road types analysed, the accelerometer readings consistently 
showed that when encountering rough patches—marked by 
spikes in the data—the corresponding segments deviated 
significantly from a normal distribution. These deviations were 
visually evident in the Q-Q plots, which exhibited patterns 
similar to those presented earlier in the study. Additionally, the 
results demonstrated that as the length of the road segments 
analysed decreased, the p-values tended to increase, indicating a 
closer fit to the normal distribution for smaller patches. This 
suggests that the roughness of a road can be better captured and 
quantified over shorter segments, providing deeper insights into 
the localized variations in road quality. The future work will 
focus on quantification of road roughness and localization of the 
potholes on the road. 
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