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Abstract 

Air pollution is a primary environmental concern in urban areas. This study examines the temporal and spatial variations in nitrogen dioxide 

(NO2) concentrations in Kolkata from 2019 to 2023 using Sentinel-5P satellite data. The application of statistical techniques, including Global 

Moran's I and Fast Fourier Transform (FFT), highlights changes in NO₂ spatial distribution and identifies dominant periodicities. Yearly 

analysis reveals notable fluctuations in NO₂ levels, with a significant decline of approximately 9.1% between 2019 and 2020, attributed to 

reduced vehicular and industrial activities during the COVID-19 lockdown. However, by 2023, NO2 concentrations had returned to pre-

pandemic levels attributed to the resumption of economic activities. Spatial analysis reveals higher NO2 concentrations in central built-up 

areas, including Ballygunge, Bhowanipore, and Park Street. At the same time, peripheral regions such as Metiabruz and Behala show lower 

levels, likely due to vegetated areas. Global Correspondence values indicate significant shifts in NO2 distribution patterns over the study 

period. The pattern shifted during the COVID-19 pandemic but stabilized by 2023, aligning with pre-pandemic emission levels, but the 

monthly pattern was preserved. The FFT analysis reveals a dominant annual cycle with a frequency of 0.0833 cycles per month (12-month 

period) and an amplitude of 0.3520, along with a significant overall average component. Seasonal variations show higher concentrations in 

winter due to increased emissions and reduced levels in summer due to photolysis and monsoon rains. These findings underscore the 

importance of effective pollution management and continuous air quality monitoring to improve air quality in Kolkata. 

1. Introduction

Air pollution has increasingly become one of the most severe 

environmental issues. The issue is more prominent, particularly in 

urban and industrial areas where population density, industrial 

activities, and vehicular emissions are concentrated. Further, 

nitrogen dioxide (NO2) is a major pollutant that significantly 

impacts air quality and affects health. Prolonged exposure to high 

levels of NO₂ can play a role in asthma development and may 

heighten vulnerability to respiratory infections. This underscores the 

severity of NO₂ as a pollutant with substantial environmental and 

health impacts (Chauhan et al., 2003; Maltare and Vahora, 2023; 

Organization, 2021; Ravindra et al., 2016; Razavi-Termeh et al., 

2021; Stanek et al., 2011). Numerous studies over the years have 

highlighted the increase in critical pollutants such as sulfur dioxide, 

nitrogen oxides, and particulate matter levels in India. The results 

consistently indicate significant health repercussions for populations 

exposed to these pollutants, particularly in high-risk urban and 

industrial areas. Studies also advocate for improved monitoring and 

regulatory steps to manage air quality for public health protection 

(Jion et al., 2023; Kaur and Pandey, 2021; Meo et al., 2022; 

Srivastava et al., 2025). 

Kolkata, one of India’s largest and most densely populated cities, 

has been grappling with changes in NO2 levels.  It is mainly due to 

high industrial emissions, increasing traffic density, and policy 

interventions (Gupta et al., 2008; Karmakar, 2024). In addition to 

emission sources, meteorological factors play a substantial role in 

the variability of air quality in Kolkata. Seasonal changes in factors 

such as temperature, humidity, and precipitation are strongly 

correlated with fluctuations in pollutant concentrations, highlighting 

the dynamic nature of air pollution. These factors reveal strong 

correlations with various pollutants (Khan et al., 2023; Maltare et 

al., 2024). Further, industrial and vehicular activity was restricted to 

a greater extent during the COVID-19 pandemic. So, drastic changes 

in air pollutant distribution and air quality were observed during this 

period (Adam et al., 2021; Li et al., 2020). Beyond environmental 

and health impacts, pollution also affects social structures and 

dynamics. Many research studies explored the complex interactions 

between environmental changes and social dynamics to analyse how 

environmental changes influence community well-being and 

introduce social modifications (Entwisle, 2021; Fazey et al., 2021; 

Mishra and Thakur, 2023). 

