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ABSTRACT 

Urban areas are highly vulnerable to floods due to impermeable surfaces, inadequate drainage, and high population density, which 

intensify flood impacts. Accurate flood maps are crucial for stakeholders in disaster mitigation. In this regard, Earth observation data 

from active sensors like Synthetic Aperture Radar (SAR) have made significant contributions to flood delineation due to their  ability 

to acquire data both day and night and penetrate cloud cover. However, flood mapping using only SAR backscatter in urban 

environments is challenging due to radar ambiguity introduced by the double bounce effect, commonly observed in inundated urban 

areas. Inundated regions typically appear as areas of low backscatter in SAR images, whereas flooded urban areas show a significant 

increase in backscatter due to the double bounce effect. This problem of under-detection caused by double bounce can be addressed 

by incorporating interferometric coherence (InSAR) as an additional input. Urban areas generally have high coherence, but it decreases 

in flooded areas. This decrease in coherence can be utilized to distinguish flooded urban areas. We present an unsupervised framework 

based on a Gaussian Mixture Model (GMM) that integrates intensity and coherence from Sentinel-1 SAR data to map the 2023 Greece 

floods. Upon validation against high-resolution optical imagery, our framework demonstrates that coherence significantly enhances 

urban flood mapping. 

1. INTRODUCTION

Urban flooding is a growing concern worldwide, causing 

extensive damage to infrastructure, disrupting transportation 

networks, contaminating water sources, and affecting essential 

services in cities (Agonafir et al., 2023). This damage can be 

partially mitigated by implementing effective flood management 

strategies. Accurate and reliable flood extent maps are essential 

for these tasks, aiding evacuation planning and disaster response 

(Mishra et al., 2024). Earth observation data, such as optical and 

radar imagery, has been widely used for flood mapping (Shastry 

et al., 2023). In particular, Synthetic Aperture Radar (SAR) has 

proven to be an invaluable tool for flood monitoring due to its 

cloud-penetrating capabilities and ability to operate day and 

night, allowing for timely and accurate assessments of flood 

extents (Jiang et al., 2021). With the advancement of SAR 

sensors and the launch of missions offering enhanced spatial and 

temporal resolution, numerous flood mapping techniques have 

been developed.  

Most of these techniques identify flooded areas by detecting 

regions of low backscatter, as water surfaces act as specular 

reflectors, deflecting the majority of radar waves away from the 

sensor and thereby appearing as areas of reduced backscatter in 

SAR image (Bhatt et al., 2020). Techniques such as histogram 

thresholding, clustering, and Active Contour Models (ACM) use 

this principle to detect floods using single SAR imagery 

(Soudagar et al., 2024). Another approach to quantify flood 

extent involves change detection, which relies on the premise that 

floods induce measurable changes on land surface. Change 

detection requires a flooded SAR image and a non-flood 

reference SAR image to highlight the change in pixel values 

caused by flood (Clement et al., 2018). This approach is useful in 

reducing overestimation of flood extent by effectively excluding 

permanent water bodies and water-like surfaces such as tarmac 

and shadows (Ta et al., 2024).The techniques which rely solely 

on SAR intensity underperform in urban environments as the 

radar signatures of inundated areas are ambiguous (Pulvirenti et 

al., 2017). In addition to specular reflections, inundated urban 

areas exhibit a double bounce effect, where incident radar waves 

reflect off the water surface, then towards vertical walls of 

buildings, and subsequently return as a strong backscatter signal 

to the sensor (Mason et al., 2010). This causes inundated urban 

areas to appear as regions of increased backscatter, leading to the 

underestimation of flood extents. The increase in backscatter 

values relative to non-flooded conditions can be used to detect 

the double bounce effect, but this detection is influenced by the 

orientation of buildings relative to the satellite's flight path 

(Delgado Blasco et al., 2020). Multiple reflections from nearby 

structures and strong scattering from metal surfaces produce 

similar backscatter enhancements that further complicate the 

detection. 

Aforementioned shortcomings of intensity data to detect urban 

floods could be mitigated by integrating interferometric synthetic 

aperture radar (InSAR) coherence with intensity data. InSAR 

coherence provides the measure of correlation between two 

Single Look Complex (SLC) images taken from the same orbit at 

different times but with identical acquisition geometry (Thakur 

et al., 2025). Urban areas are stable targets and exhibit high 

coherence, but coherence reduces drastically when changes 

occur, such as those introduced by floods (Pierdicca et al., 2018). 

This relative reduction in coherence along with increase in 

backscatter can be effectively used to map urban floods. 

Reduction in coherence can be calculated through thresholding 

of coherence difference image. This reduction in coherence is 

complimented with double bounce extraction to detect urban 

floods (Ohki et al., 2019). Various studies have attempted to fuse 

SAR intensity and coherence using region growing algorithm 

(Pelich et al., 2022), Bayesian networks (Li et al., 2019), and 

machine learning models (Baghermanesh et al., 2022), though 

majority of these methods are supervised. VV polarization is 

found to perform better than VH polarization in detecting urban 

floods through index based approaches (Zhang et al., 2021). 

This study attempts to develop an unsupervised urban flood 

mapping frame work by using Sentinel-1 SAR data in a Gaussian 
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mixture model (GMM). The framework was used to map the 

devastating urban floods in Larissa, Greece, during September 

2023. Several studies have mapped the  Greece floods of 2023 

using SAR data (Theocharidis et al., 2023; Kalafatis et al., 2024; 

Tupas et al., 2024); however, most have focused solely on 

intensity-based approaches, overlooking urban flooding. Our 

study addresses this gap by utilizing coherence and intensity 

information from Sentinel-1 SAR data to map inundated urban 

areas. This comprehensive approach provides accurate flood 

maps, particularly in urban environments where conventional 

intensity-based methods struggle. 

 

2. MATERIALS AND METHODS 

2.1 Study Area 

In the present study, we selected the September 2023 flood event 

that occurred in central Greece, triggered by Storm Daniel. The 

storm brought intense rainfall after weeks of drought, wildfires, 

and extreme heat in the region. Certain cities received up to 500 

mm of rainfall in a single day, surpassing all previous 

observational records. This event is considered the most severe 

rainfall in Greece’s recorded history and the deadliest weather-

related incident of 2023, resulting in the loss of at least 17 lives. 

The extreme precipitation caused rivers to overflow, inundating 

low-lying areas in Central Greece. The study area is Larissa, one 

of the largest cities in Central Greece, which experienced severe 

inundation during this flood event (Figure 1 (a)). 

 

 
 

Figure 1. Study area map showing the flood effected areas of 

Larissa. a) Location of study area. b)10m Land Use/Land Cover 

(LULC) data of study area. c)Pre-flood SAR intensity image of 

Larissa acquired on 31/08/2023. d) During flood SAR intensity 

image of Larissa acquired on 12/09/2023. 

 

2.2 Dataset 

Sentinel-1 Level 1 SAR data is provided free of charge by the 

European Space Agency (ESA) through the Copernicus Open 

Access Hub (https://scihub.copernicus.eu/) and is available in 

two product formats: Ground Range Detected (GRD) and Single 

Look Complex (SLC). The GRD product contains only 

backscatter information, while the SLC product retains both 

backscatter and phase information (Soudagar et al., 2025). 

Sentinel-1 products (SLC and GRD) acquired on August 19, 

2023, and August 31, 2023, were used as pre-flood images, while 

the image acquired on September 12, 2023, was used as the 

during-flood image. Only VV polarization images were used in 

this study, as they provide better contrast between flooded and 

non-flooded areas, particularly in open water regions (Twele et 

al., 2016). Additionally, VV polarization results in a notable 

increase in backscatter values compared to VH polarization, 

particularly due to double-bounce scattering observed in 

inundated urban areas (Zhang et al., 2021). Land Use/Land Cover 

(LULC) (https://livingatlas.arcgis.com/) data extracted from 

Sentinel-2 data is used to extract built up area (Figure 1 (b)). 