Previous studies on NO2 distribution in Kolkata often overlooked 

the detailed spatiotemporal variations and patterns. Additionally, 

studies need to adequately address the impact of significant events, 

such as the COVID-19 lockdowns, on air quality changes. The 

spatial association of pollution and its seasonal pattern have also 

been unexplored. This study utilises Sentinel-5P satellite data to 

analyse the spatiotemporal variation of NO2 in Kolkata from 2019 

to 2023. The measures of various statistical parameters help 

understand the change over time, along with the distribution pattern 

of NO2 over Kolkata. The study also examines spatial variability 

over the area by applying the quantile method for reclassification 

and calculating the value of Global Correspondence between the 

years. Further, the Fast Fourier Transform (FFT) algorithm was used 

to detect seasonal patterns (Musbah et al., 2020, 2019). Integrating 

all these results, the impact of the pandemic lockdown and 

subsequent economic recovery on NO2 patterns was examined. 

Overall, the analysis offers insights into the effects of NO2 and 

highlights the importance of effective pollution control measures in 

maintaining air quality. 

2. Study Area

Kolkata, the largest urban agglomeration in eastern India, serves as 

the administrative capital of West Bengal and stands as a major 

cultural and economic centre. Situated along the banks of the 

Hooghly River, this historic city was known as a prominent port city 

nearly 300 years ago. Over the centuries, Kolkata has evolved from 

its colonial roots into a vibrant metropolis. It has a key role in the 

region's economy, culture, and politics (Bose, 2015; Gupta, 2023). 
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Its strategic location along the Hooghly River has been integral to 

its development, shaping its identity as a critical hub of trade and 

commerce in India (Yadav and Bhagat, 2015). The extensions of the 

study area are 22.4513°N to 22.6328°N and 88.2324°E to 

88.4592°E, respectively, having an area of 196.3 sq. km. (Dasgupta 

et al., 2013).  The major LULC classes in the city include built-up 

areas, which dominate most of the landscape, along with patches of 

vegetation, forest, waterbodies, and rangeland. These categories 

reflect the urbanized nature of the region with limited natural land 

cover (Figure 1). The upper part of Kolkata's sedimentary sequence 

features a 20-60 m thick layer of clay and silty clay, with 

groundwater occurring below in a confined condition (Sikdar et al., 

1996). Integrated natural and anthropogenic factors make the city an 

important industrial centre and settlement, which contributes to the 

rising pollution in the city. 

Figure 1. Study area map of Kolkata illustrating different LULC 

classes. Classification was done using Sentinel-2 data. Important 

locations within the city are also shown. 

3. Methodology

3.1 Dataset 

Several studies used the Sentinel dataset for multi-disaster 

assessment, including land surface deformation, land use land cover 

changes, pollution and flood detection, and other disaster monitoring 

(Alam et al., 2022; Bhattacharjee and Garg, 2024; Chowdhury and 

Dwarakish, 2022; Grimaldi et al., 2020; Jodhani et al., 2024; Mastro 

et al., 2022; Mishra and Jain, 2022; Mondal and Paul, 2023; Raju and 

Mehdi, 2023; Soni et al., 2025; Soudagar et al., 2025; Srivastava et 

al., 2025; Tang et al., 2024; Thakur et al., 2025a, 2025b, 2024; Verma 

and Vijay, 2024). This study utilises the Sentinel-5P satellite from the 

Copernicus program is effective in monitoring atmospheric 

composition. It can provide high-resolution global measurements of 

various atmospheric gases (Bodah et al., 2022; Савенець et al., 2019).  

This satellite is part of the European Space Agency's (ESA) 

Copernicus Earth observation program and is dedicated to monitoring 

air quality and atmospheric composition. It was launched in 2017 and 

uses the Tropospheric Monitoring Instrument (TROPOMI) to capture 

detailed air quality information. Its global coverage and daily 

observations make it useful for accessing trends of different 

pollutants.  

3.2 Processing 

The methodology for estimating NO₂ vertical column density 

involves several key steps shown in Figure 2. The measurement 

technique utilized is known as Differential Optical Absorption 

Spectroscopy (DOAS), which is based on the selective absorption of 

light by atmospheric trace gases (Anand et al., 2015; Chan et al., 

2012; Platt et al., 2008). This method works on the distinct absorption 

features of NO₂ and O₃ in the visible spectrum, enabling their 

identification and quantification based on their unique spectral 

signatures. These features are utilized because each gas absorbs light 

at specific wavelengths, allowing for accurate differentiation and 

measurement through remote sensing techniques (Meena et al., 

2003). Initially, Sentinel-5P satellite data is obtained from the 

TROPOMI sensor, which measures nitrogen dioxide (NO₂) along the 

satellite's viewing angle (slant path). The data undergoes pre-

processing steps, including geolocation correction, cloud masking, 

and quality filtering to enhance accuracy. The slant column densities 

(SCDs) of NO₂ are then derived by analyzing the measured radiance. 

This is done by fitting the absorption features of NO₂ to the observed 

radiance spectrum, as described in Equation 1.  

𝑆𝐶𝐷 = ∫ 𝐿. 𝑛(𝑧) 𝑑𝑧 …(Equation 1) 

L is the path length, and n(z) is the NO₂ number density as a function 

of altitude z. Further, the SCD is transformed to the vertical column 

density (VCD) using the air mass factor (Equation 2). 

𝑽𝑪𝑫 =  
𝑺𝑪𝑫

𝑨𝑴𝑭
…(Equation 2) 

Where AMF is the air mass factor, AMF is a dimensionless quantity 

that depends on factors such as observation geometry, atmospheric 

conditions etc.. This process involves the hyperspectral measurement. 

AMF corrects for the viewing geometry and atmospheric scattering 

(Dimitropoulou, 2021). Further resampling was done and map was 

created with specific resolution of 1km*1km. Finally, yearly 

statistical metrics—minimum, maximum, mean, and standard 

deviation—were calculated to assess temporal changes and spatial 

variability. A distribution map of NO₂ concentrations was overlaid on 

Kolkata's topographic map to identify high-concentration zones to 

identify pollution hotspots.  

To evaluate NO₂ spatial distribution changes in Kolkata, NO₂ 

concentration maps for 2019–2023 were reclassified using the 

quantile method, creating equal-area classes ranging from very low to 

very high. The Global Moran's I formula (Equation 4) was applied to 

determine the spatial association between yearly maps. Pairwise 

Global Correspondence values were computed to assess the similarity 

between distribution patterns for consecutive years. Statistical shifts 

were interpreted in relation to economic and lockdown periods. 

Distribution maps were then overlaid on a topographic map to 

identify spatial patterns in NO₂ concentration across the city. 

For monthly NO₂ analysis, data from 2019 to 2023 was collected, 

organized by month, and reshaped into a continuous time series. A 

moving average with a three-month window size smoothed out short-

term variations, while cubic spline interpolation created a smooth 

trend curve through data points. The Fast Fourier Transform (FFT) 

was employed to detect dominant seasonal patterns and recurring 

periodic cycles in NO₂ concentration over time. By transforming the 

time-series data into the frequency domain, the FFT enabled the 
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identification of key frequency components and their corresponding 

amplitudes. This analysis provided insights into annual, sub-annual, 

etc. variations in NO₂ levels, revealing underlying temporal trends 

and cyclic behavior associated with anthropogenic activities and 

meteorological influences. Moreover, seasonal behaviour was 

interpreted by examining monthly variations, factoring in 

meteorological and socio-economic influences. 

Figure 2. Methodological flowchart showing various steps 

involved in Sentinel 5P data retrieval along with different monthly 

and yearly analysis mechanisms. 