 

Table 1. Specifications of data used. 
 

Data Acquisition 

date 

Pass 

Direction 

Bands 

Used 

Sentinel-1 

(SLC) 

19/08/2023 Ascending VV 

Sentinel-1 (SLC 

& GRD) 

31/08/2023 Ascending VV 

Sentinel-1 (SLC 

& GRD) 

12/09/2023 Ascending VV 

PlanetScope 

Optical data 

12/09/2023 -- Red, Green, 

Blue 

and NIR 

 

The final flood extents were validated against flood reference 

layer derived from cloud free PlanetScope optical data 

(https://www.planet.com/) acquired on 12 September 2023. The 

details of the dataset used are provided in Table 1. The SAR 

image acquired before and during flood are shown in Figure 1 (c) 

& 1 (d) respectively. 

 

2.3 Methodology 

The overview of methodology used in this work is shown in 

Figure 2. The work flow can be divided into three sections such 

as pre-processing of SAR images, application of GMM for 

segmenting intensity and coherence data and fusion of intensity 

and coherence data through logical operations to generate urban 

flood map. 

The pre-processing steps applied on Sentinel-1 ground range 

detected (GRD) product to generate intensity images (31/08/2023 

& 12/09/2023) include application of orbit file, thermal noise 

removal, calibration, speckle filtering, terrain correction and 

linear to decibel scale conversion.  

To generate the coherence maps from SLC products the 

following pre-processing steps were performed: orbit file 

application, TOPSAR split, co-registration, coherence 

estimation, deburst and merge, multi-looking and terrain 

correction. Coherence is calculated as the normalized cross-

correlation of the two co-registered SAR images (Donezar et al., 

2019) (equation 1). 

 

                                      𝛾 =
〈𝐼1𝐼2

∗〉

√〈𝐼1𝐼1
∗〉〈𝐼2𝐼2

∗〉
                                     (1) 

 

Where  𝛾 is the coherence, 𝐼1 and 𝐼2 represent the complex pixel 

values of two co-registered SLC images, * refers to the complex 

conjugate, and pixel values within 〈 〉 denote spatial averaging 

over a given window size.  
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Figure 2. Methodology flow chart. 

 

To find the coherence reduction in flooded areas, we considered: 

1) two SAR images taken before the occurrence of the flood 

(19/08/2023 & 31/08/2023) to form pre-event coherence( 𝛾𝑝𝑟𝑒). 

2) one image taken before flood (31/08/2023) and one during 

flood (12/09/2023) to form co-event coherence ( 𝛾𝑐𝑜). Using 

these a coherence difference image ( 𝛾𝑝𝑟𝑒 −  𝛾𝑐𝑜)  was formed. 

We hypothesize that the coherence difference image is made up 

of negative change class and positive & no change class. Urban 

areas are stable targets under no-flood conditions, resulting in 

high pre-event coherence values. However, the presence of 

floodwater causes a significant reduction in coherence due to the 

loss of surface stability and decorrelation, leading to low co-event 

coherence. This decrease in coherence makes the negative 

change class in the coherence difference image a reliable 

indicator of inundation. We segment the negative change class 

through GMM. 

GMM is probabilistic image segmentation model, which tries to 

model pixel values of an image as a combination of Gaussian 

distributions (Celik, 2010; Guan et al., 2023). Consider an image 

x made up of K Gaussian distributions, then the probability 

density function of GMM is defined as: 

 

                               𝑝(𝑥) = ∑ 𝜋𝑘𝒩(𝑥|𝜇𝑘 , Σ𝑘)𝐾
𝑘=1                            (2) 

 

Where 𝜋𝑘 is the mixing co-efficient for 𝑘𝑡ℎ Gaussian component, 

𝒩(𝑥|𝜇𝑘 , Σ𝑘) is Gaussian distribution with mean 𝜇𝑘 and 

covariance Σ𝑘. These are the parameters of GMM and are found 

using Expectation-Maximization (EM) algorithm.  