4. Results and Discussions

4.1. General statistical analysis 

Table 1. Spatial statistics of measured NO2 for Kolkata for 

different years. Values are in *10-4 mole/sq.m. 
Year Minimum Maximum Mean Standard 

deviation 

2019 1.1098 1.3639 1.2651 0.0627 

2020 1.0287 1.2257 1.1493 0.0440 

2021 1.1843 1.4507 1.3625 0.0634 

2022 1.1163 1.3802 1.2820 0.0669 

2023 1.2228 1.4356 1.3625 0.0479 

Table 1 presents spatial statistics for analysing the variation in 

nitrogen dioxide (NO2) concentrations in Kolkata from 2019 to 

2023. Figure 3 depicts the distribution for different years. During 

the period of 2019 to 2023, NO2 levels experienced noticeable 

fluctuations. A significant drop of approximately 9.1% is observed 

from 2019 to 2020. This decline was likely due to the reduced 

vehicular and industrial activities during the COVID-19 lockdown. 

Substantial reductions in both minimum and maximum values 

indicate a temporary improvement in air quality. However, NO2 

concentrations began to rise again in 2021, returning to pre-

pandemic levels by 2023. The rebound can be attributed to the 

resumption of regular economic activities, increased industrial 

output, and a return to typical traffic patterns. By 2023, the mean 

NO2 concentration was similar to that observed in 2021 and 2019, 

suggesting that air quality had reverted to its usual state as 

restrictions were lifted. 

Figure 3. Yearly NO2 column density distribution over Kolkata. 

The standard deviation of NO2 concentrations in Kolkata from 2019 

to 2023 highlights fluctuations in spatial variability influenced by 

changes in human activities. The lowest deviation in 2020 

corresponds to uniform NO2 levels during the COVID-19 

lockdown, while increased variability in 2022 reflects varied 

emission sources. By 2023, NO2 distribution stabilized as pollution 

levels became more uniform across the city. Overlaying the 

distribution map of 2023 on a topographic map revealed specific 

areas within the city, such as Ballygunge, Bhowanipore, Taltala, 

Elgin, Park Street, Beniapukur, and Gariahat, with higher NO2 

concentrations. In contrast, peripheral areas like Metiabruz, Behala, 

and Garia showed lower levels, likely due to the presence of more 

vegetated regions. This data underscores the significant impact of 

human activities on air quality in Kolkata, highlighting both the 

temporary improvement during the lockdown and the challenges of 

sustaining lower pollution levels during the economic recovery, 

emphasizing the need for effective and ongoing pollution 

management strategies. 

4.2. Correspondence analysis 

Table 2 presents the Global Correspondence values between 

reclassified maps of NO2 distribution over Kolkata from 2019 to 

2023, calculated based on Global Moran's Index (Lee and Li, 2017; 

Mathur, 2015; Zhang et al., 2008). The maps were reclassified using 

the quantile method to ensure equal area representation for each 

class, as illustrated in Figure 4, and spatial autocorrelation was then 

assessed to evaluate overall clustering patterns across the years. 
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Table 2. Global measure of spatial association between different 

classes of NO2 distribution over Kolkata. 

Year 2019 2020 2021 2022 

2020 0.3918 

2021 0.3914 0.2475 

2022 0.5016 0.2824 0.5653 

2023 0.4772 0.4744 0.2817 0.321 

The values indicate the similarity of NO2 spatial distribution 

between different years. The correspondence between 2019 and 

2020 is 0.3918, suggesting a moderate shift in NO2 patterns, likely 

due to COVID-19 lockdowns that significantly impacted traffic and 

industrial activities. The low correspondence of 0.2475 between 

2020 and 2021 further supports the idea of substantial changes as 

activities resumed post-lockdown. A higher correspondence of 

0.5653 between 2021 and 2022 indicates a return to more stable 

NO2 distribution patterns as economic activities normalized. In 

2023, the distribution showed moderate similarity to previous years, 

with values of 0.4772 compared to 2019 and 0.4744 compared to 

2020, suggesting that NO2 distribution patterns have stabilized, 

likely due to the combination of resumed economic activities and 

effective pollution control measures. 

Figure 4. Yearly relative spatial distribution of NO2 over Kolkata. 

4.3. Monthly Analysis 

Table 3. Monthly Variation of NO2 column density for different 

years. Values are in *10-4 mole/sq.m. 