 

EM algorithm involves two step estimation process: 

The first step is termed as expectation step or E-step, where the 

algorithm calculates the responsibility γik  that component 𝑘 

takes for 𝑥𝑖. 

 

                                      γik =
𝜋𝑘𝒩(𝑥𝑖|𝜇𝑘 , 𝛴𝑘)

∑ 𝜋𝑗𝒩(𝑥𝑖|𝜇𝑗 , 𝛴𝑗)𝐾
𝑗=1

                          (3) 

 

The second step is the maximization step or M-step, where the 

parameter values are updated by using responsibilities calculated 

in equation 3. 

                                             𝜋𝑘 =
1

𝑁
∑ 𝛾𝑖𝑘

𝑁
𝑖=1                             (4) 

 

                                             𝜇𝑘 =
∑ γik𝑥𝑖

𝑁
𝑖=1

∑ 𝛾𝑖𝑘
𝑁
𝑖=1

                               (5) 

 

                                    Σ𝑘 =
∑ 𝛾𝑖𝑘(𝑥𝑖−𝜇𝑘)(𝑥𝑖−𝜇𝑘)⟙𝑁

𝑖=1

∑ γik
𝑁
𝑖=1

                    (6) 

 

Where, N is the number of data points. The EM algorithm 

iteratively estimates the value of parameters that maximizes the 

likelihood function of the data (ℒ (θ)). 

 

                          ℒ (θ)= ∑ log ∑ 𝜋𝑘𝒩(𝑥𝑖|𝜇𝑘 , 𝛴𝑘)𝐾
𝑘=1

𝑁
𝑖=1            (7) 

 

Besides reduction in coherence, flooded urban areas also show 

increased backscatter values, which can be identified by using 

normalized change index (NCI). NCI is a quantitative measure 

used to detect changes in intensity values between two SAR 

images acquired at different times. It helps distinguish flood-

induced variations by highlighting areas with significant intensity 

changes (Yulianto et al., 2015; Krishna Vanama and Rao, 2019; 

Adhikari et al., 2023). The NCI is computed as follows (Equation 

8). 

 

                                             𝑁𝐶𝐼 =
(𝜎1−𝜎2)

(𝜎1+𝜎2)
                                        (8) 

 

Where 𝜎1 is pre-event intensity and 𝜎2 is during-event intensity.  

NCI ranges between -1 to 1. The values near to -1 indicate 

negative change, values close to zero represents no change and 

values close to 1 represent positive change. In urban areas, 

flooding often leads to an increase in backscatter due to the 

double-bounce effect, where water enhances the radar return 

from buildings. Thus, the positive change class corresponding to 

increased backscatter is segmented using GMM.  

The negative change class of coherence difference image, 

positive change class of NCI and built-up area extracted from 

LULC map are merged through logical AND operation to give 

flooded urban areas. The final flood map is combination of urban 

flood map and bare soil flood map (made from negative change 

class of NCI).  

The final flood map is validated against flood reference layer 

generated from optical imagery. To generate the flood reference 

layer, the cloud free PlanetScope image was acquired and 

normalized difference water (NDWI) index was formed from it 

using green and NIR bands (Equation 9). The NDWI image was 

thresholded to give the final flood reference layer. 

 

                                      𝑁𝐷𝑊𝐼 =
(𝐺𝑟𝑒𝑒𝑛−𝑁𝐼𝑅)

(𝐺𝑟𝑒𝑒𝑛+𝑁𝐼𝑅)
                                (9) 

 

3. RESULTS AND DISCUSSIONS 

The coherence difference and NCI image of Larissa which were 

given as input to GMM are shown in the Figure 3 (a) and (b). 