Month 2019 2020 2021 2022 2023 

January 1.70 1.57 1.58 1.68 1.56 

February 1.75 1.60 1.93 1.91 1.70 

March 1.59 1.12 1.74 1.37 1.51 

April 1.20 1.06 1.25 1.11 1.60 

May 1.10 0.98 1.14 1.15 1.39 

June 1.26 0.98 1.21 1.05 1.33 

July 0.99 0.92 0.97 0.79 0.86 

August 0.95 0.88 1.02 0.99 1.07 

September 0.93 0.92 1.05 1.03 0.91 

October 1.10 0.98 1.35 1.10 1.40 

November 1.28 1.14 1.43 1.43 1.46 

December 1.31 1.57 1.42 1.73 1.48 

Figure 5. Continuous Time Series plot showing monthly variation 

of NO2 for different years with Moving Average and Smooth 

Spline Curve. 

Table 3 displays Kolkata's monthly variation in NO2 column 

density from 2019 to 2023 (Figure 5). The data, originally 

organized by year and month, is reshaped into a continuous time 

series to facilitate comprehensive analysis. The moving average 

technique with a window size of 3 months is applied to smooth out 

short-term fluctuations and highlight longer-term trends (Raudys et 

al., 2013). Additionally, a cubic spline interpolation was used to 

create a smooth curve through the data points (Sun et al., 2023). It 

estimates the unknown values between known data points by fitting 

a piecewise continuous curve. It provides a clearer representation 

of underlying patterns. Further, to analyze the seasonal behaviour 

of the time series data, a frequency domain conversion was applied 

using Fast Fourier Transform (FFT). The FFT was utilized to 

calculate the magnitude associated with each frequency component, 

aiding in the interpretation of the relative significance of various 

periodicities present in the NO₂ time series. 

Table 4. Frequencies and Amplitudes obtained from FFT (Fast 

Fourier Transform) 

Frequency Amplitude Interpretation 

0.0000 1.2763 This shows the overall 

average level of NO₂ 

concentration. 

0.0833 0.3520 This indicates a yearly 

pattern—NO₂ levels tend to 

repeat or cycle every 12 

months. 
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Table 4 summarizes the results of the FFT analysis. Figure 6 depicts 

the curves plotted for the results of FFT analysis. FFT reveals clear 

seasonal and annual trends. The FFT analysis revealed that the 

strongest component is at 0 cycles per month, corresponding to the 

overall average value of the dataset, with an amplitude of 1.2763. 

The next prominent frequency is 0.0833 cycles per month, which 

indicates a clear annual cycle (12-month periodicity), with an 

amplitude of 0.3520. This suggests that the data exhibits a strong 

yearly seasonality. Minor contributions from other frequencies, 

such as 0.1667 cycles per month (semi-annual cycle) and shorter-

term cycles like 0.2500 (4-month cycle), were observed but with 

much lower amplitudes, indicating they play a smaller role in the 

data's behavior. The data shows a dominant annual cycle with 

weaker contributions from semi-annual and shorter periodicities. 

(a) 

(b) 

(c) 

Figure 6. Curve plotted for the results of FFT analysis: (a) Average 

Seasonal Data Across Years for different months; (b) Frequency 

domain of seasonal data with different amplitudes; (c) Average de-

trended component of Data Across Years for different months. 

During the winter months (November to February), NO2 levels are 

generally higher. This increase is likely due to several factors: higher 

emissions from heating systems, increased vehicle emissions due to 

more prolonged engine warm-ups, and atmospheric conditions that 

reduce dispersion. During winter, temperature inversions are more 

common, trapping pollutants near the ground and leading to higher 

concentrations of NO2 (Wallace et al., 2010; Wallace and 

Kanaroglou, 2009). Conversely, the summer months (April to 

September) show comparatively lower NO2 levels. Higher 

temperatures during these months accelerate photolysis (Equation 5) 

and also enhance atmospheric dispersion (Gen et al., 2022; Goldberg 

et al., 2021).  

NO2 + hν → NO + O …(Equation 5) 

Where: hν represents the energy of a single photon of light, with h 

being Planck's constant and ν being the frequency of the UV light. 