The negative values of coherence difference image indicate 

flooded urban areas, dynamic areas and vegetated areas.  Figure 

4 (a) and (b) represents histogram and GMM distribution of 

coherence difference image. The histogram of the coherence 

difference image is unimodal, which complicates segmentation 

using traditional thresholding algorithms. In contrast, Gaussian 

Mixture Models (GMMs) exhibit strong unmixing potential and 

can effectively segment the coherence difference image into 

distinct classes. Hence, we applied a GMM to segment the 

negative change class, quantifying reduced coherence using 

Python programming within the Spyder IDE. 
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Figure 3. (a) Coherence difference image. (b) NCI image 

formed using intensity data. 

 

 
 

Figure 4 (a). Histogram of coherence difference image. 

 

 
 

Figure 4 (b) GMM fits for coherence difference image. 

 

 

The histogram and GMM modelled distributions of NCI image 

are shown in Fig. 5 (a) and (b). The NCI image was segmented  

into positive change class, negative change class, and no change 

class. The positive change class represents an increase in 

intensity values, caused by the double bounce phenomenon in 

inundated urban areas. The negative change class signifies a 

reduction in intensity values, induced by the specular reflection 

of floodwaters over bare soil. The no change class includes false 

alarms caused by targets with permanently low backscatter 

values, such as tarmac surfaces, shadowed areas, and permanent 

water bodies. These areas exhibit little to no variation in intensity 

values between pre and post flood conditions, leading to their 

classification under the unchanged class. 

 

 
 

Figure 5 (a). Histogram of NCI image. 

 

 
 

Figure 5 (b) GMM fits for NCI image. 

 

The pixels representing negative change class of coherence 

difference image and pixels representing positive change class of 

NCI are fused by using logical operations to represent the flooded 

urban areas. However, this estimate includes some false 

positives, particularly from areas experiencing substantial non-

flood-related surface changes. To eliminate these false positives 

built up area foot print from LULC map was used.  

The final flood map generated by fusion of intensity and 

coherence information of SAR image is shown in figure 6 (b). 

The cyan pixels represent the urban flood while the red pixels 

denote bare soil floods. Bare soil floods are unobstructed flood 

surfaces which exhibit low backscatter and are delineated from 

NCI image by considering the negative change class. 
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Figure 6. (a) flood reference layer. (b) final flood map. 

 

Upon validation with flood reference layer (Fig. 6 (a)), the flood 

extent generated by fusing intensity and coherence information 

yields higher F1 score when compared to flood extents generated 

from intensity information only (Table 2). 

 

Table 2. Accuracy assessment metrics for derived flood extents. 

 

Flood map Overall Accuracy F1 score 

Bare soil flood 86.953% 0.6521 

Bare soil+Urban flood 89.849% 0.7731 

 

 

4. CONCLUSIONS 

In this study, we integrated intensity and coherence information 

from Sentinel-1 SAR data to effectively map urban floods in 

Larissa, Greece. Unlike state-of-the-art approaches that rely 

solely on intensity decrease and struggle with urban areas due to 

the double-bounce effect, our method leverages coherence 

reduction and intensity increase as key urban flood indicators, 

enhancing detection accuracy. Our work highlights the potential 

of GMM, an unsupervised probabilistic segmentation model, in 

integrating coherence and intensity data for robust urban flood 

mapping. A built-up mask was also applied to reduce false 

positives arising from coherence changes in vegetated and other 

dynamic areas. The resulting flood maps achieved an overall 

accuracy of 89.849% and an F1 score of 0.7731, outperforming 

flood maps generated solely from intensity data. The framework 

minimizes overestimation by excluding permanent water bodies 

and effectively reduces misclassifications of water-like surfaces, 

such as tarmac and shadows, by utilizing a change detection 

approach. The generated flood extents support the development 

of flood-resilient cities by contributing valuable insights for 

effective flood management efforts. This work can be further 

improved by integrating coherence information from both cross-

polarization and co-polarization channels, thereby quantifying 

both double-bounce and multiple-bounce interactions in 

inundated urban areas, leading to more accurate flood 

assessments. Additionally, future research can expand this study 

to different geographical regions to assess the robustness and 

effectiveness of the proposed approach in diverse flood 

scenarios. 
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