O is an oxygen atom that can further react with molecular oxygen 

(O2) to form ozone (O3). As observed in many research studies, the 

increased rainfall associated with the monsoon season helps wash 

NO2 out of the atmosphere; Kolkata also depicted a similar pattern 

(Choi et al., 2008; Loosmore and Cederwall, 2004). Additionally, 

lower heating emissions and changes in transportation patterns, such 

as reduced vehicular traffic during school vacations and summer 

holidays, contribute to the decline in NO2 levels. A significant 

reduction in NO2 levels was observed in 2020, particularly from 

March to June, correlating with the nationwide lockdown due to the 

COVID-19 pandemic, which led to reduced industrial activities, 

vehicular emissions, and overall human activity. This is evident in 

the sharp drop in March and April 2020 NO2 levels compared to 

previous years. Post-2020, NO2 levels gradually increase as 

economic activities resume, but they do not immediately return to 

pre-pandemic levels, indicating a phased recovery in emissions. For 

instance, February 2021 shows a notable rise compared to February 

2020, reflecting increased industrial and vehicular activity as 

restrictions ease. This gradual increase highlights the lasting impact 

of the pandemic on air quality and the slow return to normalcy. The 

year-to-year variability in monthly NO2 levels is influenced by 

changes in local emissions, meteorological conditions, and 

regulatory measures, such as stricter pollution controls and the 

promotion of cleaner technologies. The data underscores the 

importance of sustained efforts to manage air quality, especially in 

0.1667 0.0570 This shows a pattern that 

repeats every 6 months. 

0.2500 0.0671 This represents changes that 

occur roughly every 4 

months. 

0.3333 0.0442 This reflects a repeating 

pattern every 3 months. 

0.4167 0.0138 This shows smaller variations 

happening approximately 

every 2.4 months. 

0.5000 0.0333 This indicates regular 

changes every 2 months. 
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urban environments with dense populations and high levels of 

economic activity. 

5. Conclusion

The analysis of NO2 concentrations in Kolkata from 2019 to 2023 

reveals a clear impact of human activities on air quality. The 

significant reduction in NO2 levels during the 2020 COVID-19 

lockdown highlights that significant air quality improvement can be 

achieved if emissions are strictly controlled. However, the 

concentration of NO2 has increased after the resumption of 

economic activities. It highlights significant challenges in 

maintaining reduced pollution levels. The stabilization and re-rise 

of NO₂ levels by 2023 indicates a return to pre-pandemic air quality. 

This shows the need for sustainable efforts and effective pollution 

management strategies for long-term air quality improvement. The 

Correspondence values indicate a dynamic pattern in NO2 

distribution during the study period. This reflects the fluctuating 

nature of urban emissions and their response to varying levels of 

human activity. The central area, particularly, shows higher 

concentrations of NO2 than the peripheral region, which may be 

attributed to vegetated areas. However, in 2021 and 2022, it has 

shifted towards northwest. Further, in recent years, moderate to 

high correspondence values have suggested stabilization 

phenomena. This may be attributed to balancing economic 

recovery, emissions and pollution control measures. 

The analysis of NO2 column density in Kolkata from 2019 to 2023 

reveals significant seasonal and annual variations, with higher 

levels during winter due to increased emissions and atmospheric 

conditions that trap pollutants. Summer months show a reduction in 

NO2 levels, driven by photolysis, better atmospheric dispersion, and 

monsoon rains. The FFT analysis reveals a dominant annual cycle 

with a prominent frequency of 0.0833 cycles per month (12-month 

period), an amplitude of 0.3520, and a notable overall average 

component at 0 cycles per month, with minor contributions from 

semi-annual and shorter-term cycles. The COVID-19 pandemic led 

to a sharp decline in NO2 in 2020, with levels gradually rising post-

lockdown, yet not fully returning to pre-pandemic levels, 

highlighting the long-term impacts of the pandemic and the 

importance of continued air quality management efforts. However, 

the need for ongoing monitoring and targeted interventions remains 

crucial. It can help achieve consistent and long-term improvements 

in air quality in urbanized cities like Kolkata. 
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